
Acta Cybernetica, Tom. 7, Fasc. 4, Szeged, 1986.

A new programming methodology using attribute grammars

E . SIMON

Keywords: attribute grammars, automatic program generation, modular decomposition,
programming methodology, program specification.

Abstract

Attribute grammars have been constructed for describing the static semantics of programming
languages and have been shown useful in a wide variety of automatic compiler generations. This
paper presents a new application of attribute grammars to specify hierarchical and functional pro-
grams. An algorithm to evaluate attribute grammars is demonstrated. Several attributes can be evalu-
ated in parallel too. A simple model for generating PASCAL like programs is given. A new meta-
language PLASTIC is introduced as an adequate tool for specifying hierarchical and functional
programs. A simple PLASTIC program is presented to help attain the new programming metho-
dology.

1. Introduction

Over the last decade there has developed an acute awareness of the need to
introduce abstraction and mathematical rigour into the programming process. This
increased formality allows for the automatic manipulation of software, increasing
productivity, and, even more importantly, the managebility of complex systems.
Along those lines, attribute grammars (AG) of Knuth [6] constitute a formal mecha-
nism for specifying translations between languages [2, 8, 11]. By automatically gene-
rating the inverse translators we would be able to translate any program written for
one processor into the command language of any other processor [13]. There are some
methods for incremental evaluation of AG to produce so called incremental compi-
lers [3]. An essential question is how to verify the correctness of the AG specification.
In contrast with the attribute evaluation problem, this has not been studied well
and only a few results have beep reported up to now [1, 5].

Although several efforts have been made to obtain efficient evaluators, the
first good algorithm for attribute evaluation has been proposed by T. Katayama [4].
Principally this algorithm accepts absolutely noncircular AG although extension to
general noncircular AG is straightforward. In the model nonterminal symbols are
considered to be functions which map their inherited attributes to their synthesized
attributes and associate procedures to realize these .functions with the nonterminal

426 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

symbols. The entire AG is then transformed into a set of mutually recursive proce-
dures. When applied to an AG whose attribute evaluation process can be performed
in a single pass from left-to-right, the algorithm can generate an evaluator which can
be combined with the top-down parsers to result in the so-called recursive-descendent
compilers if the underlying CF grammars are LL(fc). However data dependency
sometimes allows several attributes be evaluated parallel supposing that we have
associated one procedure for each synthesized attribute.

As it is widely recognized, hierarchical specification techniques are the most
promising methods in constructing complex and large softwares in well structured
way, and in fact they are the most successfully used ones in practice as it is represented
for example by SYCOMAP [10]. In these methodologies softwares are hierarchically
decomposed into modules and they are successively refined until concrete and machine
executable programs are obtained from their abstract specifications cf. CDL2.
Although they are extremely natural and useful the current states seems to be that
automatic program generation from the specifications and their verification are pre-
vented due to the lack of strict formalization.

The hierarchical and functional programming methodology presented in this
paper is based on attribute grammars. Applying the results of [4], we obtain a new
program specification technique which stands mechanical program generation.
In our approach we consider a program specification as an AG where program modu-
les are represented by nonterminal symbols of the grammar, module decompositions
correspond to production rules, input and output data of the modules correspond to
attributes of the nonterminal symbols and computations done in the modules are
specified by the semantic rules. Our methodology has the following three desirable
properties. It allows hierarchical descriptions of complex functional programs in a
very natural way. We have means to mechanically generate efficient procedural type
programs from the descriptions and verification of their correctness can also be per-
formed hierarchically.

In this paper we give our formalism and then the metalanguage PLASTIC is
stated. Before presenting the program generation algorithm a simple example is
shown. The PLASTIC system, implemented in PASCAL is now under development.
The PLASTIC compiler is specified in HLP/PASCAL metalanguage [12].

2. Formal description

Essence of our approach is to use a mechanism based on the Khuth's attribute
grammar [6] to describe programs. Therefore a hierarchical and functional program
(or simply HFP) is a 6-tuple

(.M,m0,A,D,V,F)
where

(1) M is a set of modules. We assume that M contains the special modul called a
null module which is used to terminate decomposition. The null modul is denoted
by null symbol.

(2) m0£M .is an initial module.

A new programming methodology using attribute grammars 427

(3) A is a set of input and output attributes of modules. With any modul except the
null module, there is associated a set of input and output data called attributes
and the set of attributes of X£M is denoted by A[X]. A[X] is a disjoint union of
the set IN[Z] of input attributes and the set OUT [A"] of output attributes. They
are called inherited and synthesized attributes, respectively, in the AG termi-
nology.

(4) DcMxM* is a finite set of module decompositions. An element d£D is called
a decomposition and is denoted by

d: X0 - X1X2...X„ cond Cd

for X0, ...,X„£M. We say that the module X0 can be decomposed into modules
Xly X2, ..., Xn if a decomposition condition Cd is satisfied. Cd specifies the condi-
tion in terms of input attributes of X0. When a is an attribute of Xk, that is,
a£A[Xk], Xk • a is called an attribute occurrence of the decomposition d. It is
called an input occurrence (by an alternative denotation Xk\a) if £z6lN[Xt]
and an output occurrence (Xk\a) if a£OUT[ArJ.

(5) V is a set of value domains of attributes.
(6) Fis a set of attribute mappings for describing functional equalities among attribu-

tes. Let d be a decomposition X^X^X^^.X^D. For each output occurrence
v=Xf>\a with ad OUT [X0] and input occurrence v—Xk\a with a£ IN [Xk], l^k^n,
there exists a function/^ „ to compute the value of v from the values of other attri-
bute occurrences vt, ..., vm in d. The set Ddv—{vl5 ..., vm} is called dependency
set o f f d v . If we denote the value domain of v by domain (v),fdv is a mapping
domain (v^X...Xdomain (vm)— domain (v).

That is, in every decomposition functions are specified to compute the values of out-
puts for main module and inputs to submodules.

Let us define a decomposition tree which shows the result of all decompositions
applied to the initial module m0. It corresponds the derivation tree of CF grammars
and is defined recursively by the following
(1) the null module is a decomposition tree, and
(2) if 7\, ..., T„ are decomposition trees with the root module X±, ..., X„, respecti-

vely, and X0->-X1...Xa cond C is a decomposition, then the tree

r„]

which consists of the root X0 and the subtrees Tls ..., T„ is a decomposition tree.
A computation tree T is a decomposition tree whose nodes are labelled by attri-

bute values in such a way that for any module X0 in T and the decomposition
d\ X0—X1...X„ cond Cd applied at the module the following conditions are satisfied

(i) the decomposition condition Cd is true,

(ii) for any output occurrence v of X0 or input occurrence v of Xk l^k^n,
the following functional equality holds

v =fdlV(v1,..., v j where DdtL, = K , ..., vm}.

It should be noted that a computation tree represents a particular execution of
an HFP corresponding to the particular values of input data fed to the initial module.

428 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

3. The PLASTIC metalanguage

PLASTIC is a new metalanguage designed to support the use of abstractions in
program construction. Work in programming methodology has led to the realization
that three kinds of abstractions — procedural, control, and especially data abstrac-
tions — are useful in the programming process. Among these, only the procedural
abstraction is supported well by conventional languages, through the procedure or
subroutine. ALPHARD [9] and CLU [7] provide, in addition to procedures, novel
linguistic mechanisms that support the use of data and control abstractions. In con-
tradiction to these languages the PLASTIC system is altogether based on a few
results of AG. In the module specifications, control abstraction is realized by the
semantic functions and decomposition conditions. Data types can be refined successi-
vely as the decomposition proceeds.

A PLASTIC program consists of five parts. We first define some global data
types for the procedures and functions. The auxiliary functions and procedures that
are used in decomposition rules are declared in procedure declarations. The allowed
primitive functions and procedures form a subset of those of PASCAL, since both the
procedure type and the parameter types are restricted to allowed input-output attri-
bute types. The interpretation of procedures and functions is the same as in PASCAL.
Comments are indicated by the character %, whose appearance outside a proper
string means that the rest of the line is interpreted as a comment and is skipped by
the system. The strings belonging to the token class IDENTIFIER begin with a letter
which is followed by letters or digits or underscores.

Before the module specifications the name of the initial module is given. The
values of the input attributes of the initial module are assigned by read operations.
The main part of a PLASTIC program is the module specification. We associate a set
of input and output data with each module X. Computations done in the module X0 is
specified decompositionwise by giving a set of functional equalities which hold among
attributes of X0 and its submodules Xx, ..., X„, and thus they are reduced to the com-
putations done in submodules. Repeating the module decomposition process until
terminal modules are reached completes the program design. If there are recursive
modules or if there are modules whose decompositions are not unique there may
occur numbers of trees each of which corresponds to a specific computation. We have
attached declarations for data types of attributes to decompositions. They are refined
successively as the decomposition proceeds. Different decompositions for a module
are separated to versions. The input attribute occurrence can be denoted by J while the
output occurrence by t. In the attribute occurrences the name of the module to be
decomposed must not be specified.

Simple copy rules of the form " X - a : = Y - b " can often be left unwritten by apply-
ing the so-called elimination principle, if so desired. It is applicable in two situations.
First, if a is an output attribute, then A'must be the left-hand side of the decomposition
and Y must be the only module on the right-hand side of the decomposition having
an occurrence of attribute a. Alternatively, if a is an input attribute, then Y must be
the left-hand side of the decomposition and X can be any of the modules on the
right-hand side of the decomposition. In both cases the nonexistence of a rule for
X- a is an indication to the PLASTIC system to include the copy rule in the decom-
position. In the module and submodule specification the input and output attributes

A new programming methodology using attribute grammars 429

are separated by semicolon. The keywords "description", "specification", "mo-
dule", "submodule", "version", "condition", etc. can be abbreviated to "descr",
"spec", "mod", "submod", "vers", "cond" etc. We assumed that a PLASTIC prog-
ram is deterministic, that is, decomposition conditions of distinct decompositions
with the same left-hand side module do not become true simultaneously for any value
of its input attributes.

In the last part of a PLASTIC description the user can prescribe the implemen-
tation commands. As we shall see data dependency sometimes allows several attribu-
tes to be evaluated simultaneously. In our system these attributes are evaluated in a
single procedure call, because this reduces overheads due to procedure activations
and increases chances of parallel execution. The keyword "parallel" stands for these
output attributes which have to be evaluated simultaneously if it is possible. The
default option for attribute evaluation is sequential. One of the major goals of PLAS-
TIC is to provide a mechanism to support the use of good programming methodology.
To meet this goal, we must provide more than just the language mechanism for the
generator: we must also provide a way to specify their effects. A natural means of
doing this for implementation is to specify how to realize the evaluation of an attri-
bute. There are three different kinds of realization. The default option is procedural.
In this case for each module Zand output attributes a single procedure will be genera-
ted. The keyword "macro" stands for those output attributes which are evaluated by
executing a macro call. If there are same precompiled procedures for so caljed null
modules, they can be activated by a call "statement".

The problem of data abstraction and its detailed discussion is beyond the scope
of this paper except giving a comment that every hierarchical specification metho-
dology should be equipped with a hierarchical data abstraction mechanism and in
the case of PLASTIC the algebraic abstraction would be most appropriate.

Figure 1 shows a PLASTIC solution of binary conversion. Suppose we have a
file containing record of binary characters. In order to verify the conversional algo-
rithm we have to compute the value of binary number b=b1b2...b„ in two ways.
Design a program that reads the character file and compute the binary numbers vail
and val2. The initial modul is START. We have attached declarations for data types
of attributes to decompositions. We have assumed the existence of several functions
on primitive data types, which are denoted by bold-face type letters. Their meaning will
be selfexplanatory from their names. The common declarations for types, symbols
and rule are written in the head of module descriptions. Copy-rules should not be
specified, because they are generated automatically by the system.

430 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

4. Translation of PLASTIC program

Besides its static description, one of the outstanding features of PLASTIC speci-
fication technique is that we have means to translate mechanically the specification
into machine executable forms. This is called attribute evaluation in the attribute
grammar theory.

%

%%%% PLASTIC description for computing the value of binary %%%%

%%%% number 6 = b\b2...bn in two ways given by %%%%

%%%% vail (6162.,.6n).= M * 2 f (» - 1) + vail (bl...bn) %%%%

%%%% val2 (6162... Zw) = 2 # val2 (bl...bn—l) + bn %%%%

% % % % val 1 0 = val2 Q = 0 % % % %

%%%

begin description bin conv
common data types
vail, val2, pos: integer; neg: boolean;
procedures
procedure read (var input: file of elem); ...;
function last (input: file of elem); elem; ...;
function remain (input: file of elem): boolean; ...;

initial module is start
specifications
%%1%%
module start (|input; tvall, tval2);
types input: file of elem;
submodule sign ((elem; tneg);

list ((input, (pos; tvall, |val2);
version: 1
rule start=sign list;
do input< =read (input);

list |pos:=0;
vail :=if signtneg then -listtvall else listfvall;
val2:=if signtneg then -listtval2 else listtval2;
sign|elem:=head (input);
list|input:=tail (input);

cond not empty (input);
version: 2
rule start = ; do vail :=0; val2:=0;
cond always;
end start;

A new programming methodology using attribute grammars 83

%%2%%
module signQelem; tneg);
types elem: character;
rule sign = ; ;,.
version: 1
doneg:=true;
cond elem = "—";
version: 2
do neg:=false; cond e l e m = " + " ; end sign;
%%3%%
module list (jinput, jpos; tvall, tval2);
submodule list, digit (jinput, Jpos; vail, tval2);
version: 1
rule list=digit;
do % digit jpos:=pos; copy-rule
% digit|input:=input; copy-rule
% vail :=digittvall; copy-rule
% val2:=digittval2; copy-rule
% copy-rule will be generated without specification
cond empty (remain (input));
version: 2
rule list=list digit;
do digit}input:=last(input);

list|input :=remain(input);
list|pos : = p o s + l ;
vail " :=listtvall+digittvall;
val2 :=2*listtval2+digittval2;

cond always;
end list;
%%4%%'
module digit (Jelem, pos; tvall, val2);
types elem: character;
rule digit = ;
version: 1
do vail :=0; val2:=0;
cond elem="0";
version: 2
do vail :=2**pos; val2:-1 ;
cond elem="1";
end digit;
implementation
vail, val2: parallel;
% : statement;
sign, digit: macro;
start, list : procedure;
end description bin_conv.

Figure 1

432 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

4.1. Notations

Let d: X0-~XíXi...X„ be a decomposition. A dependency graph DG d /or the de-
composition d, which gives dependency relationship among attribute occurrences
of d, is defined by

D G d = (D V d , D E i)

where the node set DVd is the set of all attribute occurrences of d and the edge set
DEd is the set dependency pairs for d. Formally

DVd = {Xk.a\k = 0, . . . , n and «€¿№1}

DEd = {(Vl, ' o j l ^ D i , J .

When a computation tree J is given a dependency graph DGX for the computation
tree T is defined to represent dependencies among attributes of nodes in T. DGX
is obtained by merging together DGd 's according to the decompositions in T.

Let T be a computation tree with root node X£M. DGT determines an IO
graph IO[X, T] of A'with respect to T. It gives an I/O relationship among attributes
of X, which is realized by the decomposition tree T. That is

IO[* ,T] ={A[X],Em)

when an edge (/', J) is in JE ,
I0cIN[Ar]xOUT[Ar] iff there is in DGT a path connecting

the attribute occurrences X\i and Afa of the root T.
For general PLASTIC programs there may be finitely many IO graphs for

X£M and we denote the set of these IO graphs by IO(X), that is

IO(Ji0= {IO [X, T] | T is a computation tree}.
Let IO(.JQ = {K)i, ...,ION} where Ek). A superposed IO graph
IO[AT] is defined by

lO[X] = (A[X],E), £=\JEk k = l
to represent possible IO relationship.

In order to define a set of attributes to be evaluated in parallel, let us'introduce
an 01 graph the dual concept of IO graph, which specifies how the values of inherited
attributes are effected by other attributes. .SIOMSS*

Let T be a computation tree which contains X£M asJ one bf its leaf n'ódes.
An OI graph OI[X, J] of X with respect to T is given by

OI[*, T] = (A[X], E0l[T]), Eol[T] c= A[X]XIN [AT]

where (a, i)£E0i[T\ iff there is in DGT a path from va to vt, where v„ and vi are
nodes for attributes a and i of the leaf node X. A superposed OI graph is defined in a
similar way as IO [Jf].

We further define a dependency graph DG [A^ of the modulé A' as the union of IO
graph and OI graph, that is

D G M = (¿ t n ; £ I O U £ o i) .

A new programming methodology using attribute grammars 433

For an absolutely noncircular PLASTIC description D a set O c O U T p f] of
output attributes is said evaluable in parallel iff no sx, s2dO are connected in
D G [*] -

An augmented dependency DG£ for the decomposition if is

DGi = (DVJ, DEJ)

where DVJ=DVd , the set of attribute occurrences in d, and e^DEJ iff e€DEd
or e=(Xk'i, Xk-s) for some (/, i)6 lO[ZJ and k—\,...,n. DGd represents a
relationship among attribute occurrences in d which is realized partly by attribute
mappings and partly by computation trees.

A PLASTIC description is said to be absolutely noncircular [2] iff DGJ does not
contain cycles for any d£D. For an output attribute s of a module X of a PLASTIC
program, its input set in [J, X] is defined to be a set of input attributes which are
required to evaluate s, that is

in [s, X] = {i |(i, s) is an edge of IO [A']}.

We extend the function in [j, X] to allow such O as its first argument

i n [0 , * J = U i n [s , n «to

4.2. Translation algorithm

Let X be a module of an absolutely noncircular PLASTIC description
P=(M, m0, A, D, V, F) and s an output attribute of X. We associate with each pair
X, s a procedure

where ...,vm are parameters corresponding to the input attributes in / = in [j, X]
and v is a parameter for j . It should be noted that input and output parame-
ters are separated by semicolon. This procedure is intended to evaluate the output att-
ribute when supplied the. values of input attributes in /.

When given the value of the inherited attribute /0 of the initial module m0 we
begin to evaluate the output attribute i0 of m0 by executing the procedure call state-
ment

SO

where u0 and v0 are variables corresponding to /„ and J0, respectively.
Now we are ready to describe how to construct the procedure Rx,s(vi> •••> vm> v)-

The first thing the procedure RXt s must do in its body is to know the decomposition d
which is applicable to the module X and perform a sequence HdfS of statements to
Compute the value of attribute occurrences in d, therefore RX s is constructed in the
following form,

procedure ...,vm; v)
if Cdl then H i l tS else
if Cdl then H^>s else

end

434 E. Simon

where dx, d2, ... are decompositions (versions) with left side module X. We have
assumed that the PLASTIC description is deterministic, that is decomposition condi-
tions of disctinct decompositions with the same left side module do not become simul-
taneously true for any value of its input attributes.

The sequence Hdts is obtained in the following steps.
(1) Make the augmented dependency graph DGJ .
(2) Remove from DGJ nodes and edges which are not located on any path leading

.to for / = in [i, A^].. Denote the resulting graph by

' DGÎM = {V, E).
(3) To each attribute occurrence x£ V'— V— {A'0j/|/ÇlN[Ar

0]} assign a statement
st[x] for evaluating X as follows.
Case 1. If x=Xk\i for some /ÇIN[-Vt] and k=\,...,n or x=X„is(= v)
for the attributes J-ÇOUTfA,)], then st [JC] is the assignment statement

* : = /d,x(zl> zr)

where :fdx is the attribute mapping for the attribute occurrence x and
Dd,x={zi,...,zr}.
Case 2. If x=Xk\t for some / Ç O U T ^] and k=\, ..., /?, then st[x] is the
procedure call statement
c a l l ^ . i w j , ..., wk; x)

where wx..,wk — {Xk\i|in[/, A^]}.

(4) Let xx, ...,xN be elements in V which are listed according to the topological
ordering determined by E, i.e., if (xa, xb)£E then a<b. Then Hj s becomes as
follows.

st [x j ; st [xN]

Note that statements in Hds satisfy thé single assignment rule. It is easy to see
that the.ordering xx, ..., xN ensures values of attribute occurrences are determined
consistently if the PLASTIC description is absolutely noncircular.

We first construct the procedure Rmo, ^ by the algorithm we have stated. Body of
i?mo, So may contain calls for other procedures Rx;s's and they âre constructed in the
same way. Repeat this process until no more new procedures appear.

In the case of parallel evaluation we assign a single procedure

uy, ..., u„)

to each set O which is évaluable in parallel instead of assigning n procedures, where
M15 ..., un are parameters corresponding to output attributes in O and vx, ..., vm are
those for attributes in in [0, X].

Construction of Rx,0 parallels to that of RXtS except a few points. As in the case
of RXtS, the procedure Rx,o has the following form,

procedure R ^ . o K , «!, . . . , m„)
if Cdl then Hiu0(vlt ..., vm\ w1; ..., «„) else
if Cd, then Hdl<0(vi, ..., vm; ux, ..., u„) else

end

A new programming methodology using attribute grammars 435

For a decomposition X0-»X1X2...Xn and 0€S[Xo] which is évaluable in
parallel, construction of statement sequence Hi 0 proceeds in the following steps.
(1) Make DGJ.
(2) Make DG t [0]=(V , E) by removing from DGJ nodes and edges which are not

located on any path leading to X0\s for s€ O.
(3) For each k=l, ...,n decompose the set

such that each Okj is evaluable in parallel. When the decomposition is not unique,
we should choose a maximal decomposition, that is, one where the number v
becomes minimum, to attain high efficiency of evaluation.

(4) Let DG'd[0]=(V, E') be a graph obtained from DG%[0] by grouping elements
of each OkJ into a single node vkJ£ V. Formally

(5) To each element x in V0= V — {X0 • /|/6lN[Jro]} assign a statement stf*] as fol-
lows.

Case 1. If X— Xk\i for some and k=\, ..., n, or X=X0\s then
st[jc] is the assignment statement

OUT* [Xk] = OUT [Xk] n {t \Xk • 16 V}

into a set of mutually disjoint subsets

Okl j Oki > • • • J Okr

V = {g[v)\v£V}

E' = {(«[«], g[t>])|(«,

where g is a function defined by

{vkJ if v = Xk- s for some s, k and j such that s£0,
v otherwise.

where
* : — fd,x(zl> •••> zr)

A i = izi, •••, zr}-

Case 2. If X—vkj then st[x] is the procedure call statement

calIjRjrfc>Oiy(wi, xlt ...,xc)
where

(0 { W l , ...,wh}= { l ^ i l K i n l O y , * - »] }

and

(2) {Xl,...,xc) = {Xk\t\t£Ok]}.

(6) Same as 4. for H i t , in the sequential case.

6 Acta Cybernetics vn/4

436 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations

Translation of the entire attribute grammar into the corresponding program is
similar to the one given in this section; Let 0 be a set of output attributes of the initial
modul. We start from constructing the procedure R s 0 and then proceed to procedu1

res which are called in it. - ;

RESEARCH G R O U P ON THEORY O F AUTOMATA
H U N G A R I A N ACADEMY OF SCIENCES
SOMOGYI B. U. 7
H—6720, SZEGED i . . •

References

[1] DERANSART, P . , Logical attribute grammars, In: Information Processing' 83, E. Mason ed.,
North-Holland,. 463—470.

. 12] 'GY1M(WHY, Tl, E. SIMON, and A. MAKAY, An implementation of the HLP, Acta CYbernetica 6,
,. 3.(1983), .316-^327.

[3] JALIU, F., A general incremental evaluator for attribute grammars, Science of Computer Pro-
.. gramming 5, 1 (1985), 83-^96.

[4] KATAYAMA, T.V Translation' of attribute grammar into procedures, Department of Comp.
Science, Tokyo Institute of Technology, TR CS-K8001.

[5] KATAYAMA, T., and Y. HOSHINO, Verification of attribute grammars, Department of Comp.
Science, Tokyo Institute of Technology, TR CS-K8003.

[6] KNUTH, D . E., Semantics of context-free languages, Math. Syst. Theory 2 , 2 (1968) , 1 2 7 — 1 4 5 .
[7] LISKOV, B., et al, Abstraction mechanisms in CLU, CACM 20, 8 (1977), 564—572.
[8] RAIHA, K-J., et al, Revised report on the compiler writing system HLP78, Department of Comp.

Science, University of Helsinki, TR A-1983-1.
[9] SHAW, M., et al, Abstraction and verification in ALPHARD: Defining and specifying iteration

and generators, CACM 20, 8 (1977), 553—563.
[10] SIMON, E., Formal.definition of-the SYCOMAP system, In: Preprints of the Second Hungarian

Computer Science Conference, Budapest, 1977, 738—759.
[11] SIMON, E., Language extension in the H L P / S Z system, Acta Cybernetica 7, 1 (1984), 89—97.
[12] TOCZKI, J., et al., On the PASCAL implementation of the HLP, to be published In: Proc. of 4th

, .Hungarian Computer Science Conference, Gyor, 1985 (to appear).
[13] YELLIN, D., and Eva-Maria.' M." Mueckstein, Two-way translators based on attribute grammar

inversion, to be published In: Proc. of 8th International Conference on Software Engineering,
. .1985, 17 pp.

(Received Aug. 27,1985.)

