An Erdős-Ko-Rado type theorem II

Bỳ K. Engel and H.-D. O. F. Gronau

1. Introduction and results

Let R denote the interval $[1, r]$ of the first r positive integers. Let k be an integer with $0 \leqq k \leqq r$. The set of all k-element subsets of R will be denoted by $\binom{R}{k}$. The aim of this paper is to present the

Theorem 1: Let $\mu \geqq 4$ and $v \geqq 4$ be integers. If $F \subseteq\binom{R}{k}$,

$$
\begin{equation*}
\frac{r-1}{v}+1 \leqq k \leqq \frac{\mu-1}{\mu}(r-1) \tag{1}
\end{equation*}
$$

and F satisfies
$X_{1} \cap X_{2} \cap \ldots \cap X_{\mu} \neq$ for all $X_{1}, X_{2}, \ldots, X_{\mu} \in F$,
as well as
$X_{1} \cup X_{2} \cup \ldots \cup X_{v} \neq R$ for all $X_{1}, X_{2}, \ldots, X_{v} \in F$,
then
$|F| \equiv\binom{r-2}{k-1}$.
This is best possible. The families $F_{x, y}=\left\{X \in\binom{R}{k}: x \in X, y \in X\right\}$, where x and y are different fixed elements of R, are maximal.

This theorem was proved, for $\mu \geqq 6$ and $\nu \geqq 6$ and for some partial cases of k if $\mu=4,5$ or $v=4,5$, in Gronau [2]. Our proof here uses the same method but in a refined version.

Condition (1) is natural. For all other k 's one of the conditions (2) or (3) is satisfied automatically, and the problem reduces to the generalized Erdös-Ko-Rado theorem by Frankl [1]. For another simple proof, see Gronau [3].

Theorem 2. (generalized Erdös-Ko-Rado theorem) Let $\mu \geqq 2$ be an integer. If $F \subseteq\binom{R}{k}, \quad 0 \leqq k \leqq \frac{\mu-1}{\mu} r$, and F satisfies (2), then

$$
|F| \leqq\binom{ r-1}{k-1}
$$

Turning to the complements we obtain a dual version.
Theorem 2'. Let $v \geqq 2$ be an integer. If $F \subseteq\binom{R}{k}, \frac{r}{v} \leqq k \leqq r$, and F satisfies (3), then

$$
|F| \leqq\left(\frac{r-1}{k}\right)
$$

2. Some reductions

Let $\mu, v \geqq 4, k$ and $F \subseteq\binom{R}{k}$ be given such that (1), (2) and (3) hold. If

$$
\bigcap_{X \in F} X \neq \emptyset \quad \text { or } \quad \bigcup_{x \in P} X \neq R \quad \text { then } \quad|F| \leqq\binom{ r-2}{k-1}
$$

follows by Theorem 2 or 2^{\prime} immediately. Since the described families $F_{x, y}$, have cardinality $\binom{r-2}{k-1}$ and satisfy (2) as well as (3), the proof of Theorem 1 will be completed by proving

Theorem 3. Let $\mu \geqq 4$ and $v \geqq 4$ be integers. If $F \subseteq\binom{R}{k}$ and F satisfies (2) and (3) as well as $\bigcap_{X \in F} X=\emptyset$ and $\bigcup_{X \in F} X=R$, then

$$
|F|<\binom{r-2}{k-1}
$$

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3 only for $\mu=\nu=4$. Furthermore, we may restrict ourselves to $k \leqq \frac{r}{2}$ in the proof since $k>\frac{r}{2}$ follows 'by duality. We make use of some results from [2].

Proposition 1. ([2, Lemma 1]).

$$
\begin{aligned}
& \left|X_{1} \cap X_{2}\right| \geqq 3 \\
& \left|X_{1} \cap X_{2} \cap X_{3}\right| \geqq 2 \text { for all } X_{1}, X_{2}, X_{3} \in F
\end{aligned}
$$

Proposition 2. We may suppose that for all $X \in F$ it holds: If $i \notin X, j \in X$ and $i<j$, then $(X-\{j\}) \cup\{i\} \in F$.

The last proposition is a consequence of Lemma 4 in [2], by the Erdös-Ko-Rado exchange operation.

Finally we prove Theorem 3 for small k, similarly to [2], by a short argument.
Lemma 1. Theorem 3 is true for $k \leqq \frac{r}{4}+\frac{3}{2}$.
Proof. By Theorem 6 in $[2],|F| \leqq\binom{ r}{k-3}$. Hence,

$$
\begin{gathered}
\frac{|F|}{\binom{r-2}{k-1}} \leqq \frac{\binom{r}{k-3}}{\binom{r-2}{k-1}}=\frac{r(r-1)(k-1)(k-2)}{(r-k+3)(r-k+2)(r-k+1)(r-k)} \leqq \\
\leqq \frac{r(r-1)\left(\frac{r}{4}+\frac{1}{2}\right)\left(\frac{r}{4}-\frac{1}{2}\right)}{\left(\frac{3}{4} r+\frac{3}{2}\right)\left(\frac{3}{4} r+\frac{1}{2}\right)\left(\frac{3}{4} r-\frac{1}{2}\right)\left(\frac{3}{4} r-\frac{3}{2}\right)}=\frac{16}{27} \frac{r}{r+\frac{2}{3}} \frac{r-1}{r-\frac{2}{3}} \frac{r+2}{r+2} \frac{r-2}{r-2}<1 .
\end{gathered}
$$

3. An upper bound for $|\mathbf{F}|$

Suppose that F satisfies the suppositions of Theorem 3 , and $\frac{r}{4}+\frac{3}{2}<k \leqq \frac{r}{2}$. We decompose F into F_{1}, F_{2}, and F_{3} according to

$$
\begin{aligned}
& F_{1}=\{X \in F:\{1,2\} \subseteq X\}, \\
& F_{2}=\{X \in F: 1 \in X, 2 \notin X\}, \\
& F_{3}=\{X \in F: 1 \notin X\} .
\end{aligned}
$$

i) Let $F_{1}^{\prime}=\left\{X: X \cup\{1,2\} \in F_{1},\{1,2\} \cap X=0\right\}$. Then F_{1}^{\prime} is a family of $(k-2)$ element subsets of the $(r-2)$-element set $\{3,4, \ldots, r\}$ satisfying (3) for $v=4$. Since $k-2>\left(\frac{r}{4}+\frac{3}{2}\right)-2=\frac{r-2}{4}$, we may apply Theorem 2^{\prime} and obtain

$$
\begin{equation*}
\left|F_{1}\right|=\left|F_{1}^{\prime}\right| \leqq\binom{ r-3}{k-2} . \tag{4}
\end{equation*}
$$

In order to estimate $\left|F_{2}\right|$ and $\left|F_{3}\right|$ we use the description of the families by walks in the plane. We associate with every $X \in\binom{R}{k}$ a certain walk. We start from $(0,0)$. If we are after i moves at point (a, b) then we turn to $(a, b+1)$ or $(a+1, b)$ depending on whether $i+1 \in X$ or $i+1 \notin X$. So every set of $\binom{R}{k}$ is associated with a walk from $(0,0)$ to $(r-k, k)$ and vice versa.

Let F_{2}^{\prime} and F_{3}^{\prime} denote the set of walks associated with F_{8} and F_{3}; respectively. By the definition of F_{2} and F_{3}, every walk of $F_{2}^{\prime \prime}$ starts with $(0,0)-(0,1)-(1,1)$ whereas every walk of F_{3}^{\prime} starts with $(0,0)-(1,0)$.
ii) Every walk of F_{2}^{\prime} meets the line $y=2 x+2$, since otherwise, by Proposition'2; F_{2} would contain the set $X_{1}=\{1,3,4,6,7,9,10, \ldots\}$ For the same reason; ; F would contain $\quad X_{2}=\{1,2,4,5,7,8,10, \ldots\}$ and $X_{3}=\{1,2,3,5,6,8,9, \ldots\}$. But $\mid X_{1} \cap$ $\cap X_{2} \cap X_{3}|=|\{1\}|=1$, contradicting Proposition 1 :

If a walk meets the line $y=2 x+2$ the first time at $(i, 2 i+2), i \geqq 1$, then this walk passes through ($i, 2 i-1$), too. Hence the number of these walks is not greater than

$$
\binom{3 i-3}{i-1}\binom{r-3 i-2}{k-2 i-2}
$$

since $\binom{3 i-3}{i-1}$ is the total number of walks from $(1,1)$ to $(i, 2 i-1)$, whereas $\binom{r-3 i-2}{k-2 i-2}$ is the total number of walks from $(i, 2 i+2)$ to $(r-k, k)$ Consequeptly, using $\binom{0}{0}=1$, we obtain

$$
\left|F_{2}\right|=\left|F_{2}^{\prime}\right| \leqq \sum_{i=1}^{\left[\frac{k-2}{2}\right]}\binom{3 i-3}{i-1}^{\prime}\left(\begin{array}{c}
\binom{-3 i-2}{k-2 i-2} \tag{5}
\end{array}\right]
$$

iii) Every walk of F_{3}^{\prime} meets the line $y=3 x+1$. This follows by the same arguments as in the preceding case recalling (2). Thus,

$$
\begin{equation*}
\left|F_{3}\right|=\left|F_{3}^{\prime}\right| \leqq \sum_{i=1}^{\left[\frac{k-1}{3}\right]}\binom{4 i-4}{i-1}\binom{r-4 i-1}{k-3 i-1} . \tag{6}
\end{equation*}
$$

By (4), (5), and (6) we obtain

$$
\begin{equation*}
|F| \leqq\binom{ r-3}{k-2}+\sum_{i=1}^{\left[\frac{k-2}{2}\right]}\binom{3 i-3}{i-1}\binom{r-3 i-2}{k-2 i-2}+\sum_{i=1}^{\left[\frac{k-1}{3}\right]}\binom{4 i-4}{i-1}\binom{r-4 i-1}{k-3 i-1} \tag{7}
\end{equation*}
$$

4. Some lemmas

In order to estimate (7) we need the following lemmas.
Lemma 2. For any natural numbers n and \boldsymbol{i} with $\boldsymbol{n} \geqq 2$,

$$
\frac{\binom{n(i+1)}{i+1}}{\binom{n i}{i}} \leqq \frac{n^{n}}{(n-1)^{n-1}}
$$

Proof

$$
\begin{gathered}
\frac{\binom{n(i+1)}{i+1}}{\binom{n i}{i}}=\frac{(n(i+1))!i!((n-1) i)!}{(i+1)!((n-1)(i+1))!(n i)!}=\frac{n(i+1)}{i+1} \prod_{j=1}^{n+1} \frac{n i+j}{(n-1) i+j} \leqq \\
\vdots
\end{gathered}
$$

Lemma 3. For integers r, k, i satisfying $k \frac{r}{2}$ and $i \geqq 1$ we have
a) $\frac{\binom{r-3 i-5}{k-2 i-4}}{\binom{r-3 i-2}{k-2 i-2}} \leqq \frac{1}{8} \quad$ if $\quad i \leqq \frac{k-4}{2}:$
b) $\frac{\binom{r-4 i-5}{k-3 i-4}}{\binom{r-4 i-1}{k-3 i-1}} \leqq \frac{1}{16} \quad$ if $i \leqq \frac{k-4}{3}$.

Proof. Since, for positive $\alpha^{\text {s. }}$ and $\beta \cdot \beta \cdot\left(\frac{\alpha+\beta}{2}\right)^{2}$, and $k \leqq \frac{r}{2}$, we have
а) $\frac{\binom{r-3 i-5}{k-2 i-4}}{\binom{r-3 i-2}{k-2 i-2}}=\frac{(r-3 i-5)!(k-2 i-2)!(r-k-i)!}{(k-2 i-4)!(r-k-i-1)!(r-3 i-2)!}=$

$$
\begin{aligned}
& =\frac{(k-2 i-2)(k-2 i-3)(r-k-i)}{(r-3 i-2)(r-3 i-3)(r-3 i-4)} \leqq \frac{\frac{r}{2}-2 i-2}{r-3 i-4} \frac{\left(\frac{r-3 i-3}{(r-3 i-3)^{2}}\right)^{2}}{(r-3} \\
& \leqq \frac{1}{8} \frac{r-4 i-4}{r-3 i-4} \leqq \frac{1}{8} .
\end{aligned}
$$

b) $\frac{\binom{r-4 i-5}{k-3 i-4}}{\binom{r-4 i-1}{k-3 i-1}}=\frac{(r-4 i-5)!(k-3 i-1)!(r-k-i)!}{(k-3 i-4)!(r-k-i-1)!(r-4 i-1)!}=$

$$
\begin{aligned}
& =\frac{(k-3 i-1)(k-3 i-3)(k-3 i-2)(r-k-i)}{(r-4 i-3)(r-4 i-4)(r-4 i-1)(r-4 i-2)} \leqq \\
& \leqq \frac{\frac{r}{2}-3 i-1}{r-4 i-3} \frac{\frac{r}{2}-3 i-3}{r-4 i-4} \frac{\left(\frac{r-4 i-2}{2}\right)^{2}}{(r-4 i-2)^{2}}
\end{aligned}
$$

$$
\leq \frac{1}{16} \frac{r-6 i-2}{r-4 i-3} \frac{r-6 i-6}{r-4 i-4} \leq \frac{1}{16}, \text { for } 1 \geqq 1 .
$$

Immediate induction consequences of our lemmas are

$$
\begin{gather*}
\binom{n i}{i} \leqq\binom{ n \gamma}{\gamma}\left[\frac{n^{n}}{(n-1)^{n-1}}\right]^{i-\gamma} \text { if } i \geqq \gamma \\
\binom{r-3 i-2}{k-2 i-2} \leqq\left(\frac{1}{8}\right)^{i-1}\binom{r-5}{k-4} \text { if } 1 \leqq i \leqq\left\lfloor\frac{k-2}{2}\right\rfloor, \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\binom{r-4 i-1}{k-3 i-1} \leqq\left(\frac{1}{16}\right)^{i-1}\binom{r-5}{k-4} \quad \text { if } \quad 1 \leqq i \leqq\left[\frac{k-1}{3}\right] \tag{10}
\end{equation*}
$$

Finally, by (8), with $n=3$ and 4 we. have

$$
\begin{gather*}
\sum_{i=1}^{\sim}\binom{3 i-3}{i-1}\left(\frac{1}{8}\right)^{i-1} \leqq 1+\frac{\binom{3}{1}}{8}+\frac{\binom{6}{2}}{8^{2}}+\frac{\binom{9}{3}}{8^{3}}+\frac{\binom{12}{4}}{8^{4}}+ \\
+\frac{\binom{15}{5}}{8^{5}}\left[\sum_{i=6}^{\infty}\left(\frac{3^{3}}{2^{2}}\right)^{i-6}\left(\frac{1}{8}\right)^{i-6}\right]= \\
=1+\frac{3}{8}+\frac{15}{64}+\frac{84}{512}+\frac{495}{4096}+\frac{3003}{32768} \frac{1}{1-\frac{27}{32}}<2.481 \tag{11}
\end{gather*}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{\infty}\binom{4 i-4}{i-1}\left(\frac{1}{16}\right)^{i-1} \leqq 1+\frac{\binom{4}{1}}{16}+\frac{\binom{8}{2}}{16^{2}}+\frac{\binom{12}{3}}{16^{3}}+ \tag{12}\\
+\frac{\binom{16}{4}}{16^{4}}\left[\sum_{i=5}^{\infty}\left(\frac{4^{4}}{3^{3}}\right)^{i-5}\left(\frac{1}{16}\right)^{i-5}\right]=1+\frac{4}{16}+\frac{28}{256}+\frac{220}{4096}+\frac{1820}{65536} \frac{1}{1-\frac{16}{27}}<1.482
\end{gather*}
$$

5. Proof of Theorem 3

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10), (11), and (12) we get

$$
\begin{aligned}
|F| \leqq & \binom{r-3}{k-2}+\left\{\sum_{i=1}^{\infty}\binom{3 i-3}{i-1}\left(\frac{1}{8}\right)^{i-1}+\sum_{i=1}^{\infty}\binom{4 i-4}{i-1}\left(\frac{1}{16}\right)^{i-1}\right\}\binom{r-5}{k-4}< \\
& <\binom{r-3}{k-2}+\{2.481+1.482\}\binom{r-5}{k-4}<\binom{r-3}{k-2}+4\binom{r-5}{k-4}
\end{aligned}
$$

Furthermore, recalling $k \leqq \frac{r}{2}$,

$$
\begin{aligned}
& \frac{|F|}{\binom{r-2}{k-1}}<\frac{\binom{r-3}{k-2}}{\binom{r-2}{k-1}}+4 \frac{\binom{r-5}{k-4}}{\binom{r-2}{k-1}}=\frac{k-1}{r-2}+4 \frac{(k-1)(k-2)(k-3)}{(r-2)(r-3)(r-4)} \leqq \\
& \cong \frac{\frac{r}{2}-1}{r-2}+4 \frac{\left(\frac{r}{2}-1\right)\left(\frac{r}{2}-2\right)\left(\frac{r}{2}-3\right)}{(r-2)(r-3)(r-4)}=\frac{1}{2}+4 \frac{1}{8} \frac{(r-4)(r-6)}{(r-3)(r-4)}<1 .
\end{aligned}
$$

This completes the proof.

ERNST-MORITZ-ARNDT-UNIVERSITAT
SEKTION MATHEMATIK
DDR-2200 GREIFSWALD
FRIEDRICH-LUDWIG-JAHN-STR. 15 A

WILHELM-PIECK-UNIVERSITȦT

SEKTION MATHEMATIK
DDR-2500 ROSTOCK
UNIVERSITÁTSPLATZ 1

References

[I] Frankl, P., On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A v. 20, 1976, pp. 1-11.
[2] Gronau, H.-D. O. F., An Erdós-Ko-Rado type theorem, Finite and Infinite Sets (Proc. 6th Hung. Colloq. on Combinatorics, Eger 1981), pp. 333-342, Colloq. Math. Soc. J. Bolyai, 37, North-Holland, Amsterdam, 1985.
[3] Gronau, H.-D. O. F., On Sperner families in which no k sets have an empty intersection III, Combinatorica, v. 2, 1982, 25-36.

