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Abstract 

In automatic image analysis with parallel algorithms or parallel processors successive Min-
kowski-operations (like erosions and dilatations) with a given neighbourhood template (also referred 
to as structuring element), T, play an important role. It can be shown that, after a certain number of 
such steps, the neighbourhood template E, which contains only the extreme points of T, can be used 
instead of T. This number of steps is called the index of concavity of T. In bit-plane oriented parallel 
processors this fact can be used to speed-up pattern recognition algorithms. The speed-up is only 
assymptotical and its practical performance depends upon whether the index of concavity is low or 
high. In this paper it is shown that for the practical cases of convex or small templates the index is 
Very small, namely at most 2 or 3 resp. which ensures speed-up for this type of templates. As against 
to this result it is, however, also shown that, theoretically, arbitrary high indices of concavity can be 
achieved for appropriately chosen (exotic) templates. 

1. Introduction 

Minkowski-operations play an important role in automatic image analysis, parti-
culary in optical material control. Herein, after thresholding the video image (from 
camera) appropriately a binary image, b, (usually 256 X256 or 512x512 pixels) is 
produced, b is also called a bit-plane. The bit-plane b is eroded repeatedly and after 
each step of erosion a measurement of area, boundary length and/or number of 
particles is done. Assembling these numbers in one (or 3) feature vector(s), conveni-
ent statistical classification procedures can be applied to get final decision of certain 
material properties. Depending on the material properties to be jugded upon va-
rious neighbourhood templates must be chosen (1, 2). 

In bit-plane oriented parallel array processors (so called: bitplane processors) 
(3, 4, 5, 6) a straight forward implementation of this operations needs Ct elementary 
parallel bitwise logical operations where t is the number of elements in :T(1, 2). There 
it is also shown that in case of convex, symmetric templates CM/2 operations are suf-
ficient where is the number of boundary points of T. In (7) this result was improved 
be showing that, for any template T, assymptotically already Ce operations are also 
sufficient where e is the number of extreme points of T. This result relies on the fact 
that, after a certain number of steps, the Minkowski-operation with Tcan be replaced 
by the same operation using only the template E which contains just the extreme 
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points of T. This number depends on T and is called the index of concavity of T. It 
is denoted n(T).It is clear that the assymptotic speed gain is only achieved if p(T) 
is low. It is the intent of this paper to show that for the practically important cases of 
small (i.e. 3 x 3 ) templates or (possibly big) convex templates the index of concavity 
does not exceed 3 or 2 (resp.). On the other hand, exotic templates (with some few 
and, however, wide spread points) can yield arbitrarily high indices of concavity. 

After presenting some necessary mathematical definitions and facts in chapter 2 
we derive our claim as cited above in chapter 3. 

2. Basic definitions and facts 

Definition 1. Let Z denote the set of integers. Any finite subset T of Z2 is called 
a neighbourhood template. Between two templates T and U the sum T® U is defined 
as {t+u/t£T and w£U} (4- is here the usual componentwise vector sum). For any 
template Tthe sequence (kT)kiN (N={0,1, 2, ...}) is recursively defined by 

o r = { o } , (1) 

(k+\)T=kT®T ( l i s 0). (2) 

Here, 0=(0, 0) is the 2-dimensional origin in Z2. x£T is called an extreme point 
of T, if any representation x— 2 att w'th a r=0, and 2 at=^ implies 

rgr t(T 
ax= 1, and a,=0 for t^x. The set of extreme points of T is denoted E or E(T). 

Proposition 1. (7) For any template T there is a such that 

kT®T=kT@E ( fcsfc 0 ) . (3) 

Definition 2. For any template T let fi(T) denote the minimal k0 such that 
Proposition 1 holds. fi(T) is called the index of concavity of T. 

Definition 3. For any template T let T denote the convex hull of T (in R2), 
formally: _ 

T : = { 2 a t t / a t ^ 0, at€R, ^ a, = 1} (4) 
tgr t e r 

and f : = r n z 2 . A template Tis called convex if T=t. The norm | | r | | of Tis the 
maximal absolute value of all occuring coordinates of all elements of T. T is 
called small, if | |T | |S l . 

Equipped with these preliminaries we proceed to prove our claims. 

3. The index of concavity of certain classes of templates 

Theorem 1. For any k£N, there is a neighbourhood template T with || T|| ^ 
W/(A:/3)+5 such that n(T)^k. 

Proof. Let k£N, and consider the template T={x1, x4} with x t =(« , 0), 
(0, / i - l ) , x 3=(—(n-2) , — (« —2)), and x 4 =(0 ,0) where n is the greatest odd 
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natural number less than or equal to Y(k/3)+5. Note that, in all cases, n is odd and 
not smaller than 5. Let hT®E=hT®T. We show that h^k. Because 

0 = (0, 0)6hT®T, 0£hT®E. 

Thus where kx, k2, k3^0 and (kt, k2, 
fc3£N). So at least one k{ is greater than 0 and k1n~k3(n—2)=k3(n—2)~k2(n — l). 
Because n, n — 1 and n—2 have no common divisor except unity we conclude that 
k1^(n-l)(n-2), k,^(n-2)n, and k3^n(n-1). Thus h + l & 3 ( « - 2 ) 2 s 3 ( V ^ / 3 ) + 
+ 5 —2)2 S k+ 1. 

Q.E.D. 
Theorem 2. For any small template we have 3. 

Proof. The validity of this claim was checked by an appropriate computer 
program: For all small templates, T, their sets of extreme points, E, were computer 
and the first k were searched for which kT®E=kT© T. One proves easily that these 
k equal ju(T). 

Q.E.D. 

Theorem 3. For any convex template T we have /¿(T)s2. 

Proof. A proof can be obtained by combining some partial results of (8) and (9). 
In (8) it is shown that (d+\)T=dT®E for any (¿/-dimensional) template T which 
yields, for our case d=2, the claim 3T=2T®E. In (9) it is shown that kT=kT 
for all 2-dimensional convex templates and any k^O. Thus, we get 

3T=3T= 2T®E = 2 T®E. (5) 

This proves our theorem. 
Q.E.D. 

In case of rectangular convex templates we get even lower indices: 

Theorem 4. For the rectangular template T= {n,n +1, . . . ,«+/} X {m, m +1, ... 
...,m+j}, we have n(T)= 1. 

Proof. Let x=(xlt x2)£2T. Then 2n^x1^2n+2i and, consequently, nS 
g ( x 1 - n ) S H + 2 i . If ^ - « > / 1 + / then n—i^x1—(n+i)=;n+i and n^x1 — 
—(n+i)^n+i. A similar argument shows that either m^x2—(jn+j)^m+j or 
m^sx2 —m^m+j. This proves our theorem because E(T)={n, n+i}x{m, m+j}. 

Q.E.D. 

4. Summary 

In a former paper (7) the author had proved that, for any neighbourhood tem-
plate T, there is a number, n(T), such that kT®T=kT®E (k^n(T)) where E is 
the template containing only the extreme points of T. y.{T) is called the index of con-
cavity of T. In image analysis with bit-oriented parallel computers this fact can be 
used to speed-up pattern classification algorithms which make excessive use of 
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Minkowski-operations like erosion, dilation, opening and closing by appropriately 
chosen neighbourhood templates. This speed-up is only achieved if ¡i(T) is low. In 
this paper, it is shown that this is, in fact, true for all practically important templates, 
i.e., for (arbitrary) convex ones and small ones. Nevertheless, exotic templates can be 
derived having arbitrarily high indices of concavity. 
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