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§ 1. Introduction 

The equivalence, reduction and minimization are classical problems for the 
theory of abstract automata. They are completely studied for deterministic, non-
deterministic and stochastic automata (8). These problems are still open for fuzzy' 
automata because there does not exist a polynomial time algorithm for solving 
systems of linear equations over a bounded chain. 

Let L = ( L , V, A, 0, 1) be a bounded chain (5) with underlying linearly ordered 
set L, the greatest element 1 and the smallest element 0. We shall write L instead 
of L = (L, V, A, 0, 1). 

For a given set D we denote by \D\ its cardinality. 
Let L be given. Let / ^ 0 , / ^ 0 be sets of indices. We write B£LlxJ for the 

matrix B=(bij) where bij=b(i,j) is the (/,y')-th entry of a map b: IXJ-~L. 
Let J be finite set and A=(aij)£LI*J, B=(bjk)eLJxK be given. The matrix 

C=A -B=(cik) £LIxK is called a product of A and B if 

№ 
cik = V (aiphbpk) for each /€/, k£K. 

p=i 
Obviously cike{aip: p£J}U{bpk: p£J). 

Let A = (X, Q, Y, M) be a fuzzy automaton (7, 9) with input alphabet X, state 
set Q, output alphabet Y and set of the step-behaviour matrices 

M = {M(x/y): xdX,y£Y}. 

Each M(x/y) = (m(x/y)l!q,)£L^ *121 and m(x/y)qq, is the grade of membership of 
a transition to state q' under input x assuming the output is y and the start state 
is q. If X, Q, Y are finite sets then A is finite fuzzy automaton. 

For any set D we write D* for the free monoid on D with the empty word e£D* 
as the identity element. For (u, V)£X*X Y* we write (u/v) if the number of the 
letters in u is equal to that of the letters in v. 

Let A=(X, Q, Y, M) be a finite automaton. The expression 
M(u/v) = M(x1ly1)...M(xk/yk), u = Xl...XkiX*, v = y1...ykeY* 

4 Acta Cybernetica 



196 K. Peeva 

defines the operation of A for the pair of words (u/v). Let 

M(ulv) = (m(ulv)qq,). 

For the given automaton A let us consider its behaviour matrix 

B* = (b(ulv)q), q£Q, (u/v)£X*XY*, 

where b(u/v)q= V m(u/v)qq' is the grade of membership of the output v upon 

the input u when the start state is q. The matrix B* is semi-infinite with \Q\ rows. 
It is well-known (7, 9) that there exists a finite submatrix B of B* with linearly 

independent columns. For the problems of equivalence, reduction and minimiza-
tion of fuzzy automata the main question is how to compute B f rom B*. That means 
for any column in B* we have to answer whether it is a V—A-linear combination 
of the previous columns in B*. If we can solve systems of linear equations over a 
bounded chain then we can compute B f rom B*. 

In this paper the attention is concentrated on computing a solution of the 
system of linear equations over L. The main result is (see Algorithm 3 and the 
Theorem corresponding to it) that there exists a polynomial time algorithm for 
solving a system of linear equations over a bounded chain. An extension of this 
result for some semirings is given in (6). 

We would like to remark that the classical methods (5) for solving systems of 
linear equations over a field are not useful here because L is not a field. Since the 
conjugate matrix for a given matrix in L does not exist in general, the ideas of (1) 
can not be applied. As our problem is essentially different f rom the extremal linear 
programing (10) these results can not be implemented. 

Further we shall use without explicit explanation the concept of computa-
tional complexity as described in (3) and the properties of chains according to (5). 

§ 2. Linear equations over L 

In order to determine the general solution of the system we consider first a 
linear equation in L. 

By A • X=b we denote the following linear equation 

( A 1 A X 1 ) V . . . V ( A N A X „ ) = FE ( 1 ) 

with coefficients unknowns X=(xj)£LJxM and a constant b£L. 
Here {1} stands for the singleton set and we assume | / | = n £ N . 

The matrix X°=(xJ)£LJx{1) is a point solution of (1) if and only if A • X°=b 
holds. If there exists X° with A-X°=b then the equation (1) is called solvable, 
otherwise it is unsolvable. An «-tuple (X,, ..., X„) of intervals XtQL is called an 
interval solution of (1) if every «-tuple (xj, ..., x„) with x i £X i is a point solution 
of (1) and (X l t ..., X„) is maximal with respect to this property. 

Let the equation CI) be given and 

S = {j£J: aj < b}, E= {;€/: ai = b}, G = {jdJ: aj > b} 

Proposition 1. The equation (1) is solvable if and only if E U G ^ Q and the 
interval solutions are the n-tuples (Xu...,Xn) where for each j£J either 
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(i) there exists a k£ G such that 

> } if j = k, 
[0, b) if j£G\{k}. 
L if j£SUE, 

or (ii) there exists a k£E such that 

[6,1] if j = 
L if j£SUE\{k}, 
[0,b] if j£G. 

The number of the interval solutions for (1) is equal to the cardinality of the set 
EUG (which does not exceed «). We can compute the interval solutions of (1) in 
a polynomial time. 

§ 3. Systems of linear equations 

In this section systems of linear equations are solved by taking appropriate 
intersections of interval solutions of the single equations. 

By A • X=B we denote the system of linear equations of the form 

( a 1 1 A x 1 ) V ( a 1 2 A x 2 ) V . . . V ( a 1 „ A x „ ) = h 
(2) 

( a m l A * i ) V ( a m 2 A x 2 ) V . . . V ( a m B A x „ ) = 6 m 

with coefficients A=(aij)£LIxJ, unknowns X=(xj)£LJxM and constants 
B=(bi)£LIx{1]. We assume | / | = m € N , \J\=n£N. 

The matrix Ar° = (x5)eL J x { 1 } is a point solution of (2) if and only if A • X°=B 
holds. An «-tuple (Xr, ...,X„) with X{QL is an interval solution of (2) if each 
«-tuple (xj , ... ,x„) with xi£Xi is a point solution of (2) and the «-tuple (X1? ..., Xn) 
is maximal with respect to this property. 

The system (2) is solvable if it possesses at least one solution, otherwise it is 
not solvable or unsolvable. 

The computing method for obtaining the interval solutions of (2) consists of 
the following. 

For each i£I we denote by Et, (7, the sets 

S, = {./€/: au < b;}, Et = {j£J: atj = b,}, Gf = {j£J: au > b,} 

According to Proposition 1 we can form the set Vt of the interval solutions of the 
i',h equality in (2): 

V, = X1-'. = {Xi-\ ..., XM, rt ^ |£,U<7,|}. 

Let r , ^ | U C ; | be fixed for each i£I. We denote by X=(X]), j£j, an interval 
solution of (2) in which each Xj is the following nonempty intersection: 

Xj = n x}-', * 0 (3) 
¡6/ 
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Let y={X: X=(Xj), j£J} be the set of all interval solutions of (2). The 
elements of V are determined by (3). The cardinality of the set V is finite. 

Using the above symbols we propose the following algorithm for comput ing 
the interval solutions of the system (2) : 

Algorithm 1 

Step 1. For each / € / obtain the sets S f , Eh Gh V,. 
Step 2. According to the expression (3) obtain the set V. 

Proposition 2. The time complexity function of Algorithm 1 is exponential in 
the number of m equations. 

Proof. It follows from the fact that the cardinality of the set V does not exceed 
m 

the bound [ J | £ i UG i | s / 7 m . 
¡=1 

In many cases we do not need all of the interval solutions of (2). Fo r example, 
in fuzzy automata theory it is interesting whether the system is solvable or not and 
if the system is solvable — to compute one of its solutions. For this purpose we 
shall consider some of the properties of the system (2). 

Two systems over L are called equivalent if each solution of the first one is a 
solution of the second and vice versa. 

Proposition 3. If the system (2') is obtained f rom the system (2) after a permuta-
tion of the equations then the systems (2) and (2') are equivalent. 

Let the system A X=B be given. We denote by (A . B) the matrix 

(A:B) = 
an...aln: 

.aml...am„\ bm/ 

We shall denote by (2') the system A' • X=B' : 

(ai1Ax1)\/...y(a'1„Ax„) = b[ 

(2') 
(a'mlAXl)y ...y(a'mnAxn) = b'm 

obtained f rom (2) after a permutation of the equations in such a way that b[^ 

The systems (2) and (2') are equivalent according to Proposition 3. 
Let A* be the matrix, obtained from the matrix A' by the rule 

0 if a \ i < b \ , 
b[ if ci, = bi, (4) 

.1 if 5 

Proposition 4. The systems A X=B and A* • X=B' are equivalent. 

Proof. According to Proposition 3 the systems A X=B and A' X=B' are 
equivalent. We shall prove that A' • X=B'oA* • X=B'. If A' X=B' then for 
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each 
3j£J: (fly = XJ = b'i) ^ 

3j£J: (a'ij 3s biAxj = ¿DV«- = bjAxj s b<) o 

3j£J: (afj = 1AXj = = b<AXj b<), 

i.e. for each / £ / there exists a jdJ such that afjAxj=b'i and hence A* • X=B'. 
Let B={b1, ..., bm} be the set of the distinct elements in the matrix B of the 

system (2), resp. (2'). Having in mind the expression (4), it is clear that the elements 
afj of A* and b\ of B' belong to the set 5 U {0, 1}. 

Propositlon5. Let X=(Xj) be an interval solution of the system A* X=B', 
where the components Xj, j£J, are deteimined by (3). Each component Xj is among 
the following intervals: L, [0, bpl), [bp2, bp3], [bpi, 1], where bp1, bp2, bp?, bpi£B. 

The proof follows f rom Proposition 1 and the expression (3). 

Corollary I. Each interval solution of (2) has all its components among the 
following intervals: L, [0, bpl], [bp2, bp3], [bpi, 1], where bpX, bp2, bp3, bpi£B. 

Let Bn
m be the set of all «-fold variations with repetitions on the elements of 

the set B. 

Corollary 2. The system (2) is solvable if and only if there exists an X0£B" t 
such that A • X°=B holds. 

Proof. If there exists an X0£B^, with A • X° = B then the system (2) is solvable. 
Conversely, if the system (2) is solvable, then each component X j of an interval 
solution has the interval form determined by Corollary 1. Hence we can choose each 
component x°j of a point solution of (2) to be equal to an element of B, i.e. X°£B"„. 

Having in mind Corollary 2 we propose the following algorithm for computing 
a point solution of the system (2), or for establishing its solvability. 

Algorithm 2 

Step 1. Find the set B. 
Step 2. Compute the set Bn

m. 
Step 3. For each check whether it is a point solution of the system (2). 
Step 4. List all point solutions determined in Step 3. 
Step 5. If there exists no Xn£B"m with A • X° = B then the system is unsolvable. 

Otherwise it is solvable and a set of point solutions is given in step 4. 

Proposition 6. The time complexity function of Algorithm 2 is exponential 
in the number of « variables. 

Proof. We can check whether X°€BZ, is a solution of (2) in a polynomial time, 
but in a search problem manner. The set B"m is finite and \Bn

m\ = \B\"^m". Hence 
the Algorithm 2 is finite with exponential in the number of « variables time com-
plexity function. 
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§ 4. A polynomial time algorithm 

We propose a polynomial time algorithm for computing a. point solution of 
the system (2) if it is solvable or for listing the numbers-of the contradictory equa-
tions if the system is unsolvable. 

In order to simplify the problem we introduce a symbol-matrix A with symbol-
coefficients obtained f rom those of A* if for each afj we put the corresponding type 
letter S, E or G (without index): ! ' 

S if afj = 0, 
E if atj = b\, (5) 
G if afj = 1. 

The set of the solutions of the system (2) remains unchanged after this reduction 
step (5). 

Let the system (2) be given and X=(Xj) denote an interval solution of (2). 
Let the system (2') and the matrix A be obtained. We assume j£J to be fixed in A. 
In the following we denote by r the smallest number of the row with ¿T-type coeffi-
cient in its jth column and by k the greatest number of the row with G-type coeffi-
cient in its jih column in A. 

In order to find a point solution of (2) we are interested in finding a point XJ£XJ 
with aijAxj^bi for each /£ / . Especially we mark the itb equation in a marker 
vector IND if aijAxj=bi holds. 

Having in mind the above notions we obtain the following 

Proposition 7. Let the system A X=B be given. 
i) if the jtb column in A contains a G-type coefficient then xj=b'k implies 

a'ijAxj — b'i for i=k and for each i>k with ; 
ii) if the / h column in A does not contain any G-type coefficient but it con-

tains an E-type coefficient then XJ=b'r implies a'iJAxJ=b'i for i=r and for each 
z > r with a'lj—b'i; 

ill) if the f b column in A does not contain neither G-type nor £-type coefficients 
then a'ijAxj—b'i for each Xj£L. 

Proof, i) if Xj=b'k and i = k then aij A Xj = akJ Abk=bk since a'kJ>b'k; if 
Xj = b'k, i>k and a'u = b\ then according to the order in (2') implies a'^Axj — 
=b\Abk=b\\ 

ii) if XJ—b'r and i=r then a'ijAxj=a'rJAb'r=b'rAb'r=b'r; if XJ=b'r, i>r and 
a'ij—b'i then according to the order in (2') implies a'iJAxJ=b'iAb'r—b'i; 

iii) if the7 t h column in A contains only 5-type coefficients.then a'i}Ax^a'ij-^b'i 
for each i(Ll and arbitrary x}£L. 

On this base we propose the following algori thm: 

Algorithm 3 

Step 1. Enter the matrix (A :B). 
Step 2. Form the matrix A. 
Step 3. Erase the marker vector IND. 
Step 4. 7 = 0 . 
Step 5. 7 = 7 + 1 . 
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Step 6. If j>n go to 10. 
Step 7. If the / h column in A does not contain any G-type coefficient then go 

to 8. Otherwise XJ—bk. Put a mark in IND for i=k and for each i>k with 
a'i^b'i- Put a mark in IND for each / </c if a[j s b\ — b'k. Go to Step 5. 

Step 8. If the jth column does not contain any is-type coefficient then go to 
step 9. Otherwise XJ=b'r, put marks in IND for i=r and for each / > r with 
a'u^b'i. Go to Step 5. 

Step 9. xj = 1. Go to Step 5. 
Step 10. If there exists at least one unmarked row in IND then the system is 

unsolvable and the unmarked equations are in contradiction with the marked ones. 
The marked equations form a compatible system. If all rows in IND are marked 
then the system is compatible and the components of the point solution X—(xJ) 
are determined in Steps 7, 8, 9. 

Theorem. The following problems are algorithmically decidable in polynomial 
time for the system (2) : 

i) whether the system is solvable or not ; 
ii) computing a point solution if the system is solvable; 

iii) obtaining the numbers of the contradictory equations if the system is 
unsolvable. 

The proof follows f rom Algorithm 3. 
The program realisation of Algorithm 3 is available at the Center of Applied 

Mathematics in the Higher Institute for Mechanical and Electrical Engineering. 

We shall consider two examples as a simple illustration of Algorithm 3. 

Example 1. Solve the system 

(0 ,3A* 1 )V(0,5A* î )V(0,4A*a)V(0,7A* 4 ) = 0,2 

(0,8 A V (0,2 A x2) V (0,7 A x3) V (0,5 Ax4) = 0,5 

(0,2Ax1)V(0,7Ax2)V(0,5Ax3)V(0,3Ax4) = 0,3 
The (')-system is 

(0,8 A x ^ V (0,2A x2) V (0,7 A x3)V (0,5Ax4) = 0,5 

(0,2 A V (0,7 A x2) V (0,5 A x3) V (0,3 A x4) = 0,3 

(0,3 A xx) V (0,5 A x2) V (0,4 A x3) V (0,7 A x^) = 0,2 

The matrix (A :B') and the marker vector IND are 

G S- G E: 0,5 ' 0 
(A: B') = S G G E 0,3 IND = 0 

G G G G: 0 , 2 . . * , 
The system is unsolvable. The contradictory equations have 0 in IND. 

Example 2. Compute a point solution of the system 

(0 ,2A^)V 0,5Ax2)V(0,7Ax3) = 0,4 

(0,8 A Xi) V (0,2 A x2) V (0,1A x3) = 0,2 
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T h e m a t r i x ( A : B ' ) a n d t h e m a r k e r vec tor IND a r e 

(A: B') = ( 
S G G : 0,4 
G E S: 0,2 ) '»-o 

T h e c o l u m n v e c t o r X=(0,2 0 , 4 0,4) ' is a p o i n t s o l u t i o n o f t h i s sys tem. 
I w o u l d l ike t o express g r a t i t u d e t o p r o f . V . T r n k o v a a n d D r . S. I v a n o v f o r t h e 

v a l u a b l e d i s c u s s i o n s a n d t h e in te res t in my w o r k . 

Abstract. A p o l y n o m i a l t i m e a l g o r i t h m f o r c o m p u t i n g a p o i n t s o l u t i o n o f a 
sys tem o f l i nea r e q u a t i o n s o v e r a b o u n d e d c h a i n is g iven. 
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