
On Complexity of Finite Moore Automata 

B y MASASHI KATSURA 

The concept of complexity of finite Moore automata is introduced by Ádám [1]. 
In this paper, we obtain relationships among complexity and cardinalities of state 
set, input set and output set of a Moore automaton. 

1. 

For a finite set Z, the cardinality of Z is denoted by \Z\. Z* is the free monoid 
generated by Z. N is the set of positive integers and № is the set of nonnegative in-
tegers. For t, A:,€№, we set [t: k] = {i£N°\t^i?sk}. 

By a Moore automaton, we mean a 5-tuple A—(A, X, Y, ő, X), where A, X, Y 
are finite nonempty sets called a state set, an input set and an output set, respectively. 
6 is a mapping of A X X into A called a state transition function («5 is extended as 
usual to a mapping of AXX* into A). X is a mapping of A onto Y called an output 
function. 

Let A = ( A , X , Y , Ö , X ) be a Moore automaton. If X(ö(a,p))^X(ó(b,p)) 
holds for a,b£A and p£X*, then we say that p distinguishes between a and b. 
coA (a, b) is the minimal length of p which distinguishes between a and b. If there 
is no word which distinguishes between a and b, then we write coA(a, b)=°°. The 
complexity Í2(A) of the Moore automaton A is defined by í2(A)=max {coA(a, b) 
\a, b£A, a^b). If |yi| = l then fl(A)=0. 

A Moore automaton A = ( A , X, Y, Ő, X) is said to be initially connected if a 
distinguished state a0£A, called the initial state of A, is given and the following 
condition is satisfied: For any a£A, there exists a p£X* such that 5(a0,p)=a. 

Let v, n£N and w(|№U{°°}. If there exists an (initially connected) Moóre 
automaton A = ( A , X , Y , S , X ) such that \A\=v, \X\=n and i2(A)=w, then the 
triple (v, n, w) is said to be realizable by (initially connected) Moore automata. 

We have the following theorem by summarizing the results of Ádám in [2], 
[3], [4]. 

Theorem 1. For sny v, find H?£№Lj{°° }, the following three statements 
are equivalent: 

(1) (v, n, w) is realizable by Moore automata. 

(2) (v, n, w) is realizable by initially connected Moore automata. 

(3) (3.1) wsát>-2, or 
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(3.2) v = 1, w = 0, or 

(3.3) » a 2 , w = • 

When we realize a triple (v, n, w) for a small w, a large output set is needed, 
and vice versa. We wish to take consideration on cardinalities of output sets, too. 

Let v,n,m£N and w£№U{°°}. If there exists an (initially connected) Moore 
automaton A=(A, X, Y, 5, A) such that \A\=v, \X\=n, \Y\=m and i2(A)=w, 
then the 4-tuple (v, n, m, if) is said to be realizable by (initially connected) Moore 
automata. 

In this paper, all realizable 4-tuples are completely determined. Section 2 gives 
a sufficient condition. Section 4 is a preparation to show that the sufficient condition 
given in Section 2 is necessary. In Section 5, the main result is stated and proved. 
Section 6 illustrates some examples. In Section 3, we prove a conjecture posed in [3]. 

2. 

Let X and Y be finite nonempty sets and let / £№. By F,(X, Y) we denote the 
t 

set of all mappings of (J Xk into Y. 
k = o 

The following lemma is evident. 

Lemma 1. \F,(X, y ) | = | r | i + m + m s + - + l * l ' for any * e № . • 

Let A=(A, X, Y, <5, A) be a Moore automaton. For each a(zA, let A*(a) be 
a mapping of X* into Y defined by 

(A*(a))(/>) = k(8(a,p)). 

For / £№, A(,)(a) is an element of F,(X, Y) which is the restriction of A*(a) to 

U Xk. Hence Af0)=A if we identify F0(X, Y) with Y. 
k = 0 

For each № , let t],(A) be a partition of A defined as follows: a and b are 
congruent modulo F/,(A) iff coA(a, F/,(A) is introduced and investigated in 
[2], [4]. The number of F/T(A)-classes is denoted by |»/,(A)|. The following three 
lemmas indicate fundamental properties of the partition t],(A). 

Lemma 2 [4]. i f o (A) i i / 1 (A) i i i > (A) i . . . . • • 

Lemma 3 [4]. If F / R _ 1 ( A ) = ^ T ( A ) then > / , ( A ) = ^ ( + 1 ( A ) . • 

Lemma 4. Let Then i2(A)=w iff tjW(A)2»JW+1(A) and | F / W + 1 ( A ) | = 
= \A\. • 

By using the mapping A(i)(a), the partition tj,(A) is characterized as follows: 

Lemma 5. a and b are congruent modulo t]t+1(A) iff A(0(a)=A(0(6). • 
Hence we have: 

Lemma 6. |ij,+1(A)| = |{A«(fl)€Fr(Ar, Y)\aiA}\ for any • 
Expecially, we have: 
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Lemma 7. ¡/7l+1(A)|=s|yji+l*l + l*P+---+mt for any /<=№. • . 
On the other hand, a lower bound of the number of f/t(A)-classes is given as 

follows: 

Lemma 8. Let /£№. If t^Q(A) then \r],+1(A)\^\Yl + t. 

Proof. By Lemmas 2, 3 and 4, we have rh(A)p>/2(A)^...pr/,(A)p|f/ (+1(A), 
i.e., | i /1(A)|<| f ,2(A)|<.. .<W t(A)|<| f / t + 1(A)| . Hence | / ; ( + 1(A)|^ |^(A)| + t. By 
Lemma 6, we have |f/i(A)| = |T|. • 

Now, we have the following desired result. 

Proposition 1. Let v,n,m£ N and w>€№. If the 4-tuple (v, n, m, vv) is realizable 
by Moore automata then m + w ^ v ^ m 1 + n + " ' + "+ny". 

Proof. Let A—(A, X, Y, <5,1) be a Moore automaton such that \A\=v, \X\—n, 
\Y\~m and fl(A)=w. By Lemma 4, |f7«,+i(A)|=v. By Lemmas 7 and 8, we have 
m + w ^ [^w+1(A)j^m1+n+"2+"" fn>v. • 

3.. 

Ádám posed three conjectures in [3]. Conjectures 1 and 2 are solved in Theorem 
1. However, Conjecture 3 is not yet solved. In this section, we settle this conjecture. 
(This result is not used in what follows). 

Let A = ( A , X , Y , S , X ) be a Moore automaton such that 1^Í2(A)<°°. Put 
Q(A)=w. Take a,b£A such that coA(a, b)=w. Then there exists a q£Xw such 
that X(ö(a,q))?iX(ö(b,q)). Let q=q'x with q'eX"'1 and x^X. Let B be the 
jj2(A)-class containing ö(a, q'), i.e., B={c£A\X(S(c, p))=X(ö(a, q'p)) for any 
p£XU {<?}}, where e is the identity of X*. 

Define A'—(A, X, Y', ő, X') as follows: 
(i) Y'=Y U {y} where y is not in Y. 

(ii) X'(c)=y for any cdB. 
(iii) X'(c)=X(c) for any c€A-B. 

Since X(ö(a, q'x))^X(6(b, q'x)), we have ő(b, q ) <f B. Hence X'(ö(b,q')) = 
—X(ő(b, q'))=X(S(a, q')). Consequently, X' is surjective. Moreover, we have: 

Lemma 9. (1) ?/((A)i>/((A') for any 
(2) r,w(A)^r,w(A'). 
(3) f/w_1(A') is not the identity partition. 

Proof. (1) It is obvious that for any c, d£A, if X{c)^X{d), then X'(c)^X'(d). 
It follows from this fact that mA,(c, d)^(oA(c, d) for any c, d£ A. 

(2) Since X'(ö(a,q'))?iX(ö(a,q')) = Á(ö(b,q')) = X'(ő(b,q% we have coA.(a,b) 
S w - 1 . Hence a and b are congruent modulo »7*, (A), but not congruent modulo 
^wiA'). 

(3) It suffices to show that coA.(a, b)—w — \. When w= 1, the conclusion is 
w—2 

obvious. Assume and coA.(a, b)^w—2. Then there exists a pd{J Xk 

k = 0 
such that X'(8(a,p))^X'(ö(b,pj). Since X(ö(a,p)) = X(ö(b,p)), we have ö(a,j>)£B 
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and ô(b,p)$B, or vice versa. In other words, ô(a,p) and ô(b,p) are not congruent 
w-l 

modulo tii(A). For any p'Ç.X\J{e), we have pp'€\J Xk. Hence X(S(a, pp')) = 
k=0 

=X(ô(b,pp')) for any p'£XU{e}. This means that <5(a,/>) and ô(b,p) are congruent 
modulo t]2(A). This is a contradiction. Hence we have coA.(a, b)=w— 1. • 

Proposition 2 ([3] Conjecture 3). Let A = ( A , X , Y , 5 , X ) be a Moore automa-
ton such that 1 s i2(A)<°°. Then there exists a Moore automaton A'=(A, X, Y', S, 
A') such that | r | = |F| + l and i2(A)- lë i2(A' )ë i2(A) . 

Proof. Let A' be the Moore automaton constructed as above. Lemma 9 (1) 
implies that Q(A')^Q(A). Lemma 9 (3) means that i2(A' )s i2(A)- l . • 

As pointed out in [3], we get an automaton of complexity 0 by at most \A\ — |F | 
times application of Proposition 2. Hence we have another proof of the left hand 
side inequality of Proposition 1. 

4. 

In this section, we prepare for showing the converse of Proposition 1. Throu-
ghout this section, we assume that X={xl9 ..., x„}, Y={y1, ..., jm} and m s 2 . 
F,(X, Y) is simply denoted by Ft. means the singleton set consisting of the 
empty mapping, i.e., the mapping whose definition domain is the empty set. 

Let and f£Ft. We define f , / r j l , ...J^F,^ as follows: 
(-1 

f is the restriction of / to IJ Xk, 
*=o 

f r . j ( p ) = J ( X j P ) f o r a n y Pt | J 0 € [ 1 : « ] ) . 
k=0 

Hence for / € F 0 , / , and fnJ are the empty mappings, / is said to be the left factor 
o f / , and f r j is its j-th right factor. 

The following lemma can be shown by a straightforward verification. 

Lemma 10. Let № and g € / w Then \ { f ^ F , \ f i = g } \ = \ { f ^ , \ f r , j = g } \ = 

\Ft\l\Ft-i\ = mnt• • 

Let A=(A, X, Y, ô, X) be a Moore automaton. Consider the mapping A(,) 

of A into F,. The assumption that A is surjective is equivalent to: 

(i) For any y'£[l:n], there exists an a£A such that ( A ( , ) ( A ) ) ( E ) —yj, where 
e is the identity of X*. 

If ¿(a ,x J )=b, then (Aw(a)) r>.,=(;i ( , )(% Hence we have: 
(ii) For any a£A and /€[ l :n ] , there exists a b£A such that (A(,)(a))r ,= 

Q(A)=t is equivalent to : 
(iii) Aw is injective, and (A^0(a)),=(A<f>(&))/ for some a, b^A with a^b. 

Conversely, assume that a mapping r of A into F, which satisfies (i) and (ii) 
is given. Define a Moore automaton At=(A, X, Y, ô, A) as follows: 
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(iv) X(a)—(x(a))(e) for any a^A. 
(v) Let a£A and : n\. By (ii), there exists a b£A such that x(a)rJ=x(b),. 

Se t S(a, XJ)—b. 

Then it can easily be seen that ttt)(a)=x(a) holds for any a£A. A, is not 
unique in general. The collection of all At coincides with all Moore automata 
A = ( A , X, Y, <5, A) which satisfy A ( , )=t. The partitions TJq(AX), fh(Ar), ..., f?,+1(At) 
are independent of the choice of b in (v), i.e., they depend only on the mapping x. 

To show the converse of Proposition 1, it suffices to give a mapping x of A into 
F, which satisfies (i), (ii)and (iii) for each finite set with m+/S | ^ |Hsm 1 + n + " 2 + - + " t . 
However, we wish to prove the converse of Proposition 1 in case of initially connec-
ted Moore automata. Related problem is: 

Let x be a mapping satisfying (i) and (ii) (and (iii)). What conditions are required 
so that we can make At to be initially connected? What is a method to construct an 
initially connected A t , when it exists? 

In general, this problem seems to be difficult. In what follows, we construct a 
special type of mapping x, and construct a special type of initially connected Moore 
automaton A t. 

Let /£№, j £N and let n be an injection of [1: j] into F,.If the following four 
conditions are satisfied then it is called an op-mapping of degree (t, J) (with respect 
to X and Y). 

(a) For any g g F , ^ , there exists an /£[1: i] such that n{i)i—g. 
(b) For any /€[1: m], there exists an i£[l: i] such that (n(i)) (e)=yj. 
(c) 7r(i)r,i=rc(/+l)i for any /€[1:^-1] . 

t 
(d) There exists an z„6[l:.y—1] such that (n(in))(p)=y1 for any p£ U Xk. 

*=o 
(Since 7t is injective, i„ is uniquely determined). 

When t^l, the assertion (b) is implied by (a). When t—0, the assertions (a) 
and (c) are always satisfied, and the assertion (b) means that n is surjective. Hence 
an op-mapping n of degree (0, s) is considered as a bijection of [1: i] onto Y such 
XhsXn{i)=y1 for some /£[1: s— 1]. Thus we have: 

Lemma 11. There exists an op-mapping of degree (0, s) iff s=m. • 

Lemma 12. Let t, s(i N. If there exists an op-mapping n of degree (f, s) then 
ml+n+na + ...+nt-i_j_ j g^g^jl+n+na + .-.+nt 

Proof. Since 7i is injective, we have s S |F,|. We have n(i„)i=n(/„),,Since 
[1: s - 1 ] , we have 4 + l 6 [ l : i] and 7t(i'n+l),=7t(/„)r>1 = 7t(/J,. From this fact 

and by the assertion (a), it follows that i^ lF^xl - l - l . • 

Now we shall construct an op-mapping of degree (t, s) for any t, ¿£N with 
m l + „ + n ! + . . . + n . - 1 + l g ^ m i + n + „ ! + . - + » ' i J o this end, we provide the following two 
lemmas. 

Lemma 13. Let n be an op-mapping of degree (t, s). Then the following state-
ments are equivalent: 

(1) There exists an op-mapping n' of degree (t, 1) which is an extension of n. 
(2) There exists an / £ F , - {n(i) \ i£[l: i]} such that fi=n(s)ril. 



286 M. Katsura 

Proof. (l)=>-(2). By the assertion (c), we have n'(s+ l)i=n'(s)rtl=n(s)rtl. 
Since it' is injective, 7t'(i+l)6f,—{rc(0 | /£[1: i]}. 
(2)=>(1). Let n'(s+\)=f and n'{i)=n(i) for any /£[1: j]. Then n' is an op-mapping 
of degree (/, s+1). • 

Lemma 14. Let n be an op-mapping of degree (t, s). Assume that there exists 
no op-mapping n' of degree (t, s+1) which is an extension of 7t. Then 7 t 7 t ( l ) / . 

Proof. If t=0 then 7t(s)r?1 and 7t(l), are the empty mappings. Hence the concl-
usion holds obviously. Assume that /£N. Let 

/={ i€ [ l : s ] | 7 i (0 , = jr(s)r.1} and 
^ = { / € [ l : s ] | TTÜ),.i = »(*),.i}-

• 

Suppose that |/|<m"'. Then, by Lemma 10, there exists an f$Ft— {7i(í)|/6[l: J]} 
such that fi = n(s)f!l. It contradicts the assumption by Lemma 13. Hence we have 
|/|=m"'. By Lemma 10, we have | / | s | / | . By the assertion (c), we have: 

If /€/-{1}, then i - l £ / . 

If j € / -{ s} , then j + 16/. 

Hence |/-{1}| = |7—{j}|. Since s£J, we have 

| / | S | / | = | / - { S } | + 1 = | / - {1} | + 1. 
Thus, we have 16/, i.e., 7r(l)j=7r(j)r>1. • 

There exists an op-mapping of degree (0, rri) (Lemma 11). Hence to construct 
an op-mapping of degree (t, s) for each t,s£N with m 1 + n + n i + - ' + ' , t " 1 + l S j g 
^m 1 + n +" 2 + ' -+ n ' , it suffices to give construction methods for the following two 
cases : 

(I) Let f€N and s=m1+"+n2+-+'"~1+L Assume that an op-mapping n of 
degree (t—1, s— 1) is given. Construct an op-mapping %' of degree (/, s). 

(II) Let and m i + » + » I + - + » , - » + 2 A s s u m e that an 
op-mapping 7r of degree (t, s— 1) is given. Construct an op-mapping n' of degree (t, s). 

Case (II) is divided into the following two subcase's: 

(II. 1) There exists an f£Ft—{n(i) | / £ [ 1 : 1 ] } such that fi = n(s— l)r>1. 
(II.2) There exists no f£F,-{n(i) | /£[1: j -1]} such that / ,=7c(5-l) r ) 1 . 

Construction (I), (i) Define a mapping a of [2: i] into F,_x as follows: 

(7(2) = 7t(i„), (7(3) = *(/«+ 1),..., ff(s-i, + l) = 7t(s-l), 

ff(s-i,+2) = 7l(l),<j(s-i,l + 3)=7l(2), ...,ff(s) = Jl(i ,-1) 

where /„ is determined in the assertion (d). (By Lemmas 11 and 12, TC satisfies the 
assumption of Lemma 14. Hence it(s— I)r>1=7i(l)/. Thus, we have o'(i)f,i=o'(i+1)( 
for any í6[2:í—1].) 
(ii) Define a mapping n' of [1: j] into Ft as follows: 

(n'0))(/>) = Ji for any />£ Ú Xk-*=o 
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Let /£[2:J -1] . Take an f£F, such that ft=a(i) and /r>1=<x(i'+l). (The 
existence of such an/fol lows from <j(i)rtl=o(i+1)/). Set n'{i)=f. 

Take an f£F, such that ft = tr(s). (The existence of such an / is evident.) 
Set if(s)=f. 

Then it is not difficult to verify that %' is an op-mapping of degree (t, s). 

Construction (II.l). Take an f£Ft-{n(i) | /£[1: j - 1 ] } such that ft=n(s-1) 
Set 7 t ' ( s ) = f and n'{i)=n(i) for any ¡£[1: s— 1]. Then gn' is an op-mappin 
of degree (/, s). 

Construction (II.2). (i) Take an f£F,- {tt(/) | i€[l: s-1]}. 
(ii) Take an i„€[l: i— 1] such that /¡ = 7t(/0)(. (The existence of such an i0 follows 
from the assertion (a). If z'0= 1, then ft = n(i)i=n(s— l)r>1 which contradicts the 
assumption. Hence we have i06[2: s— 1].) 
(iii) Define a mapping n' of [1: s] into F, by 

N ' O ) = «(¿O). Jt'(2) = n ( I 0 + 1 ) , ..., Jt'(s-io) = t c ( S - I ) , 

j t ' ( s - i 0 + l ) = n ( l ) , . . . , jE ' ( s - l ) = n ( i o - l ) and n'(s)=f. 

By Lemmas 13 and 14, we have 7t'(j—/0)p>1 = ^(j—l) r>1 = 7t(l),=7t'(i—/0+l) (. 
By the assertion (c), we have n'(s— l)r,i=rc0'o— 1 )P,x=7t(t0)i =7t'(j)£. It can 
easily be seen that %' satisfies the other assertions for an op-mapping of degree (/, s). 

We have shown the following. 

Proposition 3. Let /, J£N. Then there exists an op-mapping of degree (t,s) 
iff + D 

Remark. Ito and Duske [5] shows the following: 
Let Y be a finite nonempty set and let /£N. Then there exists a p£Y* whose 

length is — 1, and which contains every element of Y* as a subword (such a 
word p is called a merged word of F')-

With a little change of the proof, we have Proposition 3 in case |-X1=1. Our 
above constructions are done along the line of Ito and Duske. • 

Let n be an op-mapping of degree (/, s) and let /•£№. Define an automaton 
A(n, r)=(A, X, Y, 8, X) as follows: 

(e) A={au ...,as,b!, ...,br). Put ba=a^ and br+1=aijt+1. 
(f) Had=(n(i))(e) for any 
(g) X(bi)=y1 for any i£[l:/-]. 
(h) S(ab x]L)=ai+1 for any /€[1: ^ - l ] - { i j . 
(i) S(bh Xj)=bi+1 for any /£[0: r] and /£[1: «]. 
(j) Let 0' ,7 ')€([l:j]-{U)X[2:n]U{(5,1)}. By the assertion (a), there exists 

a : s] such that n(i)rtJ=n(k)t. Set 5(ai,xJ)=ak. 
A(n, r) is not unique in general. (If we take the least k in (j), then A(7t, r) is 

uniquely determined.) 
It follows from the assertions (b) and (f) that X is surjective. For any c£A, 

there exists a « £ № such that S(alt x") =c. Hence A(7t, r) is an initially connected 
Moore automaton with initial state a t . 

L 
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Lemma 15. ).<-')(ai)=n(i) for any and (Xi,)(b,))(p)=yl for any 

i'€[l: r] and p£ U 
k=0 

Proof. For each: «€[0: /], we consider the following two conditions: 

CO (Aw(a,))(p) = {n(i)){p) for any i<E[l: s]-{ia} and p(i U X*. k = 0 

m (A(,) (&,))(/>) = V l for any ¡€[0: r] and p£ U X\ 
k = 0 

(if0) and {%) follow directly from (f) and (g). Let w£[l : t\ and assume that 
(0u_i) hold. Let p£X". Then p=xfl for some 76[1: n] and q^X»-1. Let 
6 [ 1 : j ] - { / J and d(ab Xj) =ak. Then n(k)l=n(i)riJ by (h), (c) and (j). We have 

(AW(a,))CP)=(a,, = , 

= ( « ( 0 ) ( * j ? ) = ( « 0 ) ) ( / > ) • 

Hence we have (#„). Let i€[0:r]. Then X{8(bi, p))=X(8(bi+1 q))= 
¡+i))(i)=>'i • Hence we have (3>u). Consequently, we have (%) and (¿2,) 

by induction. • 

Lemma 16. Let n be an op-mapping of degree (t,s) and let /•£№. For a 
Moore automaton A(n, r)=(A, X, Y, 8, A), we have: 

|iio(A(7t, r))| - 1, 

|^I(A(TT, r ) ) | = m , 

|ih(A (n, r))| = m1+", 

|ifc(A(jr, r))| = m1 + n + n*+-+ ' f~1 , 

|»/i+i(A(jr, r))\ = s = \A\-r, 

\r,t+2(A(n,r))\ = \A\-(r-l), 

|i/t+r(A(n,r))| = \A\-l, 

|ifc+r+1(A(«,r))| = \A\. 

>]0(A(n, r))[= 1 is evident. Let u£[l:f]. By the assertion (a) and by 
'or any g£F u - 1 5 there exists an /£[!:$] suchthat A ( u - 1 ) ( ö , ) = g . Hence 

Proof. 
Lemma 15, 
by Lemmas 6 and 1, we have 

|«,.(A(«, r))\ = IF.^I = mi+»+»•+...+«"". 

Since n is injective, it follows from Lemmas 15 and 5 that any two elements of 
. . . ,a s} are not congruent modulo t]l+1(A(n, r)). Moreover by Lemmas 15 

and 5, any two elements of {60, bx, . . . ,b r} are congruent modulo t]l+1(A(n, r)). 
Thus we have |f/t+1(A(7i, r))| =s. 

1 
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Next let 2: / +1]. By the assertions (c) and (d), we have (n(i„+ l))(/?)=^i 
r - i 

for any p£ 1J Xk. Since an op-mapping is injective, we have 
k=o 

Hence (n(iK + f o r some q^X1. Notice that br+1=ain+1. By the first 
part of Lemma 15, we have A(5(6r+1>p))=(A(,)(&,+1))(p)=7R(I„+l)(p)=^i for 

any pt'\JXk, and («5 (br+l, q))=(A(0 (br+0) (<?)=* 0„ +1) (?) ̂  for some 
t=o 

t+r-i 
q£X*. Hence for any ¡£[0: /-+1], ).(5(bhp'))=yl for any p'£ (J Xk and 

*=o 
X(d(bhq'j)7iy! for some q'eX,+r+1-i. It follows easily from this fact that {b0, ... 
..., 2>r+i_u} is an t],+u(A(n, r))-class, and any other element of A is congruent only 
to itself. Hence we have |/j(+u(A(7r, r))|= \A\—(r+1 —u). • 

Proposition 4. Let n be an op-mapping of degree (t, s) and let #•€№. Then 
A (rt, r) is an initially connected Moore automaton with Q(A(n, r)) = t+r. 

Proof. By Lemmas 16 and 4. • 

Remark. By Lemmas 7, 8 and 16 we have the following: For every i£N°, the 
number of rh(A(n, /-))-classes takes the maximal value among all Moore automata 
A-(A, X, Y, 8', A') with Q(A)=r+t. • 

5. 

Now we can determine all realizable 4-tuples. 

Theorem 2. Let v,n,m£ N and w€№U{°°}. The following three assertions 
are equivalent: 

(1) (v, n, m, w) is realizable by Moore automata. 

(2) (v, n, m, w) is realizable by initially connected Moore automata. 

(3) (3.1) m+w sa v s mi+«+«2+-+"~, or 

(3.2) w = oo, m ^ v — 1. 

Proof. (2)=>(1). Obvious. 
(1 )=>(3). If then we have (3.1) by Proposition 1. If \A\ = \Y\ in a 

Moore automaton A = ( A , X , Y, S, A), then it is evident that i2(A)=0. Hence we 
have (3.2). 

(3.1)=>-(2). If m= 1 then (3.1) implies that v=\ and vv=0. For any n£N, 
there actually exists a Moore automaton A = ( A , X, Y, S, A) such that j/4j = | 7 | = 1 
and 1^1=«. Obviously, A is initially connected and fl(A)=0. 

Next assume that Put o c ( - l ) = m - l and a(A:)=/n 1 + n + n 2 +"+ n k - fc 
for any &£№. Our assumption is 

(i) m S v—w a(w). 

Since m = a ( 0 ) < a ( l ) < a ( 2 ) < . . . , there exists a unique / £ № such that 

(ii) a ( / - l ) + l v-w =§ a(i). 

4 Acta Cybernetica VII/3 
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Let X={xlt ...,x„} and Y={y!, • ••,ym}. If 1=0 then (ii) means that v—w=m. 
Hence (t, v—w+0=(0> m)- ®y Lemma 11, there exists an op-mapping n of degree 
(t,v—w+t) with respect to X and Y. If t^ 1 then (ii) means that 

ml+n+n'+...+n>-t^.2 s V — w + i S rn1+n+"'+ - +n'. 

Hence by Proposition 3, there exists an op-mapping n of degree (t,v — w+t) with 
respect to X and Y. By (i) and (ii), it can easily be seen that iSw. Consider an ini-
tially connected Moore automaton A(TT, w—t)—(A, X, Y, <5, X). We have \A\ = 
=(y—w + t)+(w—t)=v, \X\=n, \Y\=m and, by Proposition 4, i2(A(n, w—t)) = 
=/+(w-t)=w. 

(3.2) =>(2). Define a Moore automaton A=(A, X, Y, d, X) as follows: 

(i) A = {a1,...,av},X={x1,...,x„} and Y = {yt,..., ym}. 

(ii) l ( a f ) = : ^ ( i € [ l : m - l ] ) and /.(a,) = ym(i£[m: »]). 

(iii) <5(a, Xj) = fli+iO'€[l: y-1]) and S(av,Xj) = aa for any ;€ [ 1: /?]. 

Then it can easily be seen that A is initially connected and «¿(a,,-!, av)=°°. Hence 
i2(A)=°°, and thus we have (2). • 

6. 

Let X= {xj, x2} and Y= {1,2}. (Instead of Y={y1,y2}, we use F = { 1 , 2 } 
for simplicity). We shall construct op-mappings according to the Constructions (I) 
and (II) in Section 4. An op-mapping of degree (/, s) is denoted by nUs. 

For i=0 , 7t0,2 is uniquely determined by (7t0 2(l))(e)= 1 and (7i0j2(2))(e)=2. 
For t= 1, n1>s exist for 2 + To obtain nli3 we use Construction (I). 
a is given by (a(2))(e)= 1 and (<x(3))(e)=2. n1>3 is obtained (for example) by the 
first three rows of Table 1, and 7rlj4,7:1>5, n l : 6 are represented by the first 4, 5, 6 rows 
of Table 1. These op-mappings are obtained by Construction (II. 1), i.e., to satisfy 
the following conditions: 

(i) The xx-component of the /-th row equals the e-component of the (/'+ l)-th 
row. 

(ii) All rows are distinct. 

We can not continue this procedure to give n l t 1 . Because two rows, i.e., two 
elements of Fx(X, F), which are not yet used are (2, 2, 1) and (2, 2, 2), and we can 
not determine the 7th row so as to satisfy (i) and (ii). This means that we are in case 
(II.2). As shown in Lemma 14, the ^-component of the 6th row is equal to the 
e-component of the first row. We make a cyclic exchange of 6 rows for example 
in Table 2. Then we can add the 7th and 8th rows to satisfy (i) and (ii). In this way, 
we have n1%7 and n l t 8 which are the first 7 and 8 rows of Table 2. 

For t'=2, n2>s' exist for 2 1 + 2 + 1 S J S 2 1 + 2 + 4 . TO construct 7i2i9, first obtain 
a from 7r1>g. a is shown in Table 3 which is derived by cyclic exchange of Table 2 
so that the top row is (1, 1, 1). The first 9 rows of Table 4 are constructed i.. :ows: 

(i) All components of the first row are 1. 
(ii) The e-, xx- and x2-components from the 2nd to the 9th rows are coincident 

with those of a. 

A 
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(iii) The and xxx2-components of the /-th row are equal to the jq- and 
x2 -components of the (/+ l)-th row (/£[2:8]). 

(iv) The x2xx- and x2x2-components from the 2nd to the 9th rows are arbitrarily 
chosen. The x ^ - and xxx2-components of the 9th row are also arbitrarily chosen. 

In this way we have 7r2>9 by using Construction (I). To obtain TT2>s for s = 
= 10,11, ..., we add new rows one by one so that the following conditions are 
satisfied (Construction (II. 1)). 

(i) The xlx1 - and XjX2-components of the ¡'-th row are equal to the xx- and 
x2-components of the (/+ l)-th row. 

(ii) All rows are distinct. 
In the case when we can not continue this procedure (Case (II.2)), we make a 

cyclic exchange of rows and continue the procedure. In such a way, we can obtain 
n2<s for all J€[9: 27]. Table 4 shows n2>s for j<E[9: 16]. 

Table 1 

e Xl Jf2 

1 1 1 1 
2 1 2 1 
3 2 1 1 
4 1 1 2 
5 1 2 2 
6 2 1 2 

Table 2 

e Xi 
1 2 1 1 
2 1 1 2 
3 1 2 2 
4 2 1 2 
5 1 1 1 
6 1 2 1 
7 2 2 1 
8 2 2 2 

Table 3 

e Xi Xi 
2 1 1 1 
3 1 2 1 
4 2 2 1 
5 2 2 2 
6 2 1 1 
7 1 1 2 
8 1 2 2 
9 2 1 2 

Table 4 

e 

1 1 1 1 1 1 1 l 
2 1 1 1 2 1 1 l 
3 1 2 1 2 1 1 l 
4 2 2 1 2 2 2 l 
5 2 2 2 1 1 2 2 
6 2 1 1 1 2 1 2 
7 1 1 2 2 2 1 1 
8 1 2 2 1 2 1 2 
9 2 1 2 1 1 1 2 

10 1 1 1 1 2 1 2 
11 1 1 2 2 2 1 2 
12 1 2 2 2 2 2 2 
13 2 2 2 1 2 1 2 
14 2 1 2 2 2 1 2 
15 1 2 2 1 1 1 1 
16 2 1 1 1 1 1 1 

Next we shall see two examples of realization of 4-tuples (v, n, m, w). 
Let (v, n, m, w)=(10, 2,2, 4). Since 2 + 4 s l 0 ^ 2 1 + 2 + 2 3 + 2 4 , (10, 2, 2, 4) is reali-

zable by initially connected Moore automata. The unique solution of 2 1 + 2 + " +2t"' + 
+ 2 s l 0 — 4 + i ^ 2 1 + 2 + 2 2 + ' " + 2 t is t=\. Hence A(jr1>7, 3) realizes (10, 2, 2, 4). In 
Fig. 1, an example of A(7rlj7, 3) is depicted, which is obtained by using Table 2. 

4 » 
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Let (i>, «, m, w)=(17, 2, 2, 5). Since 2 + 5 s l 7 s 2 1 + 2 + 2 S + 2 4 + 2 5 , (17, 2, 2, 5) is 
realizable by initially connected Moore automata. The unique solution of 
2 1 + 2 + • + 2 ' - ' + 2 s l 7 - 5 + / s 2 1 + 2 + 2 2 + "+ 8 t is t=2. Hence A(7r2>14,3) realizes 
(17, 2, 2, 5). A(7t2,i4> 3) is illustrated in Fig. 2. 

a ^ a x - ^ a t ^ b — . a t ^ a ^ a ^ c D ^ t S ^ S 
o, *i a, *1 Oj a{ *1 o, = fr0 *, fc, *1 b, *i 6, *i b,=a, *i a, 

/ 
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