Loop products and loop-free products

Z. Ésik

We introduce loop products of automata and show that, in the presence of input signs inducing the identity state transformation, loop products followed by loop-free products, (i.e. α_0 -products) are just as stong as the most general product. See [3] for notations and unexplained concepts. Most recent results on α_0 -products can be found in [2].

Take a g^{*}-product $A = A_1 \times ... \times A_n(X, \varphi)$ of automata $A_t = (A_t, X_t, \delta_t)$, $t=1, ..., n, n \ge 0$. We call A an l^* -product (i.e. generalized loop product) if for every t>1, $\varphi_t(a_1, ..., a_n, x)$ $((a_1, ..., a_n) \in A_1 \times ... \times A_n, x \in X)$ only depends on x and a_{t-1} , and φ_1 only depends on a_n and x. In the special case that $\varphi_t(a_1, ..., a_n, x) \in X$ $\in X \cup \{\lambda\}$ ($\varphi_t(a_1, ..., a_n, x) \in X$) we speak about an l^{λ} -product (*l*-product, i.e., loop product).

Let K be a class of automata. We put

 $\mathbf{P}_{l}^{*}(\mathbf{K})$: all *l**-products of automata from **K**,

 $\mathbf{P}_{l}^{\lambda}(\mathbf{K})$: all l^{λ} -products of automata from \mathbf{K} ,

 $\mathbf{P}_{l}(\mathbf{K})$: all *l*-products of automata from **K**.

Further, we write $\mathbf{P}_{1l}^*(\mathbf{K}) \left(\mathbf{P}_{1l}^{\lambda}(\mathbf{K}), \mathbf{P}_{1l}(\mathbf{K}) \right)$ for the class of all *l**-products (*l*^{λ}-products, *l*-products) with a single factor of automata from **K**.

Our result is the following statement.

Theorem. $HSP_{\alpha_0}P_l^{\lambda}(K) = HSP_{\alpha_0}P_l^{*}(K) = HSP_g^{*}(K)$ for every class K.

Proof. The inclusions from left to right are obvious. To see that

$$\operatorname{HSP}_{q}^{*}(\mathbf{K}) \subseteq \operatorname{HSP}_{\alpha_{0}} P_{l}^{\lambda}(\mathbf{K}),$$

by $\mathbf{P}_{\alpha_0}^{\lambda}(\mathbf{K}) = \mathbf{P}_{\alpha_0}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathbf{K})$, it suffices to show that $\mathbf{HSP}_{q}^{*}(\mathbf{K}) \subseteq \mathbf{HSP}_{\alpha_0}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathbf{K})$.

If \mathbf{K} contains only monotone automata, then $\mathbf{HSP}_{g}^{*}(\mathbf{K}) = \mathbf{ISP}_{a_{0}}^{*}(\mathbf{K})$ by the proof of Theorem 4 in [3] and the inclusion holds. Suppose that \mathbf{K} contains an automaton which is not cycle-free. We claim that $\mathbf{HSP}_{a_{0}}^{*}\mathbf{P}_{i}^{*}(\mathbf{K})$ is the class of all automata. To this, by Corollary 2 in [3], we have to show the following:

(i) $\mathbf{P}_{l}^{\lambda}(\mathbf{K})$ is not counter-free.

(ii) $A_0 \in HSP_{\alpha_0}^{\lambda} P_l^{\lambda}(K)$.

(iii) For every finite simple group G there exists an automaton $A \in P_i^{\lambda}(K)$ such that G is a homomorphic image of a subgroup of S(A).

Z. Ésik

Proof of (i). There is an automaton $A \in K$ containing a nontrivial cycle, i.e., a cycle with length n > 1. Obviously, a counter with length n is in $SP_{11}(K)$, therefore, $P_1^{\lambda}(K)$ is not counter-free.

Proof of (ii). By Lemma 3 in [3], $A_0 \in HSP_{\alpha}^{\lambda}(K)$. However,

$$\mathrm{HSP}_{a_{1}}^{\lambda}(\mathbf{K}) = \mathrm{HSP}_{a_{0}}^{\lambda} P_{1a_{1}}^{\lambda}(\mathbf{K}) = \mathrm{HSP}_{a_{0}}^{\lambda} P_{1l}^{\lambda}(\mathbf{K}) \subseteq \mathrm{HSP}_{a_{0}}^{\lambda} P_{l}^{\lambda}(\mathbf{K}).$$

Proof of (iii). We show that for every integer $n \ge 3$ there are an automaton $\mathbf{B} \in (B, Y, \delta') \in \mathbf{P}_{i}^{\lambda}(\mathbf{K})$ and a subset $B' = \{b_{1}, \dots, b_{n}\} \subseteq B$ so that every such permutation of B' which fixes b_{n} can be induced by a word in Y*. Of course, it is enough to prove for transpositions $(b_{s}b_{s+1})$ with $1 \le s \le n-2$. Let $\mathbf{A} \in (A, X, \delta) \in \mathbf{K}$ be an automaton containing a nontrivial cycle, i.e. a

Let $A \in (A, X, \delta) \in K$ be an automaton containing a nontrivial cycle, i.e. a sequence of states 0, 1, ..., p-1 ($p \ge 2$) and input signs $x_1, ..., x_{p-1}, x_0$ with $\delta(0, x_1)=1, ..., \delta(p-2, x_{p-1})=p-1$, $\delta(p-1, x_0)=0$. In the case that p=2 the result follows by the proof of Theorem 2 in [1] (observation due to J. Virágh). Hence we assume p>2.

Define **B** to be the l^{λ} -power $A^{n}(Y, \varphi)$ with

. . . .

$$Y = \{y(k, i, j) | 1 \le k \le n, 0 \le i, j \le p - 1\}$$

and

$$\varphi_t(a, y(k, i, j)) = \begin{cases} x_j & \text{if } t = k \text{ and } a = i, \\ \lambda & \text{otherwise,} \end{cases}$$

where $1 \leq t \leq n$, $a \in A$, $y(k, i, j) \in Y$.

Put

 $b_t = 0^{t-1} 1 0^{n-t}$

t=1, ..., n. (We use the shorthand $a_1...a_n$ for the elements of B.) Fix an integer s, $1 \le s \le n-2$. In five steps we shall construct a word $u=u_1...u_5 \in Y^*$ such that

$$\delta'(b_t, u) = b_t \quad \text{if} \quad t \neq s, \ s+1,$$

$$\delta'(b_s, u) = b_{s+1},$$

$$\delta'(b_{s+1}, u) = b_s.$$

(The construction is indicated in the Figure for p=3, n=6 and s=3. Blank entries are meant 0.)

Step 1.

$$u_{1} = y(s+1, 1, 1) \dots y(s+1, 1, p-1) \cdot y(s+2, p-1, 1) \dots y(s+2, p-1, p-1) \cdot y(s+2, p-1, p-1) \cdot y(n, p-1, 1) \dots y(n, p-1, p-1) \cdot y(1, p-1, 1) \dots y(n, p-1, p-1) \cdot y(s-1, p-1, 1) \dots y(s-1, p-1, p-1) \cdot y(s, p-1, 2) \dots y(s, p-1, p-1).$$

46

We have

$$\delta(b_t, u_1) = b_t \quad \text{if} \quad t \neq s,$$

$$\delta(b_s, u_1) = (p-1)^n.$$

Step 2.

$$u_2 = y(s+3, 1, 1) \dots y(n, 1, 1) \cdot y(1, 1, 1) \dots y(s, 1, 1).$$

We have

$$\begin{split} \delta(b_1, u_1 u_2) &= 1^{s-1} 100^{n-s-1} \\ \delta(b_2, u_1 u_2) &= 01^{s-2} 100^{n-s-1} \\ \vdots \\ \delta(b_{s-1}, u_1 u_2) &= 0^{s-2} 1100^{n-s-1} \\ \delta(b_s, u_1 u_2) &= (p-1)^{s-1} (p-1)(p-1)(p-1)^{n-s-1} \\ \delta(b_{s+1}, u_1 u_2) &= 0^{s-1} 010^{n-s-1} \\ \delta(b_{s+2}, u_1 u_2) &= 1^{s-1} 101^{n-s-1} \\ \delta(b_{s+3}, u_1 u_2) &= 1^{s-1} 1001^{n-s-2} \\ \vdots \\ \delta(b_n, u_1 u_2) &= 1^{s-1} 100^{n-s-2} 1. \end{split}$$

Step 3.

$$u_{3} = y(s+1, 0, 2) \dots y(s+1, 0, p-1) y(s+1, 0, 0) \cdot$$

$$y(s+1, p-1, 0) y(s+1, p-1, 1) y(s, 0, 1) y(s, p-1, 0) \cdot$$

$$\delta(b_{t}, u_{1} u_{2} u_{3}) = (b_{t}, u_{1} u_{2}), \quad t \neq s, s+1,$$

$$\delta(b_{s}, u_{1} u_{2} u_{3}) = (p-1)^{s-1} 01 (p-1)^{n-s-1}$$

$$\delta(b_{s+1}, u_{1} u_{2} u_{3}) = 0^{s-1} 100^{n-s-1}.$$

Step 4.

 $u_4 = y(s-1, p-1, 0) \dots y(1, p-1, 0) \cdot y(n, p-1, 0) \cdot y(s+3, p-1, 0) y(s+2, 1, 0) \cdot y(s+2, 1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot y(s+3, p-1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot y(s+3, p-1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot y(s+2, 1, 0) \cdot z(s+3, p-1, 0) \cdot z(s+$

We have

We have

Step 5.

$$u_{5} = y(s, 1, 2) \dots y(s, 1, p-1) y(s, 1, 0) \cdot \\ \vdots \\ y(1, 1, 2) \dots y(1, 1, p-1) y(1, 1, 0) \cdot \\ y(n, 1, 2) \dots y(n, 1, p-1) y(n, 1, 0) \cdot \\ \vdots \\ y(s+3, 1, 2) \dots y(s+3, 1, p-1) y(s+3, 1, 0) \cdot \\ \delta(b_{t}, u) = b_{t}, \quad t \neq s, s+1, \\ \delta(b_{s}, u) = b_{s+1}, \\ \delta(b_{s+1}, u) = b_{s}.$$

This ends the proof.

We obtained:

BOLYAI INSTITUTE A. JÓZSEF UNIVERSITY ARADI V. TERE 1 SZEGED, HUNGARY H—6720

References

- [1] DÖMÖSI, P. and IMREH, B., On v_i-products of automata, Acta Cybernet., 6 (1983), 149–162.
- [2] ÉSIK, Z. and Dömösi, P., Complete classes of automata for the α₀-product, Theoret. Comput. Sci., 47 (1986), 1-14.
- [3] ÉSIK, Z. and VIRÁGH, J., On products of automata with identity, Acta Cybernet., 7 (1986), 299-311.

(Received Feb. 10, 1986).