Metric representations by v_{i}-products

By F. Gécseg

The purpose of this paper is to compare the metric representation powers of the product and v_{i}-products introduced in [1]. It is shown that a class of automata is metrically complete with respect to the product if and only if it is metrically complete regarding the v_{1}-product. It is also proved that the v_{3}-product is metrically equivalent to the product.

We start with some basic notions and notations.
An alphabet is a nonvoid finite set. The free monoid generated by an alphabet X will be denoted by X^{*}. An element $p=x_{1} \ldots x_{n} \in X^{*}\left(x_{i} \in X, i=1, \ldots, n\right)$ is a word over X, and n is the length of p, in notation, $|p|=n$. If $n=0$ then p is the empty word, which will be denoted by e. For arbitrary integer $n(\geqq 0), X^{(n)}$ will stand for the subset of X^{*} consisting of all words with length less than or equal to n.

An automaton is a system $\mathfrak{A}=(X, A, \delta)$, where X is the input alphabet, A is a nonvoid finite set of states and the mapping $\delta: A \times X \rightarrow A$ is the transition function of \mathfrak{N}. We extend δ to a mapping $\delta: A \times X^{*} \rightarrow A$ in the following way: for arbitrary $a \in A, \delta(a, e)=a$ and $\delta(a, p x)=\delta(\delta(a, p), x)\left(p \in X^{*}, x \in X\right)$.

Take an automaton $\mathfrak{Z}=(X, A, \delta)$, a state $a \in A$ and an integer $n(\geqq 0)$. We say that the system (\mathfrak{H}, a) is n-free if $\delta(a, p) \neq \delta(a, q)$ for arbitrary $p, q \in X^{(n)}$ with $p \neq q$.

If we add an output to an automaton then we get the concept of a sequential machine. More precisely, a system $\mathfrak{H}=(X, A, Y, \delta, \lambda)$ is a Mealy machine, where (X, A, δ) is an automaton, Y is the output alphabet and the mapping $\lambda: A \times X \rightarrow Y$ is the output function of \mathfrak{Y}. We can extend λ to a mapping $\lambda: A \times X^{*} \rightarrow Y^{*}$ in the following way: for every $a \in A, \lambda(a, e)=e$ and $\lambda(a, p x)=\lambda(a, p) \lambda(\delta(a, p), x)$. A mapping $\mu: X^{*} \rightarrow Y^{*}$ is called an automaton mapping if there exist a Mealy machine $\mathfrak{G I}=(X, A, Y, \delta, \lambda)$ and an $a \in A$ such that $\mu(p)=\lambda(a, p)\left(p \in X^{*}\right)$. If this is the case then we say that μ can be induced by \mathfrak{H} in the state a.

Take a Mealy machine $\mathfrak{A}=(X, A, Y, \delta, \lambda)$, an automaton mapping $\mu: X^{*} \rightarrow Y^{*}$ and an integer $n(\geqq 0)$. It is said that $\mathfrak{A l}$ induces μ in length n if for some $a \in A, \mu(p)=$ $=\lambda(a, p)\left(p \in X^{(n)}\right)$.

Let $\mathfrak{M}_{j}=\left(X_{j}, A_{j}, \delta_{j}\right)(j=1, \ldots, t)$ be automata, X and Y alphabets, and

$$
\begin{aligned}
& \varphi: A_{1} \times \ldots \times A_{t} \times X \\
& \psi: X_{1} \times \ldots \times X_{t} \\
& \psi A_{1} \times \ldots \times A_{t} \times X
\end{aligned}
$$

mappings. Then the Mealy machine $\mathfrak{H}=\left(X, A, Y, \delta, \lambda\right.$) is the product (α_{i}-product, v_{i}-product) of $\mathfrak{M}_{j}(j=1, \ldots, t)$ with respect to X, Y and φ, ψ if the automaton (X, A, δ) is the product (α_{i}-product, v_{i}-product) of $\mathfrak{H}_{j}(j=1, \ldots, t)$ with respect to X and φ, and for arbitrary $\mathbf{a}=\left(a_{1}, \ldots, a_{t}\right) \in A$ and $x \in X, \lambda(\mathbf{a}, x)=\psi\left(a_{1}, \ldots, a_{t}, x\right)$.

A class K of automata is metrically complete with respect to the product ($\alpha_{i}-$ product, v_{i}-product) if for arbitrary automaton mapping $\mu: X^{*} \rightarrow Y^{*}$ and integer $n(\geqq 0)$ there exists a product (α_{i}-product, v_{i}-product) $\mathfrak{A}=(X, A, Y, \delta, \lambda)$ of automata from K inducing μ in length n. Moreover, the v_{i}-product is metrically equivalent to the product provided that for every class K of automata and non-negative integer n an automaton mapping $\mu: X^{*} \rightarrow Y^{*}$ can be induced in length n by a v_{i}-product $\mathfrak{H}=(X, A, Y, \delta, \lambda)$ of automata from K if and only if it can be induced in length n by a product $\mathfrak{B}=\left(X, B, Y, \delta^{\prime}, \lambda^{\prime}\right)$ of automata from K.

Let $\mathfrak{Y}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right)(i=1, \ldots, t)$ be automata, and take a product

$$
\mathfrak{H}=(X, A, \delta)=\prod_{i=1}^{t} A_{i}[X, \varphi]
$$

Then for arbitrary $\mathbf{a}=\left(a_{1}, \ldots, a_{1}\right) \in A, p \in X^{*}$ and $i \quad(1 \leqq i \leqq t)$ define $\varphi_{i}(\mathbf{a}, p)$ in the following way: $\varphi_{i}(\mathbf{a}, e)=e$ and $\varphi_{i}(\mathbf{a}, q x)=\varphi_{i}(\mathbf{a}, q) \varphi_{i}(\delta(\mathbf{a}, q), x)\left(q \in X^{*}, x \in X\right)$.

For notions and notations not defined here, see [3] and [4].
Now we are ready to state and prove
Theorem 1. A class K of automata is metrically complete with respect to the product if and only if K is metrically complete with respect to the v_{1}-product.

Proof. The condition is obviously sufficient.
To show the necessity assume that K is metrically complete with respect to the product. We prove that for every alphabet Y and integer $k(\geqq 0)$ there exist a v_{1}-product $\mathcal{D}=\left(Y, D, \delta^{\prime \prime}\right)$ of automata from K and a state $d \in D$ such that the system (\mathcal{D}, d) is k-free. This obviously implies that K is metrically complete with respect to the v_{1}-product.

It is shown in [2] that K is metrically complete with respect to the product if and only if for arbitrary integer $k(\geqq 0)$ there exist an $\mathfrak{U}=(X, A, \delta)$ in K a state $a_{0} \in A$ and a word $p \in X^{*}$ with $|p|=k$ such that $\delta\left(a_{0}, p\right)$ is ambiguous, that is $\delta\left(a_{0}, p x\right) \neq \delta\left(a_{0}, p x^{\prime}\right)$ for some $x, x^{\prime} \in X$. Let us distinguish the following two cases.

Case 1. K contains an $\mathfrak{\mathscr { A }}=(X, A, \delta)$ such that for certain pairwise distinct states $a_{0}, a_{1}, \ldots, a_{n-1}, a_{1}^{\prime}$ and inputs $x_{0}, x_{1}, \ldots, x_{n-1}, x_{1}^{\prime}$ we have

$$
\begin{gathered}
\delta\left(a_{0}, x_{1}\right)=a_{1}, \delta\left(a_{1}, x_{2}\right)=a_{2}, \ldots, \delta\left(a_{n-2}, x_{n-1}\right)=a_{n-1}, \delta\left(a_{n-1}, x_{0}\right)=a_{0} \\
\text { and } \delta\left(a_{0}, x_{1}^{\prime}\right)=a_{1}^{\prime} .
\end{gathered}
$$

Let $k(>0)$ be an integer, and take two words $p=y_{1} \ldots y_{r} y_{r+1} \ldots y_{s}, q=y_{1} \ldots y_{r} z_{r+1} \ldots$ $\ldots z_{t} \in Y^{(k)}\left(y_{1}, \ldots, y_{s}, z_{r+1}, \ldots, z_{t} \in Y\right)$ with $t \leqq s$, and $y_{r+1} \neq z_{r+1}$ if $t \neq r$, where Y is an arbitrarily fixed alphabet. Consider the v_{1}-product

$$
\mathfrak{B}=\left(Y, B, \delta^{\prime}\right)=\prod_{i=1}^{s+1} \mathfrak{B}_{i}[Y, \varphi, \nu]
$$

given as follows.

$$
\begin{aligned}
& \mathfrak{B}_{i}=\mathfrak{H} \quad(i=1, \ldots, s+1) . \\
& v(1)=\emptyset \quad \text { and } \quad v(i)=i-1 \quad(i=2, \ldots, s+1) . \\
& \varphi_{i}\left(a_{j}, y\right)=\dot{x}_{j}(i=2, \ldots, s+1 ; j=0, \ldots, n-1 ; y \in Y) . \\
& \varphi_{i}\left(a_{1}^{\prime}, y\right)=\left\{\begin{array}{l}
x_{1} \text { if } i=r+2 \text { and } y=z_{r+1}, \quad(i=2, \ldots, s+1 ; y \in Y) . \\
x_{1}^{\prime} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

In all other cases φ is given arbitrarily such that the resulting product is a v_{1}-product.
Take the state $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{s+1}\right) \in B$ with $b_{1}=a_{1}^{\prime}, b_{i}=a_{n-(i-2)}(i=2, \ldots, s+1)$, where the indices of a 's are taken modulo n. One can easily show by induction on j that for every $j(=1, \ldots, s)$

$$
\delta^{\prime}\left(\mathbf{b}, y_{1} \ldots y_{j}\right)=\left(c_{1}, \ldots, c_{j+1}, c_{j+2}, \ldots, c_{s+1}\right)
$$

where $c_{j+1}=a_{1}^{\prime}$ and $c_{i}=a_{n-(i-2)+j} \quad(i=j+2, \ldots, s+1)$. Moreover, for every $j(=r+1, \ldots, t)$

$$
\delta^{\prime}\left(\mathbf{b}, y_{1} \ldots y_{r} z_{r+1} \ldots z_{j}\right)=\left(c_{1}, \ldots, c_{j+1}, \ldots, c_{s+1}\right)
$$

where $c_{i}=a_{n-(i-2)+j}(i=j+1, \ldots, s+1)$. (The indices of a 's are considered modulo n in the latter two cases, too.)

Therefore, the last component of $\delta^{\prime}(\mathbf{b}, p)$ is a_{1}^{\prime}, and the last component of $\delta^{\prime}(\mathbf{b}, q)$ is in the set $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$. Thus $\delta^{\prime}(\mathbf{b}, p) \neq \delta^{\prime}(\mathbf{b}, q)$.

Case 2. K does not satisfy the conditions of Case 1. Then for every integer $k(\geqq 0)$ there is an $\mathfrak{U}=(X, A, \delta)$ in K with pairwise distinct states a_{0}, a_{1}, \ldots $\ldots, a_{k}, a_{k+1}, a_{k+1}^{\prime}$ and inputs $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, x_{k+1}^{\prime}$ such that $\delta\left(a_{i}, x_{i+1}\right)=a_{i+1}$ $(i=0, \ldots, k)$ and $\delta\left(a_{k}, x_{k+1}^{\prime}\right)=a_{k+1}^{\prime}$. Again take the alphabet Y and the words p, q of Case 1. Consider the v_{1}-product

$$
\mathfrak{B}=\left(Y, B, \delta^{\prime}\right)=\prod_{i=1}^{s} \mathfrak{B}_{i}[Y, \varphi, \nu]
$$

given in the following way.

$$
\begin{gathered}
\mathfrak{B}_{i}=\mathfrak{Y} \quad(i=1, \ldots, s) . \\
v(1)=\emptyset \text { and } v_{i}=i-1 \quad(i=2, \ldots, s) . \\
\varphi_{1}\left(y_{1}\right)=x_{k+1} \quad\left(\text { and } \varphi_{1}\left(z_{1}\right)=x_{k+1}^{\prime} \quad \text { if } r=0 \text { and } t \neq 0\right) . \\
\varphi_{i}\left(a_{j}, y\right)=\left\{\begin{array}{l}
x_{k+1}^{\prime} \quad \text { if } i=r+1, \quad j=k+1 \quad \text { and } y=z_{r+1} \\
x_{j} \text { otherwise } \\
(i=2, \ldots, s ; \quad j=1, \ldots, k+1) . \\
\varphi_{i}\left(a_{k+1}^{\prime}, y\right)=x_{k+1}^{\prime} \quad(i=2, \ldots, s) .
\end{array}\right.
\end{gathered}
$$

In all other cases φ is given arbitrarily in accordance with the definition of the v_{1} product.

Take the state $\mathbf{b}=\left(a_{k}, a_{k-1}, \ldots, a_{k-s+1}\right) \in B$. Again it is easy to show that for every $j(=1, \ldots, s)$

$$
\delta^{\prime}\left(\mathbf{b}, y_{1} \ldots y_{j}\right)=\left(c_{1}, \ldots, c_{j}, \ldots, c_{s}\right)
$$

where $c_{i}=a_{k-(i-1)+j}(i=j, \ldots, s)$. Moreover, for every $j(=r+1, \ldots, s)$

$$
\delta^{\prime}\left(\mathbf{b}, y_{1} \ldots y_{r} z_{r+1} \ldots z_{j}\right)=\left(c_{1}, \ldots, c_{j}, \ldots, c_{s}\right)
$$

with $c_{j}=a_{k+1}^{\prime}$ and $c_{i}=a_{k-(i-1)+j}(i=j+1, \ldots, s)$.
Therefore, the last component of $\delta^{\prime}(\mathbf{b}, p)$ is a_{k+1}. If $s=t$ then the last component of $\delta^{\prime}(\mathbf{b}, q)$ is a_{k+1}^{\prime}. Moreover, if $t<s$ then the last component of $\delta^{\prime}(\mathbf{b}, q)$ is $a_{k-(s-1)+t}$. In both cases we have $\delta^{\prime}(\mathbf{b}, p) \neq \delta^{\prime}(\mathbf{b}, q)$.

To end the proof of Theorem 1 take an integer $k(\geqq 1)$ and an alphabet Y. Moreover, set $I=\left\{(p, q) \mid p, q \in Y^{(k)}, p \neq q\right\}$. As it has been shown for every pair $(p, q) \in I$ there exist a v_{1}-product $\mathcal{D}_{(p, q)}=\left(Y, D_{(p, q)}, \delta_{(p, q)}\right)$ of automata from K and a state $d_{(p, q)} \in D_{(p, q)}$ such that $\delta_{(p, q)}\left(d_{(p, q)}, p\right) \neq \delta_{(p, q)}\left(d_{(p, q)}, q\right)$. Form the direct product $\left.\mathfrak{D}=\Pi\left(\mathfrak{D}_{(p, q)}\right)(p, q) \in I\right)$, and take the state $\mathrm{d} \in D$ with $p r_{(p, q)}(\mathbf{d})=d_{(p, q)}$, where $p r_{(p, q)}$ denotes the $(p, q)^{\text {th }}$ projection. Obviously, $(\mathcal{D}, \mathrm{d})$ is a k-free system. Since the direct product of v_{1}-products of automata is isomorphic to a v_{1}-product of the same automata this completes the proof of Theorem 1.

Let us note that the v_{1}-product used in the proof of Theorem 1 is also an α_{0} product.

Next we prove
Theorem 2. The product is metrically equivalent to the v_{3}-product.
Proof. Let K be a class of automata. If K is metrically complete with respect to the product then, by Theorem 1, for arbitrary integer $k(\geqq 0)$ every automaton mapping $\mu: X^{*} \rightarrow Y^{*}$ can be induced in length $k+1$ by a v_{1}-product $\mathfrak{H}=(X, A, Y, \delta, \lambda)$ of automata from K. Thus we assume that K is not metrically complete with respect to the product. Therefore, none of Case 1 and Case 2 holds for K. This implies that either there is no ambiguous state in any of the automata from K or there is a maximal positive integer k such that for some $\mathfrak{q}=(X, A, \delta) \in K, a \in A$ and $p \in X^{*}$ with $|p|=k-1, \delta(a, p)$ is ambiguous. In the first case every product of automata from K can be given as a quasi-direct product of the same automata. Thus we suppose the existence of the above k.

Let

$$
\mathfrak{M}=(X, A, \delta)=\prod_{i=1}^{s} \mathfrak{M}_{i}[X, \varphi] \quad\left(\mathfrak{A}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right) \in K, i=1, \ldots, s\right)
$$

be a product and $\mathbf{a}=\left(a_{1}, \ldots, a_{s}\right) \in A$ a state. We shall prove the existence of a v_{3} product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\prod_{i=1}^{t} \mathfrak{B}_{i}\left[X, \varphi^{\prime}, \nu\right] \quad\left(\mathfrak{B}_{i}=\left(X_{i}^{\prime}, B_{i}, \delta_{i}^{\prime}\right), i=1, \ldots, t\right)
$$

with a state $\mathbf{b}=\left(b_{1}, \ldots, b_{t}\right) \in B$ such that the following conditions are satisfied.
(i) $\left(\mathfrak{B}_{1}, b_{1}\right)$ is k-free, $X_{1}^{\prime}=X, \varphi_{1}^{\prime}$ is the identity mapping on X and \mathfrak{B}_{1} is a v_{1}-product of automata from K.
(ii) \mathfrak{B}_{2} is a v_{1}-product of automata from $K, X_{2}^{\prime}=X$ and for any two words $p, q \in X^{*}$ with $|p|<k$ and $|q| \geqq k, \delta_{2}^{\prime}\left(b_{2}, \varphi_{2}^{\prime}(\mathbf{b}, p)\right) \neq \delta_{2}^{\prime}\left(b_{2}, \varphi_{2}^{\prime}(\mathbf{b}, q)\right)$.
(iii) $\mathfrak{B}_{i} \in K(i=3, \ldots, t)$.
(iv) For arbitrary two words $p, q \in X^{*}$ with $|p|=|q|=k$ and integer $i(1 \leqq i \leqq s)$ there is a $j(1 \leqq j \leqq t)$ with $\mathfrak{B}_{j}=\mathfrak{H}_{i}, b_{j}=a_{i}, \delta_{j}^{\prime}\left(b_{j}, \varphi_{j}^{\prime}(\mathbf{b}, p)\right)=\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, p)\right)$ and $\delta_{j}^{\prime}\left(b_{j}, \varphi_{j}^{\prime}(\mathbf{b}, q)\right)=\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, q)\right)$.

This will imply that the subautomaton of \mathfrak{Y} generated by \mathbf{a} is a homomorphic image of the subautomaton of \mathfrak{B} generated by \mathbf{b}. Indeed, take two words $p, \boldsymbol{q} \in X^{*}$ with $\delta(\mathbf{a}, p) \neq \delta(\mathbf{a}, q)$. It is enough to show that $\delta^{\prime}(\mathbf{b}, p) \neq \delta^{\prime}(\mathbf{b}, q)$. Let us distinguish the following cases.
(I) $|p|,|q| \leqq k$. Then $\delta^{\prime}(\mathbf{b}, p) \neq \delta^{\prime}(\mathbf{b}, q)$ since they differ at least in their first components.
(II) $|p|<k$ and $|q|>k$. Then $\delta^{\prime}(\mathbf{b}, p)$ and $\delta^{\prime}(\mathbf{b}, q)$ are different at least in their $2^{\text {nd }}$ components.
(III) $|p|,|q| \geqq k$. First of all observe that, by the maximality of k, for arbitrary automaton $\mathbb{C}=\left(Y, C, \delta^{\prime \prime}\right) \in K$, state $c \in C$ and words $r, r_{1}, r_{2} \in Y^{*}$ with $|r|=k$ and $\left|r_{3}\right|=\left|r_{2}\right|, \delta^{\prime \prime}\left(c, r r_{1}\right)=\delta^{\prime \prime}\left(c, r r_{2}\right)$. Let $p=p_{1} p_{2}$ and $q=q_{1} q_{2}\left(\left|p_{1}\right|=\left|q_{1}\right|=k\right)$. Moreover, let $i(1 \leqq i \leqq s)$ be an index for which $\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, p)\right) \neq \delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, q)\right)$. Take the index j given by (iv) to this i and p_{1}, q_{1}. Then by our remark above $\delta_{j}^{\prime}\left(b_{j}, \varphi_{j}^{\prime}\left(\mathbf{b}, p_{1} p_{2}\right)\right)=$ $=\delta_{j}^{\prime}\left(b_{j}, \varphi_{j}^{\prime}\left(\mathbf{b}, p_{1}\right) p_{2}^{\prime}\right)=\delta_{i}\left(a_{i}, \varphi_{i}\left(\mathbf{a}, p_{1}\right) p_{2}^{\prime}\right)=\delta_{i}\left(a_{i}, \varphi_{i}\left(\mathbf{a}, p_{1} p_{2}\right)\right)$ where $p_{2}^{\prime} \in X_{i}^{*}$ is a word with $\quad\left|p_{2}^{\prime}\right|=\left|p_{2}\right| . \quad$ Similarly, $\quad \delta_{j}^{\prime}\left(b_{j}, \varphi_{j}^{\prime}\left(\mathbf{b}, q_{1} q_{2}\right)\right)=\delta_{i}\left(a_{i}, \varphi_{i}\left(\mathbf{a}, q_{1} q_{2}\right)\right)$. Therefore, $\delta^{\prime}(\mathbf{b}, p) \neq \delta^{\prime}(\mathbf{b}, q)$ since they differ at least in their $j^{\text {th }}$ components.

The k-free automaton in (i) can be constructed by using the same method as in the proof of Theorem 1 (according to Case 2).

To give \mathfrak{B}_{2} take an automaton $\mathbb{C}=\left(Y, C, \delta^{\prime \prime}\right) \in K$ with pairwise distinct states $c_{0}, c_{1}, \ldots, c_{k-1}, c_{k}, c_{k}^{\prime}$ and inputs $y_{1}, \ldots, y_{k-1}, y_{k}, y_{k}^{\prime}$ such that $\delta^{\prime \prime}\left(c_{0}, y_{1}\right)=c_{1}, \ldots$ $\ldots, \delta^{\prime \prime}\left(c_{k-2}, y_{k-1}\right)=c_{k-1}, \delta^{\prime \prime}\left(c_{k-1}, y_{k}\right)=c_{k}$ and $\delta^{\prime \prime}\left(c_{k-1}, y_{k}^{\prime}\right)=c_{k}^{\prime}$. Form the single factor v_{1}-product

$$
\mathfrak{B}_{2}=\mathbb{C}\left[X, \varphi^{\prime \prime}, v^{\prime}\right]
$$

where $v^{\prime}(1)=1$ and $\varphi^{\prime \prime}\left(c_{i}, x\right)=y_{i+1}(i=0, \ldots, k-1 ; x \in X)$. Moreover, in all other cases $\varphi^{\prime \prime}$ is given arbitrarily. Since K is not metrically complete \mathfrak{B}_{2} satisfies (ii).

Next we show that for arbitrary words $p, q \in X^{*}$ with $|p|=|q|=k$ and integer $i(1 \leqq i \leqq s)$ there are a v_{3}-product

$$
\mathfrak{D}=\left(X, D, \delta^{\prime \prime}\right)=\prod_{i=1}^{r} \mathbb{C}_{i}\left[X, \varphi^{\prime \prime}, v^{\prime}\right]
$$

$\left(\mathbb{C}_{i}=\left(Y_{i}, C_{i}, \delta_{i}^{\prime \prime}\right) \in K, i=1, \ldots, r\right)$ and a state $\mathbf{d}=\left(d_{1}, \ldots, d_{r}\right) \in D$ such that $\mathbb{C}_{r}=\mathscr{H}_{i}$, $d_{r}=a_{i}, \delta_{r}^{\prime}\left(d_{r}, \varphi_{r}^{\prime \prime}(\mathbf{d}, p)\right)=\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, p)\right)$ and $\delta_{r}^{\prime \prime}\left(d_{r}, \varphi_{r}^{\prime \prime}(\mathbf{d}, q)\right)=\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, q)\right)$. Then taking the direct product of $\mathfrak{B}_{1}, \mathfrak{B}_{2}$ and these automata \mathfrak{D} the resulting automaton \mathfrak{B} with a suitable $\mathbf{b} \in B$ will obviously satisfy (i)-(iv).

Since the case

$$
\begin{equation*}
\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, p)\right)=\delta_{i}\left(a_{i}, \varphi_{i}(\mathbf{a}, q)\right) \tag{*}
\end{equation*}
$$

is trivial we may assume that ($*$) does not hold. Then $p \neq q$. Let $p=x_{1} \ldots x_{m} x_{m+1} \ldots$ $\ldots x_{k}, \quad q=x_{1} \ldots x_{m} y_{m+1} \ldots y_{k}, \quad x_{m+1} \neq y_{m+1}, \quad \varphi_{i}(\mathbf{a}, p)=\bar{p}=u_{1} \ldots u_{m} u_{m+1} \ldots u_{k} \quad$ and $\varphi_{i}(\mathbf{a}, q)=\bar{q}=u_{1} \ldots u_{m} v_{m+1} \ldots v_{k}$. Moreover, set $p_{j}=x_{1} \ldots x_{j} ; \bar{p}_{j}=u_{1} \ldots u_{j}(j=0,1, \ldots, k)$ and

$$
\begin{aligned}
& q_{j}=\left\{\begin{array}{lrl}
x_{1} \ldots x_{j} & \text { if } & 0 \leqq j \leqq m, \\
x_{1} \ldots x_{m} y_{m+1} \ldots y_{j} & \text { if } & m<j \leqq k,
\end{array}\right. \\
& \bar{q}_{j}=\left\{\begin{array}{lll}
u_{1} \ldots u_{j} & \text { if } & 0 \leqq j \leqq m, \\
u_{1} \ldots u_{m} v_{m+1} \ldots v_{j} & \text { if } & m<j \leqq k .
\end{array}\right.
\end{aligned}
$$

Denote a_{i} by c_{0}. Let l_{1} be the smallest integer u for which there is a v with $u<=v \leqq k$ such that $\delta_{i}\left(c_{0}, \bar{p}_{u}\right)=\delta_{i}\left(c_{0}, \bar{p}_{v}\right)$. If there are no such u and v then let $l_{1}=k$. Sim-
ilarly, let l_{2} be the least integer u such that for some $v(u<v \leqq k), \delta_{i}\left(c_{0}, \bar{q}_{u}\right)=\delta_{i}\left(c_{0}, \bar{q}_{v}\right)$. Again if there are no such u and v then let $l_{2}=k$. Assume that $l_{1} \geqq l_{2}$. Finally, denote by w the maximal number with $\delta_{i}\left(c_{0}, \bar{p}_{w}\right)=\delta_{i}\left(c_{0}, \bar{q}_{w}\right)(0 \leqq w \leqq k)$. Since $\delta_{i}\left(c_{0}, \bar{p}\right) \neq \delta_{i}\left(c_{0}, \bar{q}\right)$ the inequality $l_{2}>w$ holds. Moreover, $w \geqq m$. Let us introduce the notations $\delta_{i}\left(c_{0}, \bar{p}_{j}\right)=c_{j}\left(j=0, \ldots, l_{1}\right)$ and $\delta_{i}\left(c_{0}, \bar{q}_{j}\right)=c_{j}^{\prime}\left(j=0, \ldots, l_{2}\right)$. Then the elements $c_{0}, \ldots, c_{w}, c_{w+1}, c_{w+1}^{\prime}$ are pairwise distinct, and so are the elements of the sets $\left\{c_{0}, \ldots, c_{l_{1}}\right\}$ and $\left\{c_{0}^{\prime}, \ldots, c_{l_{2}}^{\prime}\right\}$. We continue the proof by distinguishing the following two cases.

Case 1. $w=m$. Then let $r=2$ and $\mathfrak{C}_{1}=\mathfrak{C}_{2}=\mathfrak{N}_{i}$. Moreover, $v^{\prime}(1)=1, v^{\prime}(2)=$ $=\{1,2\}$ and

$$
\begin{gathered}
\varphi_{1}^{\prime \prime}\left(c_{j}, x\right)=u_{j+1} \quad\left(j=0, \ldots, l_{1}-1 ; x \in X\right) \\
\varphi_{2}^{\prime \prime}\left(c_{j}, c_{j}, x_{j+1}\right)=u_{j+1} \quad\left(j=0, \ldots, l_{1}-1\right) \\
\varphi_{2}^{\prime \prime}\left(c_{j}, c_{j}^{\prime}, y_{j+1}\right)=v_{j+1}\left(j=m, \ldots, l_{2}-1\right)
\end{gathered}
$$

In all other cases $\varphi^{\prime \prime}$ is given arbitrarily. $\varphi^{\prime \prime}$ is well defined. It is obvious that $\varphi_{1}^{\prime \prime}$ is a function. Assume that $\left(c_{j}, c_{j}, x_{j+1}\right)=\left(c_{j}, c_{j}^{\prime}, y_{j+1}\right)$ holds for some $j\left(m<j<l_{2}\right)$. But this would imply $w>m$.

It is seen immediately that by taking $\mathbf{d}=\left(c_{0}, c_{0}\right)$ the equalities
and

$$
\delta^{\prime \prime}\left(\mathbf{d}, p_{j}\right)=\left(c_{j}, c_{j}\right)\left(j=0, \ldots, l_{1}\right)
$$

$$
\delta^{\prime \prime}\left(\mathbf{d}, q_{j}\right)=\left(c_{j}, c_{j}^{\prime}\right) \quad\left(j=0, \ldots, l_{2}\right)
$$

hold. Since K is not metrically complete with respect to the product, by the choice of l_{1} and l_{2}, this implies

$$
\delta^{\prime \prime}(\mathbf{d}, p)=\left(c, \delta_{i}\left(c_{0}, \bar{p}\right)\right) \quad\left(c \in A_{i}\right)
$$

and

$$
\delta^{\prime \prime}(\mathbf{d}, q)=\left(c^{\prime}, \delta_{i}\left(c_{0}, \bar{q}\right)\right) \quad\left(c^{\prime} \in A_{i}\right)
$$

Case 2. $w>m$. Let $r=w-m+2$ and $\mathbb{C}_{1}=\ldots=\mathfrak{C}_{r}=\mathfrak{M}_{i}$. Moreover, $v^{\prime}(1)=1$, $v^{\prime}(j)=j-1(j=2, \ldots, r-2), v^{\prime}(r-1)=r-1$ and $v^{\prime}(r)=\{r-2, r-1, r\}$. Furthermore,
$\varphi_{j}^{\prime \prime}\left(c_{w-m+l}, x_{l+1}\right)=u_{w-m+l+1} \quad(l=0, \ldots, m)$,

$$
\varphi_{1}^{\prime \prime}\left(c_{w}, y_{m+1}\right)=v_{w+1},
$$

$$
\varphi_{j}^{\prime \prime}\left(c_{w-m-j+2+l}, x_{l+1}\right)=u_{w-m-j+2+l} \quad(j=2, \ldots, r-2 ; \quad l=0, \ldots, m+j-1)
$$

$$
\varphi_{j}^{\prime \prime}\left(c_{w-m-j+2+l}, y_{l+1}\right)=u_{w-m-j+2+l} \quad(j=2, \ldots, r-2 ; \quad l=m, \ldots, m+j-2)
$$

$$
\varphi_{j}^{\prime \prime}\left(c_{w+1}^{\prime}, y_{m+j}\right)=v_{w+1}(j=2, \ldots, r-2)
$$

$$
\varphi_{r-1}^{\prime \prime}\left(c_{l}, x_{l+1}\right)=u_{l+1} \quad\left(l=0, \ldots, l_{1}-1\right)
$$

$$
\varphi_{r-1}^{\prime \prime}\left(c_{l}, y_{l+1}\right)=u_{l+1} \quad\left(l=m, \ldots, l_{2}-1\right)
$$

$$
\varphi_{r}^{\prime \prime}\left(c_{l+1}, c_{l}, c_{l}, x_{l+1}\right)=u_{l+1} \quad(l=0, \ldots, w)
$$

$$
\varphi_{r}^{\prime \prime}\left(c_{l+1}, c_{l}, c_{l}, y_{l+1}\right)=u_{l+1} \quad(l=m, \ldots, w-1)
$$

$$
\varphi_{r}^{\prime \prime}\left(c_{w+1}^{\prime}, c_{w}, c_{w}, y_{w+1}\right)=v_{w+1}
$$

$$
\varphi_{r}^{\prime \prime}\left(c, c_{w+l}, c_{w+l}, x_{w+l+1}\right)=u_{w+l+1} \quad\left(c \in A_{i}, l=1, \ldots, l_{1}-(w+1)\right)
$$

$$
\varphi_{r}^{\prime \prime}\left(c, c_{w+l}, c_{w+l}^{\prime}, y_{w+l+1}\right)=v_{w+l+1} \quad\left(c \in A_{i}, l=1, \ldots, l_{2}-(w+1)\right) .
$$

In all other cases $\varphi^{\prime \prime}$ is given arbitrarily in accordance with the definition of the v_{3} product. $\varphi^{\prime \prime}$ is well defined. This is clear in all cases except when

$$
\left(c, c_{w+l}, c_{w+l}, x_{w+l+1}\right)=\left(c^{\prime}, c_{w+l}, c_{w+l}^{\prime}, y_{w+l+1}\right)
$$

for an $l\left(1 \leqq l \leqq l_{2}-(w+1)\right)$. But this would contradict the choice of w.
One can easily show by induction on l that for $\mathbf{d}=\left(c_{w-m}, c_{w-m-1}, \ldots, c_{1}, c_{0}, c_{0}\right)$ the following equalities hold.

$$
\begin{gathered}
\delta^{\prime \prime}\left(\mathbf{d}, p_{l}\right)=\left(c_{w-m+l}, c_{w-m-1+l}, \ldots, c_{1+l}, c_{l}, c_{l}\right) \quad(l=0, \ldots, m), \\
\delta^{\prime \prime}\left(\mathbf{d}, p_{m+l}\right)=\left(c_{1}^{\prime \prime}, \ldots, c_{l-1}^{\prime \prime}, c_{w+1}, c_{w}, \ldots, c_{m+l+1}, c_{m+l}, c_{m+l}\right) \\
\left(c_{1}^{\prime \prime}, \ldots, c_{l-1}^{\prime \prime} \in A_{i} ; l=1, \ldots, w-m\right), \\
\delta^{\prime \prime}\left(\mathbf{d}, q_{m+1}\right)=\left(c_{1}^{\prime \prime}, \ldots, c_{l-1}^{\prime \prime}, c_{w+1}^{\prime}, c_{w}, \ldots, c_{m+l+1}, c_{m+l}, c_{m+l}\right) \\
\left(c_{1}^{\prime \prime}, \ldots, c_{l-1}^{\prime \prime} \in A_{i} ; l=1, \ldots, w-m\right), \\
\delta^{\prime \prime}\left(\mathbf{d}, p_{l}\right)=\left(c_{1}^{\prime \prime}, \ldots, c_{r-2}^{\prime \prime}, c_{l}, c_{l}\right) \quad\left(c_{1}^{\prime \prime}, \ldots, c_{r-2}^{\prime \prime} \in A_{i} ; l=w+1, \ldots, l_{1}\right), \\
\delta^{\prime \prime}\left(\mathbf{d}, q_{l}\right)=\left(c_{1}^{\prime \prime}, \ldots, c_{r-2}^{\prime \prime}, c_{l}, c_{l}^{\prime}\right) \quad\left(c_{1}^{\prime \prime}, \ldots, c_{r-2}^{\prime \prime} \in A_{i} ; l=w+1, \ldots, l_{2}\right) .
\end{gathered}
$$

Since K is not metrically complete with respect to the product, by the choice of l_{1} and I_{2}, the last two equalities imply

$$
\begin{gathered}
\delta^{\prime \prime}(\mathbf{d} ; p)=\left(c_{1}^{\prime \prime}, \ldots, c_{r-1}^{\prime \prime}, \delta_{i}\left(c_{0}, \bar{p}\right)\right) \text { and } \quad \delta^{\prime \prime}(\mathbf{d}, q)=\left(\bar{c}_{1}, \ldots, \bar{c}_{r-1} ; \delta_{i}\left(c_{0}, \bar{q}\right)\right) \\
\left(c_{1}^{\prime \prime}, \ldots, c_{r-1}^{\prime \prime}, \bar{c}_{1}, \ldots, \bar{c}_{r-1} \in A_{i}\right)
\end{gathered}
$$

which ends the proof of Theorem 2.
Let us note that the v_{3}-product \mathfrak{B} in the proof of Theorem 2 is also an α_{1} product.

DEPT. OF COMPUTER SCIENCE
ARADI VÉRTANÚK TERE I
SZEGED, HUNGARY
H-6720

References

[1] Dömösi, P., B. Imreh, On v_{i}-products of automata, Acta Cybernet., v. VI. 2, 1983, pp. 149-162.
[2] Гечег, Ф., Метрически полные системы автоматов, Кибернетика, №3, 1968, рр. 96-98.
[3] Gécseg, F., Representation of automaton mappings in finite length, Acta Cybernet., v. II. 4, 1975, pp. 285-289.
[4] Gécseg, F., On v_{1}-products of commutative automata. Acta Cybernet., v. VIl. 1, 1985, pp. 55-59.

