# On Complexity of Finite Moore Automata 

By Masashi Katsura

The concept of complexity of finite Moore automata is introduced by Ádám [1]. In this paper, we obtain relationships among complexity and cardinalities of state set, input set and output set of a Moore automaton.
1.

For a finite set $Z$, the cardinality of $Z$ is denoted by $|Z| . Z^{*}$ is the free monoid generated by $\boldsymbol{Z} . \mathrm{N}$ is the set of positive integers and $\mathbf{N}^{\circ}$ is the set of nonnegative integers. For $t, k, \in \mathbf{N}^{\circ}$, we set $[t: k]=\left\{i \in \mathbf{N}^{\circ} \mid t \leqq i \leqq k\right\}$.

By a Moore automaton, we mean a 5 -tuple $\mathrm{A}=(A, X, Y, \delta, \lambda)$, where $A, X, Y$ are finite nonempty sets called a state set, an input set and an output set, respectively. $\delta$ is a mapping of $A \times X$ into $A$ called a state transition function ( $\delta$ is extended as usual to a mapping of $A \times X^{*}$ into $A$ ). $\lambda$ is a mapping of $A$ onto $Y$ called an output function.

Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton. If $\lambda(\delta(a, p)) \neq \lambda(\delta(b, p))$ holds for $a, b \in A$ and $p \in X^{*}$, then we say that $p$ distinguishes between $a$ and $b$. $\omega_{\mathrm{A}}(a, b)$ is the minimal length of $p$ which distinguishes between $a$ and $b$. If there is no word which distinguishes between $a$ and $b$, then we write $\omega_{\mathrm{A}}(a, b)=\infty$. The complexity $\Omega(\mathbf{A})$ of the Moore automaton $\mathbf{A}$ is defined by $\Omega(\mathbf{A})=\max \left\{\omega_{\mathbf{A}}(a, b)\right.$ $\mid a, b \in A, a \neq b\}$. If $|A|=1$ then $\Omega(\mathbf{A})=0$.

A Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$ is said to be initially connected if a distinguished state $a_{0} \in A$, called the initial state of $A$, is given and the following condition is satisfied: For any $a \in A$, there exists a $p \in X^{*}$ such that $\delta\left(a_{0}, p\right)=a$.

Let $v, n \in \mathbf{N}$ and $w \in \mathbf{N}^{\circ} \cup\{\infty\}$. If there exists an (initially connected) Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$ such that $|A|=v,|X|=n$ and $\Omega(\mathbf{A})=w$, then the triple ( $v, n, w$ ) is said to be realizable by (initially connected) Moore automata.

We have the following theorem by summarizing the results of Ádám in [2], [3], [4].

Theorem 1. For any $v, n \in \mathbf{N}$ and $w \in \mathbf{N}^{\circ} \cup\{\infty\}$, the following three statements are equivalent:
(1) ( $v, n, w)$ is realizable by Moore automata.
(2) ( $v, n, w$ ) is realizable by initially connected Moore automata.
(3.1) $w \leqq v-2$, or
(3.2) $v=1, w=0$, or
(3.3) $v \geqq 2, \quad w=\infty$.

When we realize a triple ( $v, n, w$ ) for a small $w$, a large output set is needed, and vice versa. We wish to take consideration on cardinalities of output sets, too.

Let $v, n, m \in \mathbf{N}$ and $w \in \mathbf{N}^{\circ} \cup\{\infty\}$. If there exists an (initially connected) Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$ such that $|A|=v,|X|=n,|Y|=m$ and $\Omega(\mathbf{A})=w$, then the 4 -tuple ( $v, n, m, w$ ) is said to be realizable by (initially connected) Moore automata.

In this paper, all realizable 4 -tuples are completely determined. Section 2 gives a sufficient condition. Section 4 is a preparation to show that the sufficient condition given in Section 2 is necessary. In Section 5, the main result is stated and proved. Section 6 illustrates some examples. In Section 3, we prove a conjecture posed in [3].
2.

Let $X$ and $Y$ be finite nonempty sets and let $t \in \mathbf{N}^{\circ}$. By $F_{t}(X, Y)$ we denote the set of all mappings of $\bigcup_{k=0}^{t} X^{k}$ into $Y$.

The following lemma is evident.
Lemma 1. $\left|F_{t}(X, Y)\right|=|Y|^{1+|X|+|X|^{2}+\cdots+|X|^{t}}$ for any $t \in \mathbf{N}^{\circ}$.
Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton. For each $a \in A$, let $\lambda^{*}(a)$ be a mapping of $X^{*}$ into $Y$ defined by

$$
\left(\lambda^{*}(a)\right)(p)=\lambda(\delta(a, p)) .
$$

For $t \in \mathbf{N}^{0}, \lambda^{(t)}(a)$ is an element of $F_{t}(X, Y)$ which is the restriction of $\lambda^{*}(a)$ to $\bigcup_{k=0}^{t} X^{\mathbf{k}}$. Hence $\lambda^{(0)}=\lambda$ if we identify $F_{0}(X, Y)$ with $Y$.

For each $t \in \mathrm{~N}^{\circ}$, let $\eta_{1}(\mathbf{A})$ be a partition of $A$ defined as follows: $a$ and $b$ are congruent modulo $\eta_{\mathrm{t}}(\mathbf{A})$ iff $\omega_{\mathrm{A}}(a, b) \geqq t . \eta_{t}(\mathbf{A})$ is introduced and investigated in [2], [4]. The number of $\eta_{t}(\mathbf{A})$-classes is denoted by $\left|\eta_{t}(\mathbf{A})\right|$. The following three lemmas indicate fundamental properties of the partition $\eta_{t}(\mathbf{A})$.

Lemma 2 [4]. $\eta_{0}(\mathbf{A}) \supseteqq \eta_{1}(\mathbf{A}) \supseteqq \eta_{2}(\mathbf{A}) \supseteqq \ldots$.
Lemma 3 [4]. If $\eta_{t-1}(\mathbf{A})=\eta_{t}(\mathbf{A})$ then $\eta_{t}(\mathbf{A})=\eta_{t+1}(\mathbf{A})$.
Lemma 4. Let $w \in \mathbf{N}^{\circ}$. Then $\Omega(\mathbf{A})=w$ iff $\eta_{w}(\mathbf{A}) \supsetneqq \eta_{w+1}(\mathbf{A})$ and $\left|\eta_{w+1}(\mathbf{A})\right|=$ $=|A|$.

By using the mapping $\lambda^{(t)}(a)$, the partition $\eta_{t}(A)$ is characterized as follows:
Lemma 5. $a$ and $b$ are congruent modulo $\eta_{t+1}(\mathbf{A})$ iff $\lambda^{(t)}(a)=\lambda^{(t)}(b)$.
Hence we have:
Lemma 6. $\left|\eta_{t+1}(\mathbf{A})\right|=\left|\left\{\chi^{(t)}(a) \in F_{t}(X, Y) \mid a \in A\right\}\right|$ for any $t \in \mathbf{N}^{\circ}$.
Expecially, we have:

Lemma 7. $\left|\eta_{t+1}(A)\right| \leqq|Y|^{1+|X|+|X|^{2}+\cdots+|X|^{t}}$ for any $t \in N^{\circ}$.
On the other hand, a lower bound of the number of $\eta_{t}(\mathbf{A})$-classes is given as follows:

Lemma 8. Let $t \in N^{\circ}$. If $t \leqq \Omega(A)$ then $\left|\eta_{t+1}(A)\right| \geqq|Y|+t$.
Proof. By Lemmas 2, 3 and 4, we have $\eta_{1}(\mathbf{A}) \supsetneqq \eta_{2}(\mathbf{A}) \supsetneqq \cdots \supsetneqq \eta_{t}(\mathbf{A}) \supsetneqq \eta_{t+1}(\mathbf{A})$, i.e., $\quad\left|\eta_{1}(\mathbf{A})\right|<\left|\eta_{2}(\mathbf{A})\right|<\ldots<\left|\eta_{t}(\mathbf{A})\right|<\left|\eta_{t+1}(\mathbf{A})\right|$. Hence $\quad\left|\eta_{t+1}(\mathbf{A})\right| \geqq\left|\eta_{1}(\mathbf{A})\right|+t$. By Lemma 6, we have $\left|\eta_{1}(\mathrm{~A})\right|=|Y|$.

Now, we have the following desired result.
Proposition 1. Let $v, n, m \in \mathbf{N}$ and $w \in \mathbf{N}^{\circ}$. If the 4-tuple ( $v, n, m, w$ ) is realizable by Moore automata then $m+w \leqq v \leqq m^{1+n+n^{2}+\cdots+n^{w}}$.

Proof. Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton such that $|A|=v,|X|=n$, $|Y|=m$ and $\Omega(\mathbf{A})=w$. By Lemma 4, $\left|\eta_{w+1}(\mathbf{A})\right|=v$. By Lemmas 7 and 8, we have $m+w \leqq\left|\eta_{w+1}(\mathbf{A})\right| \leqq m^{1+n+n^{2}+\cdots+n^{w}}$.

$$
3 .
$$

Ádám posed three conjectures in [3]. Conjectures 1 and 2 are solved in Theorem 1. However, Conjecture 3 is not yet solved. In this section, we settle this conjecture. (This result is not used in what follows).

Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton such that $1 \leqq \Omega(\mathbf{A})<\infty$. Put $\Omega(\mathbf{A})=w$. Take $a, b \in A$ such that $\omega_{\mathbf{A}}(a, b)=w$. Then there exists a $q \in X^{w}$ such that $\lambda(\delta(a, q)) \neq \lambda(\delta(b, q))$. Let $q=q^{\prime} x$ with $q^{\prime} \in X^{w-1}$ and $x \in X$. Let $B$ be the $\eta_{2}(\mathbf{A})$-class containing $\delta\left(a, q^{\prime}\right)$, i.e., $B=\left\{c \in A \mid \lambda(\delta(c, p))=\lambda\left(\delta\left(a, q^{\prime} p\right)\right)\right.$ for any $p \in X \cup\{e\}\}$, where $e$ is the identity of $X^{*}$.

Define $\mathbf{A}^{\prime}=\left(A, X, Y^{\prime}, \delta, \lambda^{\prime}\right)$ as follows:
(i) $Y^{\prime}=Y \cup\{y\}$ where $y$ is not in $Y$.
(ii) $\lambda^{\prime}(c)=y$ for any $c \in B$.
(iii) $\lambda^{\prime}(c)=\lambda(c)$ for any $c \in A-B$.

Since $\lambda\left(\delta\left(a, q^{\prime} x\right)\right) \neq \lambda\left(\delta\left(b, q^{\prime} x\right)\right)$, we have $\delta\left(b, q^{\prime}\right) \notin B$. Hence $\lambda^{\prime}\left(\delta\left(b, q^{\prime}\right)\right)=$ $=\lambda\left(\delta\left(b, q^{\prime}\right)\right)=\lambda\left(\delta\left(a, q^{\prime}\right)\right)$. Consequently, $\lambda^{\prime}$ is surjective. Moreover, we have:

Lemma 9. (1) $\eta_{t}(\mathbf{A}) \supseteqq \eta_{t}\left(\mathbf{A}^{\prime}\right)$ for any $t \in \mathbf{N}^{\circ}$.
(2) $\eta_{w}(\mathbf{A}) \supsetneqq \eta_{w}\left(\mathbf{A}^{\prime}\right)$.
(3) $\eta_{w-1}\left(\mathrm{~A}^{\prime}\right)$ is not the identity partition.

Proof. (1) It is obvious that for any $c, d \in A$, if $\lambda(c) \neq \lambda(d)$, then $\lambda^{\prime}(c) \neq \lambda^{\prime}(d)$. It follows from this fact that $\omega_{\mathrm{A}^{\prime}}(c, d) \leqq \omega_{\mathrm{A}}(c, d)$ for any $c, d \in A$.
(2) Since $\lambda^{\prime}\left(\delta\left(a, q^{\prime}\right)\right) \neq \lambda\left(\delta\left(a, q^{\prime}\right)\right)=\lambda\left(\delta\left(b, q^{\prime}\right)\right)=\lambda^{\prime}\left(\delta\left(b, q^{\prime}\right)\right)$, we have $\omega_{\mathbf{A}^{\prime}}(a, b)$ $\leqq w-1$. Hence $a$ and $b$ are congruent modulo $\eta_{w}(\mathbf{A})$, but not congruent modulo $\eta_{w}\left(\mathrm{~A}^{\prime}\right)$.
(3) It suffices to show that $\omega_{A^{\prime}}(a, b)=w-1$. When $w=1$, the conclusion is obvious. Assume $w \geqq 2$ and $\omega_{A^{\prime}}(a, b) \leqq w-2$. Then there exists a $p \in \bigcup_{k=0}^{w-2} X^{k}$ such that $\lambda^{\prime}(\delta(a, p)) \neq \lambda^{\prime}(\delta(b, p))$. Since $\lambda(\delta(a, p))=\lambda(\delta(b, p))$, we have $\delta(a, p) \in B$
and $\delta(b, p) \notin B$, or vice versa. In other words, $\delta(a, p)$ and $\delta(b, p)$ are not congruent modulo $\eta_{2}(A)$. For any $p^{\prime} \in X \cup\{e\}$, we have $p p^{\prime} \in \bigcup_{k=0}^{w-1} X^{k}$. Hence $\lambda\left(\delta\left(a, p p^{\prime}\right)\right)=$ $=\lambda\left(\delta\left(b, p p^{\prime}\right)\right)$ for any $p^{\prime} \in X \cup\{e\}$. This means that $\delta(a, p)$ and $\delta(b, p)$ are congruent modulo $\eta_{2}(\mathbf{A})$. This is a contradiction. Hence we have $\omega_{\mathbf{A}^{\prime}}(a, b)=w-1$.

Proposition 2 ([3] Conjecture 3). Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton such that $1 \leqq \Omega(\mathbf{A})<\infty$. Then there exists a Moore automaton $\mathrm{A}^{\prime}=\left(A, X, Y^{\prime}, \delta\right.$, $\lambda^{\prime}$ ) such that $\left|Y^{\prime}\right|=|Y|+1$ and $\Omega(\mathbf{A})-1 \leqq \Omega\left(\mathbf{A}^{\prime}\right) \leqq \Omega(\mathbf{A})$.

Proof. Let $\mathbf{A}^{\prime}$ be the Moore automaton constructed as above. Lemma 9 (1) implies that $\Omega\left(\mathbf{A}^{\prime}\right) \leqq \Omega(\mathbf{A})$ : Lemma 9 (3) means that $\Omega\left(\mathbf{A}^{\prime}\right) \geqq \Omega(\mathbf{A})-1$.

As pointed out in [3], we get an automaton of complexity 0 by at most $|A|-|Y|$ times application of Proposition 2. Hence we have another proof of the left hand side inequality of Proposition 1.

$$
4 .
$$

In this section, we prepare for showing the converse of Proposition 1. Throughout this section, we assume that $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{m}\right\}$ and $m \geqq 2$. $F_{1}(X, Y)$ is simply denoted by $F_{1} . F_{-1}$ means the singleton set consisting of the empty mapping, i.e., the mapping whose definition domain is the empty set.

Let $t \in \mathbf{N}^{\circ}$ and $f \in F_{t}$. We define $f_{l}, f_{r, 1}, \ldots, f_{r, n} \in F_{t-1}$ as follows:

$$
\begin{gathered}
f_{l} \text { is the restriction of } f \text { to } \bigcup_{k=0}^{t-1} X^{k}, \\
f_{r . j}(p)=f\left(x_{j} p\right) \text { for any } p \in \bigcup_{k=0}^{t-1} X^{k}(j \in[1: n]) .
\end{gathered}
$$

Hence for $f \in F_{0}, f_{l}$ and $f_{r, j}$ are the empty mappings. $f_{l}$ is said to be the left factor of $f$, and $f_{r}$, is its $j$-th right factor.

The following lemma can be shown by a straightforward verification.
Lemma 10. Let $t \in \mathbf{N}^{\circ}$ and $g \in F_{t-1}$. Then $\left|\left\{f \in F_{t} \mid f_{l}=g\right\}\right|=\left|\left\{f \in F_{t} \mid f_{r, j}=g\right\}\right|=$ $=:\left|F_{t}\right| /\left|F_{t-1}\right|=m^{n^{2}}$.

Let $\mathbf{A}=(A, X, Y, \delta, \lambda)$ be a Moore automaton. Consider the mapping $\lambda^{(t)}$ of $A$ into $F_{t}$. The assumption that $\lambda$ is surjective is equivalent to:
(i) For any $j \in[1: n]$, there exists an $a \in A$ such that $\left(\lambda^{(t)}(a)\right)(e)=y_{j}$, where $e$ is the identity of $X^{*}$.

If $\delta\left(a, x_{j}\right)=b$, then $\left(\lambda^{(t)}(a)\right)_{r, j}=\left(\lambda^{(t)}(b)\right)_{1}$. Hence we have:
(ii) For any $a \in A$ and $j \in[1: n]$, there exists a $b \in A$ such that $\left(\lambda^{(t)}(a)\right)_{r . j}=$ $=\left(\lambda^{(t)}(b)\right)_{t}$.
$\Omega(\mathbf{A})=t$ is equivalent to:
(iii) $\lambda^{(t)}$ is injective, and $\left(\lambda^{(t)}(a)\right)_{l}=\left(\lambda^{(t)}(b)\right)_{l}$ for some $a, b \in A$ with $a \neq b$.

Conversely, assume that a mapping $\tau$ of $A$ into $F_{t}$ which satisfies (i) and (ii) is given. Define a Moore automaton $\mathbf{A}_{\mathrm{t}}=(A, X, Y, \delta, \lambda)$ as follows:
(iv) $\lambda(a)=(\tau(a))(e)$ for any $a \in A$.
(v) Let $a \in A$ and $j \in[1: n]$. By (ii), there exists a $b \in A$ such that $\tau(a)_{r, j}=\tau(b)_{l}$. Set $\delta\left(a, x_{j}\right)=b$.

Then it can easily be seen that $\lambda^{(t)}(a)=\tau(a)$ holds for any $a \in A . \mathbf{A}_{\tau}$ is not unique in general. The collection of all $\mathbf{A}_{\tau}$ coincides with all Moore automata $\mathbf{A}=(A, X, Y, \delta, \lambda)$ which satisfy $\lambda^{(t)}=\tau$. The partitions $\eta_{0}\left(\mathbf{A}_{\tau}\right), \eta_{1}\left(\mathbf{A}_{\tau}\right), \ldots, \eta_{t+1}\left(\mathbf{A}_{\tau}\right)$ are independent of the choice of $b$ in (v), i.e., they depend only on the mapping $\tau$.

To show the converse of Proposition 1, it suffices to give a mapping $\tau$ of $A$ into $F_{t}$ which satisfies (i), (ii) and (iii) for each finite set $A$ with $m+t \leqq|A| \leqq m^{1+n+n^{2}+\cdots+n^{t}}$. However, we wish to prove the converse of Proposition 1 in case of initially connected Moore automata. Related problem is:

Let $\tau$ be a mapping satisfying (i) and (ii) (and (iii)). What conditions are required so that we can make $\mathbf{A}_{\tau}$ to be initially connected? What is a method to construct an initially connected $\mathbf{A}_{\tau}$, when it exists?

In general, this problem seems to be difficult. In what follows, we construct a special type of mapping $\tau$, and construct a special type of initially connected Moore automaton $\mathbf{A}_{\tau}$.

Let $t \in \mathbf{N}^{\circ}, s \in \mathbf{N}$ and let $\pi$ be an injection of $[1: s]$ into $F_{t}$. If the following four conditions are satisfied then $\pi$ is called an op-mapping of degree ( $t, s$ ) (with respect to $X$ and $Y$ ).
(a) For any $g \in F_{t-1}$, there exists an $i \in[1: s]$ such that $\pi(i)_{l}=g$.
(b) For any $j \in[1: m]$, there exists an $i \in[1: s]$ such that $(\pi(i))(e)=y_{j}$.
(c) $\pi(i)_{r, 1}=\pi(i+1)_{l}$ for any $i \in[1: s-1]$.
(d) There exists an $i_{\pi} \in[1: s-1]$ such that $\left(\pi\left(i_{\pi}\right)\right)(p)=y_{1}$ for any $p \in \bigcup_{k=0}^{t} X^{k}$. (Since $\pi$ is injective, $i_{\pi}$ is uniquely determined).

When $t \geqq 1$, the assertion (b) is implied by (a). When $t=0$, the assertions (a) and (c) are always satisfied, and the assertion (b) means that $\pi$ is surjective. Hence an op-mapping $\pi$ of degree $(0, s)$ is considered as a bijection of $[1: s]$ onto $Y$ such that $\pi(i)=y_{1}$ for some $i \in[1: s-1]$. Thus we have:

Lemma 11. There exists an op-mapping of degree $(0, s)$ iff $s=m$.
Lemma 12. Let $t, s \in \mathbf{N}$. If there exists an op-mapping $\pi$ of degree $(t, s)$ then $m^{1+n+n^{2}+\cdots+n^{t-1}}+1 \leqq s \leqq m^{1+n+n^{2}+\cdots+n^{t}}$.

Proof. Since $\pi$ is injective, we have $s \leqq\left|F_{t}\right|$. We have $\pi\left(i_{\pi}\right)_{l}=\pi\left(i_{\pi}\right)_{r, 1}$. Since $i_{\pi} \in[1: s-1]$, we have $i_{\pi}+1 \in[1: s]$ and $\pi\left(i_{\pi}+1\right)_{l}=\pi\left(i_{\pi}\right)_{r, 1}=\pi\left(i_{\pi}\right)_{l}$. From this fact and by the assertion (a), it follows that $s \geqq\left|F_{t-1}\right|+1$.

Now we shall construct an op-mapping of degree $(t, s)$ for any $t, s \in \mathbf{N}$ with $m^{1+n+n^{3}+\cdots+n^{t-1}}+1 \leqq s \leqq m^{1+n+n^{2}+\cdots+n^{t}}$. To this end, we provide the following two lemmas.

Lemma 13. Let $\pi$ be an op-mapping of degree $(t, s)$. Then the following statements are equivalent:
(1) There exists an op-mapping $\pi^{\prime}$ of degree ( $t, s+1$ ) which is an extension of $\pi$.
(2) There exists an $f \in F_{t}-\{\pi(i) \mid i \in[1: s]\}$ such that $f_{l}=\pi(s)_{r, 1}$.

Proof. (1) $\Rightarrow$ (2). By the assertion (c), we have $\pi^{\prime}(s+1)_{t}=\pi^{\prime}(s)_{r, 1}=\pi(s)_{r, 1}$. Since $\pi^{\prime}$ is injective, $\pi^{\prime}(s+1) \in F_{t}-\{\pi(i) \mid i \in[1: s]\}$.
(2) $\Rightarrow(1)$. Let $\pi^{\prime}(s+1)=f$ and $\pi^{\prime}(i)=\pi(i)$ for any $i \in[1: s]$. Then $\pi^{\prime}$ is an op-mapping of degree $(t, s+1)$.

Lemma 14. Let $\pi$ be an op-mapping of degree $(t, s)$. Assume that there exists no op-mapping $\pi^{\prime}$ of degree $(t, s+1)$ which is an extension of $\pi$. Then $\pi(s)_{r, 1}=\pi(1)_{l}$.

Proof. If $t=0$ then $\pi(s)_{r, 1}$ and $\pi(1)_{l}$ are the empty mappings. Hence the conclusion holds obviously. Assume that $t \in \mathbf{N}$. Let

$$
\begin{gathered}
I=\left\{i \in[1: s] \mid \pi(i)_{l}=\pi(s)_{r, 1}\right\} \quad \text { and } \\
J=\left\{j \in[1: s] \mid \pi(j)_{r, 1}=\pi(s)_{r, 1}\right\} .
\end{gathered}
$$

Suppose that $|I|<m^{n^{t}}$. Then, by Lemma 10, there exists an $f \in F_{t}-\{\pi(i) \mid i \in[1: s]\}$ such that $f_{l}=\pi(s)_{r, 1}$. It contradicts the assumption by Lemma 13. Hence we have $|I|=m^{n^{t}}$. By Lemma 10, we have $|J| \leqq|I|$. By the assertion (c), we have:

If $i \in I-\{1\}$, then $i-1 \in J$.
If $j \in J-\{s\}$, then $j+1 \in I$.
Hence $|I-\{1\}|=|J-\{s\}|$. Since $s \in J$, we have

$$
|I| \geqq|J|=|J-\{s\}|+1=|I-\{1\}|+1 .
$$

Thus, we have $1 \in I$, i.e., $\pi(1)_{l}=\pi(s)_{r, 1}$.
There exists an op-mapping of degree ( $0, m$ ) (Lemma 11). Hence to construct an op-mapping of degree $(t, s)$ for each $t, s \in \mathrm{~N}$ with $m^{1+n+n^{\ell}+\cdots+n^{t-1}}+1 \leqq s \leqq$ $\leqq m^{1+n+n^{2}+\cdots+n^{t}}$, it suffices to give construction methods for the following two cases:
(I) Let $t \in \mathbf{N}$ and $s=m^{1+n+n^{2}+\cdots+n^{t-1}}+1$. Assume that an op-mapping $\pi$ of degree $(t-1, s-1)$ is given. Construct an op-mapping $\pi^{\prime}$ of degree $(t, s)$.
(II) Let $t, s \in \mathbf{N}$ and $m^{1+n+n^{3}+\cdots+n^{t-1}}+2 \leqq s \leqq m^{1+n+n^{9}+\cdots+n^{t}}$. Assume that an op-mapping $\pi$ of degree $(t, s-1)$ is given. Construct an op-mapping $\pi^{\prime}$ of degree $(t, s)$.

Case (II) is divided into the following two subcases:
(II.1) There exists an $f \in F_{t}-\{\pi(i) \mid i \in[1: s-1]\}$ such that $f_{l}=\pi(s-1)_{r, 1}$.
(II.2) There exists no $f \in F_{t}-\{\pi(i) \mid i \in[1: s-1]\}$ such that $f_{t}=\pi(s-1)_{r, 1}$.

Construction (I). (i) Define a mapping $\sigma$ of $[2: s]$ into $F_{t-1}$ as follows:

$$
\begin{gathered}
\sigma(2)=\pi\left(i_{\pi}\right), \sigma(3)=\pi\left(i_{\pi}+1\right), \ldots, \sigma\left(s-i_{\pi}+1\right)=\pi(s-1) \\
\sigma\left(s-i_{\pi}+2\right)=\pi(1), \sigma\left(s-i_{\pi}+3\right)=\pi(2), \ldots, \sigma(s)=\pi\left(i_{\pi}-1\right)
\end{gathered}
$$

where $i_{\pi}$ is determined in the assertion (d). (By Lemmas 11 and 12, $\pi$ satisfies the assumption of Lemma 14. Hence $\pi(s-1)_{r, 1}=\pi(1)_{l}$. Thus, we have $\sigma(i)_{r, 1}=\sigma(i+1)_{l}$ for any $i \in[2: s-1]$.)
(ii) Define a mapping $\pi^{\prime}$ of $[1: s]$ into $F_{i}$ as follows:

$$
\left(\pi^{\prime}(1)\right)(p)=y_{1} \quad \text { for any } p \in \bigcup_{k=0}^{t} X^{k}
$$

Let $i \in[2: s-1]$. Take an $f \in F_{t}$ such that $f_{l}=\sigma(i)$ and $f_{r, 1}=\sigma(i+1)$. (The existence of such an $f$ follows from $\left.\sigma(i)_{r, 1}=\sigma(i+1)_{l}\right)$. Set $\pi^{\prime}(i)=f$.

Take an $f \in F_{t}$ such that $f_{l}=\sigma(\mathrm{s})$. (The existence of such an $f$ is evident.) Set $\pi^{\prime}(s)=f$.

Then it is not difficult to verify that $\pi^{\prime}$ is an op-mapping of degree $(t, s)$.
Construction (II.1). Take an $f \in F_{t}-\{\pi(i) \mid i \in[1: s-1]\}$ such that $f_{l}=\pi(s-1)_{r, 1}$. Set $\pi^{\prime}(s)=f$ and $\pi^{\prime}(i)=\pi(i)$ for any $i \in[1: s-1]$. Then $g \pi^{\prime}$ is an op-mappin of degree $(t, s)$.

Construction (II.2). (i) Take an $f \in F_{t}-\{\pi(i) \mid i \in[1: s-1]\}$.
(ii) Take an $i_{0} \in[1: s-1]$ such that $f_{l}=\pi\left(i_{0}\right)_{t}$. (The existence of such an $i_{0}$ follows from the assertion (a). If $i_{0}=1$, then $f_{l}=\pi(1)_{l}=\pi(s-1)_{r, 1}$ which contradicts the assumption. Hence we have $i_{0} \in[2: s-1]$.)
(iii) Define a mapping $\pi^{\prime}$ of $[1: s]$ into $F_{t}$ by

$$
\begin{gathered}
\pi^{\prime}(1)=\pi\left(i_{0}\right), \pi^{\prime}(2)=\pi\left(i_{0}+1\right), \ldots, \pi^{\prime}\left(s-i_{0}\right)=\pi(s-1), \\
\pi^{\prime}\left(s-i_{0}+1\right)=\pi(1), \ldots, \pi^{\prime}(s-1)=\pi\left(i_{0}-1\right) \quad \text { and } \quad \pi^{\prime}(s)=f .
\end{gathered}
$$

By Lemmas 13 and 14, we have $\pi^{\prime}\left(s-i_{0}\right)_{r, 1}=\pi(s-1)_{r, 1}=\pi(1)_{l}=\pi^{\prime}\left(s-i_{0}+1\right)_{l}$. By the assertion (c), we have $\pi^{\prime}(s-1)_{r, 1}=\pi\left(i_{0}-1\right)_{r, 1}=\pi\left(i_{0}\right)_{l}=f_{l}=\pi^{\prime}(s)_{l}$. It can easily be seen that $\pi^{\prime}$ satisfies the other assertions for an op-mapping of degree $(t, s)$.

We have shown the following.
Proposition 3. Let $t, s \in \mathbf{N}$. Then there exists an op-mapping of degree $(t, s)$ iff $m^{1+n^{2}+n^{2}+\cdots+n^{t-1}}+1 \leqq s \leqq m^{1+n+n^{2}+\cdots+n^{t}}$.

Remark. Ito and Duske [5] shows the following:
Let $Y$ be a finite nonempty set and let $t \in \mathbf{N}$. Then there exists a $p \in Y^{*}$ whose length is $|Y|^{t}+t-1$, and which contains every element of $Y^{t}$ as a subword (such a word $p$ is called a merged word of $Y^{\prime}$ ).

With a little change of the proof, we have Proposition 3 in case $|X|=1$. Our above constructions are done along the line of Ito and Duske.

Let $\pi$ be an op-mapping of degree $(t, s)$ and let $r \in N^{\circ}$. Define an automaton $\mathbf{A}(\pi, r)=(A, X, Y, \delta, \lambda)$ as follows:
(e) $A=\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{r}\right\}$. Put $b_{0}=a_{i_{\pi}}$ and $b_{r+1}=a_{i_{\pi}+1}$.
(f) $\lambda\left(a_{i}\right)=(\pi(i))(e)$ for any $i \in[1: s]$.
(g) $\lambda\left(b_{i}\right)=y_{1}$ for any $i \in[1: r]$.
(h) $\delta\left(a_{i}, x_{1}\right)=a_{i+1}$ for any $i \in[1: s-1]-\left\{\mathrm{i}_{n}\right\}$.
(i) $\delta\left(b_{i}, x_{j}\right)=b_{i+1}$ for any $i \in[0: r]$ and $j \in[1: n]$.
(j) Let $(i, j) \in\left([1: s]-\left\{i_{\pi}\right\}\right) \times[2: n] \cup\{(s, 1)\}$. By the assertion (a), there exists. a $k \in[1: s]$ such that $\pi(i)_{r, j}=\pi(k)_{l}$. Set $\delta\left(a_{i}, x_{j}\right)=a_{k}$.
$\mathbf{A}(\pi, r)$ is not unique in general. (If we take the least $k$ in (j), then $\mathbf{A}(\pi, r)$ is. uniquely determined.)

It follows from the assertions (b) and (f) that $\lambda$ is surjective. For any $c \in A$, there exists a $u \in \mathbf{N}^{\circ}$ such that $\delta\left(a_{1}, x_{1}^{u}\right)=c$. Hence $\mathbf{A}(\pi, r)$ is an initially connected Moore automaton with initial state $a_{1}$.

Lemma 15. $\lambda^{(t)}\left(a_{i}\right)=\pi(i)$ for any $i \in[1: s]$, and $\left(\lambda^{(t)}\left(b_{i}\right)\right)(p)=y_{1}$ for any $i \in[1: r]$ and $p \in \bigcup_{k=0}^{t} X^{k}$.

Proof. For each: $u \in[0: t]$, we consider the following two conditions:

$$
\left(\mathscr{C}_{u}\right) \quad\left(\lambda^{(t)}\left(a_{i}\right)\right)(p)=(\pi(i))(p) \text { for any } i \in[1: s]-\left\{i_{\pi}\right\} \text { and } p \in \bigcup_{k=0}^{u} X^{k} .
$$

$\left(\mathscr{D}_{u}\right) \quad\left(\lambda^{(t)}\left(b_{i}\right)\right)(p)=y_{1}$ for any $i \in[0: r]$ and $p \in \bigcup_{k=0}^{u} X^{k}$.
$\left(\mathscr{C}_{0}\right)$ and $\left(\mathscr{D}_{0}\right)$ follow directly from (f) and (g). Let $u \in[1: t]$ and assume that $\left(\mathscr{C}_{u-1}\right)$, $\left(\mathscr{D}_{\mu-1}\right)$ hold. Let $p \in X^{u}$. Then $p=x_{j} q$ for some $j \in[1: n]$ and $q \in X^{u-1}$. Let $i \in$ $\in[1: s]-\left\{i_{n}\right\}$ and $\delta\left(a_{i}, x_{j}\right)=a_{k}$. Then $\pi(k)_{i}=\pi\left(i_{r, j}\right.$ by (h), (c) and (j). We have

$$
\begin{aligned}
&\left(\lambda^{(t)}\left(a_{i}\right)\right)(p)=\lambda\left(\delta\left(a_{i}, p\right)\right)=\lambda\left(\delta\left(a_{k}, q\right)\right)=\left(\lambda^{(t)}\left(a_{k}\right)\right)(q)=(\pi(k))(q)=\left(\pi(i)_{r, j}\right)(q)= \\
&=(\pi(i))\left(x_{j} q\right)=(\pi(i))(p) .
\end{aligned}
$$

Hence we have $\left(\mathscr{C}_{u}\right)$. Let $i \in[0: r]$. Then $\lambda\left(\delta\left(b_{i}, p\right)\right)=\lambda\left(\delta\left(b_{i+1}, q\right)\right)=$ $=\left(\lambda^{(t)}\left(b_{i+1}\right)\right)(q)=y_{1}$. Hence we have $\left(\mathscr{Q}_{4}\right)$. Consequently, we have $\left(\mathscr{C}_{t}\right)$ and $\left(\mathscr{D}_{t}\right)$ by induction.

Lemma 16. Let $\pi$ be an op-mapping of degree ( $t, s$ ) and let $r \in \mathbf{N}^{\circ}$. For a Moore automaton $\mathbf{A}(\pi, r)=(A, X, Y, \delta, \lambda)$, we have:

$$
\begin{aligned}
& \left|\eta_{0}(\mathbf{A}(\pi, r))\right|=1, \\
& \mid \eta_{1}(\mathbf{A}(\pi, r) \mid=m, \\
& \left|\eta_{2}(\mathbf{A}(\pi, r))\right|=m^{1+n}, \\
& \cdots \\
& \left|\eta_{t}(\mathbf{A}(\pi, r))\right|=m^{1+n+n^{2}+\ldots+n^{n-1}} ; \\
& \left|\eta_{t+1}(\mathbf{A}(\pi, r))\right|=s=|A|-r, \\
& \left|\eta_{t+2}(\mathbf{A}(\pi, r))\right|=|A|-(r-1), \\
& \cdots \\
& \left|\eta_{t+r}(\mathbf{A}(\pi, r))\right|=|A|-1, \\
& \left|\eta_{t+r+1}(\mathbf{A}(\pi, r))\right|=|A| .
\end{aligned}
$$

Proof. $\left|\eta_{0}(\mathbf{A}(\pi, r))\right|=1$ is evident. Let $u \in[1: t]$. By the assertion (a) and by Lemma 15 , for any $g \in F_{u-1}$, there exists an $i \in[1: s]$ such that $\lambda^{(u-1)}\left(a_{i}\right)=g$. Hence by Lemmas 6 and 1 , we have

$$
\left|\eta_{u}(\mathbf{A}(\pi, r))\right|=\left|F_{u-1}\right|=m^{1+n+n^{2}+\ldots+n^{u-1}} .
$$

Since $\pi$ is injective, it follows from Lemmas 15 and 5 that any two elements of $\left\{a_{1}, \ldots, a_{s}\right\}$ are not congruent modulo $\eta_{t+1}(\mathbf{A}(\pi, r))$. Moreover by Lemmas 15 and 5 , any two elements of $\left\{b_{0}, b_{1}, \ldots, b_{r}\right\}$ are congruent modulo $\eta_{t+1}(\mathbf{A}(\pi, r))$. Thus we have $\left|\eta_{t+1}(\mathbf{A}(\pi, r))\right|=s$.

Next let $u \in[2: r+1]$. By the assertions (c) and (d), we have $\left(\pi\left(i_{\pi}+1\right)\right)(p)=y_{1}$ for any $p \in \bigcup_{k=0}^{t-1} X^{k}$. Since an op-mapping is injective, we have $\pi\left(i_{\pi}+1\right) \neq \pi\left(i_{\pi}\right)$. Hence $\left(\pi\left(i_{\pi}+1\right)\right)(q) \neq y_{1}$ for some $q \in X^{t}$. Notice that $b_{r+1}=a_{i_{\pi}+1}$. By the first part of Lemma 15, we have $\lambda\left(\delta\left(b_{r+1}, p\right)\right)=\left(\lambda^{(t)}\left(b_{r+1}\right)\right)(p)=\pi\left(i_{\pi}+1\right)(p)=y_{1}$ for any $p \in \bigcup_{k=0}^{t-1} X^{k}$, and $\lambda\left(\delta\left(b_{r+1}, q\right)\right)=\left(\lambda^{(t)}\left(b_{r+1}\right)\right)(q)=\pi\left(i_{\pi}+1\right)(q) \neq y_{1}$ for some $q \in X^{t}$. Hence for any $i \in[0: r+1], \lambda\left(\delta\left(b_{i}, p^{\prime}\right)\right)=y_{1}$ for any $p^{\prime} \in \bigcup_{k=0}^{t+r-i} X^{k}$ and $\lambda\left(\delta\left(b_{i}, q^{\prime}\right)\right) \neq \dot{y_{1}}$ for some $q^{\prime} \in X^{t+r+1-i}$. It follows easily from this fact that $\left\{b_{0}, \ldots\right.$ $\left.\ldots, b_{r+1-u}\right\}$ is an $\eta_{t+u}(\mathbf{A}(\pi, r))$-class, and any other element of $A$ is congruent only to itself. Hence we have $\left|\eta_{t+u}(\mathbf{A}(\pi, r))\right|=|A|-(r+1-u)$.

Proposition 4. Let $\pi$ be an op-mapping of degree $(t, s)$ and let $r \in N^{\circ}$. Then $\mathbf{A}(\pi, r)$ is an initially connected Moore automaton with $\Omega(\mathbf{A}(\pi, r))=t+r$.

Proof. By Lemmas 16 and 4.
Remark. By Lemmas 7, 8 and 16 we have the following: For every $i \in \mathbf{N}^{\circ}$, the number of $\eta_{i}(\mathbf{A}(\pi, r)$ )-classes takes the maximal value among all Moore automata $\mathbf{A}=\left(A, X, Y, \delta^{\prime}, \lambda^{\prime}\right)$ with $\Omega(\mathbf{A})=r+t$.

## 5.

Now we can determine all realizable 4-tuples.
Theorem 2. Let $v, n, m \in \mathbf{N}$ and $w \in \mathbf{N}^{\circ} \cup\{\infty\}$. The following three assertions are equivalent:
(1) $(v, n, m, w)$ is realizable by Moore automata.
(2) ( $v, n, m, w)$ is realizable by initially connected Moore automata.
(3.1) $m+w \leqq v \leqq m^{1+n+n^{2}+\ldots+n^{w}}$, or
(3.2) $\quad w=\infty, \quad m \leqq v-1$.

Proof. (2) $\Rightarrow$ (1). Obvious.
(1) $\Rightarrow$ (3). If $w<\infty$, then we have (3.1) by Proposition 1. If $|A|=|Y|$ in a Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$, then it is evident that $\Omega(\mathbf{A})=0$. Hence we have (3.2).
(3.1) $\Rightarrow$ (2). If $m=1$ then (3.1) implies that $v=1$ and $w=0$. For any $n \in \mathbf{N}$, there actually exists a Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$ such that $|A|=|Y|=1$ and $|X|=n$. Obviously, $\mathbf{A}$ is initially connected and $\Omega(\mathbf{A})=0$.

Next assume that $m \geqq 2$. Put $\alpha(-1)=m-1$ and $\alpha(k)=m^{1+n+n 8+\cdots+n^{k}}-k$ for any $k \in \mathbf{N}^{\circ}$. Our assumption is
(i) $m \leqq v-w \leqq \alpha(w)$.

Since $m=\alpha(0)<\alpha(1)<\alpha(2)<\ldots$, there exists a unique $t \in \mathbf{N}^{\circ}$ such that
(ii) $\alpha(t-1)+1 \leqq v-w \leqq \alpha(t)$.

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$. If $t=0$ then (ii) means that $v-w=m$. Hence $(t, v-w+t)=(0, m)$. By Lemma 11, there exists an op-mapping $\pi$ of degree ( $t, v-w+t$ ) with respect to $X$ and $Y$. If $t \geqq 1$ then (ii) means that

$$
m^{1+n+n^{2}+\ldots+n^{t-1}}+2 \leqq v-w+t \leqq m^{1+n+n^{2}+\ldots+n^{t}} .
$$

Hence by Proposition 3, there exists an op-mapping $\pi$ of degree $(t, v-w+t)$ with respect to $X$ and $Y$. By (i) and (ii), it can easily be seen that $t \leqq w$. Consider an initially connected Moore automaton $\mathrm{A}(\pi, w-t)=(A, X, Y, \delta, \lambda)$. We have $|A|=$ $=(v-w+t)+(w-t)=v,|X|=n,|Y|=m$ and, by Proposition 4, $\Omega(\mathbf{A}(\pi, w-t))=$ $=t+(w-t)=w$.
$(3.2) \Rightarrow(2)$. Define a Moore automaton $\mathbf{A}=(A, X, Y, \delta, \lambda)$ as follows:
(i) $A=\left\{a_{1}, \ldots, a_{v}\right\}, X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$.
(ii) $\lambda\left(a_{i}\right)=y_{i}(i \in[1: m-1])$ and $\lambda\left(a_{i}\right)=y_{m}(i \in[m: v])$.
(iii) $\delta\left(a_{i}, x_{j}\right)=a_{i+1}(i \in[1: v-1])$ and $\delta\left(a_{v}, x_{j}\right)=a_{v}$ for any $j \in[1: n]$.

Then it can easily be seen that $\mathbf{A}$ is initially connected and $\omega_{\mathrm{A}}\left(a_{v-1}, a_{v}\right)=\infty$. Hence $\Omega(\mathbf{A})=\infty$, and thus we have (2).

## 6.

Let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\{1,2\}$. (Instead of $Y=\left\{y_{1}, y_{2}\right\}$, we use $Y=\{1,2\}$ for simplicity). We shall construct op-mappings according to the Constructions (I) and (II) in Section 4. An op-mapping of degree ( $t, s$ ) is denoted by $\pi_{t, s}$.

For $t=0, \pi_{0,2}$ is uniquely determined by $\left(\pi_{0,2}(1)\right)(e)=1$ and $\left(\pi_{0,2}(2)\right)(e)=2$. For $t=1, \pi_{1, s}$ exist for $2+1 \leqq s \leqq 2^{1+2}$. To obtain $\pi_{1,3}$ we use Construction (I). $\sigma$ is given by $(\sigma(2))(e)=1$ and $(\sigma(3))(e)=2 . \quad \pi_{1,3}$ is obtained (for example) by the first three rows of Table 1 , and $\pi_{1,4}, \pi_{1,5}, \pi_{1,6}$ are represented by the first $4,5,6$ rows of Table 1. These op-mappings are obtained by Construction (II.1), i.e., to satisfy the following conditions:
(i) The $x_{1}$-component of the $i$-th row equals the $e$-component of the $(i+1)$-th row.
(ii) All rows are distinct.

We can not continue this procedure to give $\pi_{1,7}$. Because two rows, i.e., two elements of $F_{1}(X, Y)$, which are not yet used are $(2,2,1)$ and $(2,2,2)$, and we can not determine the 7 th row so as to satisfy (i) and (ii). This means that we are in case (II.2). As shown in Lemma 14, the $x_{1}$-component of the 6th row is equal to the $e$-component of the first row. We make a cyclic exchange of 6 rows for example in Table 2. Then we can add the 7th and 8th rows to satisfy (i) and (ii). In this way, we have $\pi_{1,7}$ and $\pi_{1,8}$ which are the first 7 and 8 rows of Table 2.

For $t=2, \pi_{2, s}$ exist for $2^{1+2}+1 \leqq s \leqq 2^{1+2+4}$. To construct $\pi_{2,9}$, first obtain $\sigma$ from $\pi_{1,8} . \sigma$ is shown in Table 3 which is derived by cyclic exchange of Table 2 so that the top row is $(1,1,1)$. The first 9 rows of Table 4 are constructed $\quad w_{i}$ ows:
(i) All components of the first row are 1.
(ii) The $e$-, $x_{1}$ - and $x_{2}$-components from the 2 nd to the 9 th rows are coincident with those of $\boldsymbol{\sigma}$.
(iii) The $x_{1} x_{1}$ - and $x_{1} x_{2}$-components of the $i$-th row are equal to the $x_{1}$ - and $x_{2}$-components of the ( $i+1$ )-th row ( $i \in[2: 8]$ ).
(iv) The $x_{2} x_{1}$ - and $x_{2} x_{2}$-components from the 2 nd to the 9 th rows are arbitrarily chosen. The $x_{1} x_{1}$ - and $x_{1} x_{2}$-components of the 9 th row are also arbitrarily chosen.

In this way we have $\pi_{2,9}$ by using Construction (I). To obtain $\pi_{2, s}$ for $s=$ $=10,11, \ldots$, we add new rows one by one so that the following conditions are satisfied (Construction (II.1)).
(i) The $x_{1} x_{1}$ - and $x_{1} x_{2}$-components of the $i$-th row are equal to the $x_{1}$ - and $x_{2}$-components of the $(i+1)$-th row.
(ii) All rows are distinct.

In the case when we can not continue this procedure (Case (II.2)), we make a cyclic exchange of rows and continue the procedure. In such a way, we can obtain $\pi_{2, s}$ for all $s \in\left[9: 2^{7}\right]$. Table 4 shows $\pi_{2, s}$ for $s \in[9: 16]$.

Table 1

|  | $e$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 |
| 3 | 2 | 1 | 1 |
| 4 | 1 | 1 | 2 |
| 5 | 1 | 2 | 2 |
| 6 | 2 | 1 | 2 |

Table 2

|  | $e$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 1 | 1 |
| 2 | 1 | 1 | 2 |
| 3 | 1 | 2 | 2 |
| 4 | 2 | 1 | 2 |
| 5 | 1 | 1 | 1 |
| 6 | 1 | 2 | 1 |
| 7 | 2 | 2 | 1 |
| 8 | 2 | 2 | 2 |

Table 3

|  | $e$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| 2 | 1 | 1 | 1 |
| 3 | 1 | 2 | 1 |
| 4 | 2 | 2 | 1 |
| 5 | 2 | 2 | 2 |
| 6 | 2 | 1 | 1 |
| 7 | 1 | 1 | 2 |
| 8 | 1 | 2 | 2 |
| 9 | 2 | 1 | 2 |

Table 4

|  | e | $x_{1}$ | $x_{2}$ | $x_{1} x_{1}$ | $x_{1} x_{2}$ | $x_{2} x_{1}$ | $x_{2} x_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
| 3 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
| 4 | 2 | 2 | 1 | 2 | 2 | 2 | 1 |
| 5 | 2 | 2 | 2 | 1 | 1 | 2 | 2 |
| 6 | 2 | 1 | 1 | 1 | 2 | 1 | 2 |
| 7 | 1 | 1 | 2 | 2 | 2 | 1 | 1 |
| 8 | 1 | 2 | 2 | 1 | 2 | 1 | 2 |
| 9 | 2 | 1 | 2 | 1 | 1 | 1 | 2 |
| 10 | 1 | 1 | 1 | 1 | 2 | 1 | 2 |
| 11 | 1 | 1 | 2 | 2 | 2 | 1 | 2 |
| 12 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| 13 | 2 | 2 | 2 | 1 | 2 | 1 | 2 |
| 14 | 2 | 1 | 2 | 2 | 2 | 1 | 2 |
| 15 | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
| 16 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |

Next we shall see two examples of realization of 4-tuples $(v, n, m, w)$.
Let $(v, n, m, w)=(10,2,2,4)$. Since $2+4 \leqq 10 \leqq 2^{1+2+2^{3}+2^{4}},(10,2,2,4)$ is realizable by initially connected Moore automata. The unique solution of $2^{1+2+\cdots+2^{2 t-1}}+$ $+2 \leqq 10-4+t \leqq 2^{1+2+2^{2}+\cdots+2^{t}}$ is $t=1$. Hence $A\left(\pi_{1,7}, 3\right)$ realizes $(10,2,2,4)$. In Fig. 1, an example of $\mathbf{A}\left(\pi_{1,7}, 3\right)$ is depicted, which is obtained by using Table 2.

Let $(v, n, m, w)=(17,2,2,5)$. Since $2+5 \leqq 17 \leqq 2^{1+2+2^{3}+2^{4}+2^{5}},(17,2,2,5)$ is realizable by initially connected Moore automata. The unique solution of $2^{1+2+\cdots+2^{t-1}}+2 \leqq 17-5+t \leqq 2^{1+2+2^{2}+\cdots+2^{t}}$ is $t=2$. Hence $\mathbf{A}\left(\pi_{2,14}, 3\right)$ realizes $(17,2,2,5) . \mathbf{A}\left(\pi_{2,14}, 3\right)$ is illustrated in Fig. 2.


Fig. 1


Fig. 2

## Acknowledgement

The author would like to thank Professors A. Ádám and M. Ito for their careful readings and comments.

FACULTY OF SCIENCE
KYOTO SANGYO UNIVERSITY
KYOTO 603, JAPAN

## References

[1] ÁdÁm, A., On the question of description of the behavior of finite automata, Studia Sci. Math. Hungar. 13 (1978), 105-124.
[2] ÁdÁm, A., On the complexity of codes and pre-codes assigned to finite Moore automata, Acta Cybernet., 5 (1981), 117-133.
[3] ÁdÁm, A., Research problem 29, The connection of state number and the complexity of finite Moore automata, Period. Math. Hungar., 12 (1981), 229-230.
[4] Ádám, A., On certain partitions of finite directed graphs and of finite automata, Acta Cybernet. 6 (1984), 331-346.
[5] Ito, M. and J. Duske, On cofinal and definite automata, Acta Cybernet., 6 (1983), 181-189

