Loop products and loop-free products

Z. Ésık

We introduce loop products of automata and show that, in the presence of input signs inducing the identity state transformation, loop products followed by loop-free products, (i.e. α_{0}-products) are just as stong as the most general product. See [3] for notations and unexplained concepts. Most recent results on α_{0}-products can be found in [2].

Take a g^{*}-product $\mathbf{A}=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)$ of automata $\quad \mathbf{A}_{t}=\left(A_{t}, X_{t}, \delta_{t}\right)$, $t=1, \ldots, n, n \geqq 0$. We call \mathbf{A} an l^{*}-product (i.e. generalized loop product) if for every $t>1, \varphi_{t}\left(a_{1}, \ldots, a_{n}, x\right) \quad\left(\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}, x \in X\right)$ only depends on x and a_{t-1}, and φ_{1} only depends on a_{n} and x. In the special case that $\varphi_{t}\left(a_{1}, \ldots, a_{n}, x\right) \in$ $\in X \cup\{\lambda\}\left(\varphi_{t}\left(a_{1}, \ldots, a_{n}, x\right) \in X\right)$ we speak about an l^{λ}-product (l-product, i.e., loop product).

Let \mathbf{K} be a class of automata. We put
$\mathbf{P}_{l}^{*}(\mathbf{K})$: all l^{*}-products of automata from \mathbf{K},
$\mathbf{P}_{l}^{\lambda}(\mathbf{K})$: all l^{λ}-products of automata from \mathbf{K},
$\mathbf{P}_{l}(\mathbf{K})$: all l-products of automata from \mathbf{K}.
Further, we write $\mathbf{P}_{\mathbf{l l}}^{*}(\mathbf{K})\left(\mathbf{P}_{\mathbf{1 l}}^{\lambda}(\mathbf{K}), \mathbf{P}_{\mathbf{1 l}}(\mathbf{K})\right.$) for the class of all l^{*}-products (l^{2}-products, l-products) with a single factor of automata from K.

Our result is the following statement.
Theorem. $\mathbf{H S P}_{\alpha_{0}} \mathbf{P}_{l}^{\lambda}(\mathbf{K})=\mathbf{H S P}_{\alpha_{0}} \mathbf{P}_{l}^{*}(\mathbf{K})=\mathbf{H S P}_{g}^{*}(\mathbf{K})$ for every class K.
Proof. The inclusions from left to right are obvious. To see that

$$
\mathbf{H S P}_{g}^{*}(\mathbf{K}) \subseteq \mathbf{H S P}_{\alpha_{0}} P_{l}^{\lambda}(\mathbf{K})
$$

by $\quad \mathbf{P}_{\alpha_{0}}^{\lambda}(\mathbf{K})=\mathbf{P}_{\alpha_{0}}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathbf{K})$, it suffices to show that $\mathbf{H S P}_{g}^{*}(\mathbf{K}) \subseteq \mathbf{H S P}_{\alpha_{0}}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathbf{K})$.
If K contains only monotone automata, then $\mathbf{H S P}_{g}^{*}(\mathbf{K})=\mathbf{I S P}_{\boldsymbol{a}_{0}}^{\lambda_{0}}(\mathbf{K})$ by the proof of Theorem 4 in [3] and the inclusion holds. Suppose that K contains an automaton which is not cycle-free. We claim that $\mathbf{H S P}_{\alpha_{0}}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathbf{K})$ is the class of all automata. To this, by Corollary 2 in [3], we have to show the following:
(i) $\mathbf{P}_{l}^{\lambda}(\mathbf{K})$ is not counter-free.
(ii) $\mathbf{A}_{0} \in \mathbf{H S P}_{\alpha_{0}}^{\lambda} \mathbf{P}_{l}^{\lambda}(\mathrm{K})$.
(iii) For every finite simple group G there exists an automaton $\mathbf{A} \in \mathbf{P}_{i}^{\lambda}(\mathbf{K})$ such that G is a homomorphic image of a subgroup of $S(A)$.

Proof of (i). There is an automaton $\mathbf{A} \in \mathbf{K}$ containing a nontrivial cycle, i.e., a cycle with length $n>1$. Obviously, a counter with length n is in $\mathbf{S P}_{\mathbf{1 k}}(\mathbf{K})$, therefore, $\mathbf{P}_{i}^{\lambda}(\mathbf{K})$ is not counter-free.

Proof of (ii). By Lemma 3 in [3], $\mathbf{A}_{0} \in \operatorname{HSP}_{\alpha_{1}}^{\lambda}(\mathrm{K})$. However,

$$
\mathbf{H S P}_{a_{1}}^{\lambda}(\mathbf{K})=\mathbf{H S P}_{a_{0}}^{\lambda} \mathbf{P}_{1 a_{1}}^{\lambda}(\mathbf{K})=\mathbf{H S P}_{a_{0}}^{\lambda} P_{1 l}^{\lambda}(K) \subseteq \mathbf{H S P}_{a_{0}}^{\lambda} \mathbf{P}_{l}^{\lambda}(K)
$$

Proof of (iii). We show that for every integer $n \geqq 3$ there are an automaton $\mathbf{B} \in\left(B, Y, \delta^{\prime}\right) \in \mathbf{P}_{i}^{\lambda}(\mathrm{K})$ and a subset $B^{\prime}=\left\{b_{1}, \ldots, b_{n}\right\} \subseteq B$ so that every such permutation of B^{\prime} which fixes b_{n} can be induced by a word in Y^{*}. Of course, it is enough to prove for transpositions ($b_{s} b_{s+1}$) with $1 \leqq s \leqq n-2$.

Let $\mathbf{A} \in(A, X, \delta) \in \mathbf{K}$ be an automaton containing a nontrivial cycle, i.e. a sequence of states $0,1, \ldots, p-1(p \geqq 2)$ and input signs $x_{1}, \ldots, x_{p-1}, x_{0}$ with $\delta\left(0, x_{1}\right)=1, \ldots, \delta\left(p-2, x_{p-1}\right)=p-1, \quad \delta\left(p-1, x_{0}\right)=0$. In the case that $p=2$ the result follows by the proof of Theorem 2 in [1] (observation due to J. Virágh). Hence we assume $p>2$.

Define \mathbf{B} to be the l^{λ}-power $\mathbf{A}^{n}(Y, \varphi)$ with

$$
Y=\{y(k, i, j) \mid 1 \leqq k \leqq n, \quad 0 \leqq i, j \leqq p-1\}
$$

and

$$
\begin{gathered}
\varphi_{t}(a, y(k, i, j))= \begin{cases}x_{j} & \text { if } t=k \quad \text { and } a=i, \\
\lambda & \text { otherwise },\end{cases} \\
\text { where } \quad 1 \leqq t \leqq n, \quad a \in A, \quad y(k, i, j) \in Y .
\end{gathered}
$$

Put

$$
b_{t}=0^{t-1} 10^{n-t}
$$

$t=1, \ldots, n$. (We use the shorthand $a_{1} \ldots a_{n}$ for the elements of B.) Fix an integer $s, 1 \leqq s \leqq n-2$. In five steps we shall construct a word $u=u_{1} \ldots u_{5} \in Y^{*}$ such that

$$
\begin{gathered}
\delta^{\prime}\left(b_{t}, u\right)=b_{t} \text { if } t \neq s, s+1, \\
\delta^{\prime}\left(b_{s}, u\right)=b_{s+1} \\
\delta^{\prime}\left(b_{s+1}, u\right)=b_{s} .
\end{gathered}
$$

(The construction is indicated in the Figure for $p=3, n=6$ and $s=3$. Blank entries are meant 0 .)

Step 1.

$$
\begin{aligned}
u_{1}= & y(s+1,1,1) \ldots y(s+1,1, p-1) . \\
& y(s+2, p-1,1) \ldots y(s+2, p-1, p-1) . \\
& \vdots \\
& y(n, p-1,1) \ldots y(n, p-1, p-1) . \\
& y(1, p-1,1) \ldots y(n, p-1, p-1) . \\
& \vdots \\
& y(s-1, p-1,1) \ldots y(s-1, p-1, p-1) . \\
& y(s, p-1,2) \ldots y(s, p-1, p-1) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \delta\left(b_{t}, u_{1}\right)=b_{t} \text { if } t \neq s, \\
& \delta\left(b_{s}, u_{1}\right)=(p-1)^{n} .
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
u_{2}= & y(s+3,1,1) \ldots y(n, 1,1) . \\
& y(1,1,1) \ldots y(s, 1,1) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \delta\left(b_{1}, u_{1} u_{2}\right)=1^{s-1} 100^{n-s-1} \\
& \delta\left(b_{2}, u_{1} u_{2}\right)=01^{s-2} 100^{n-s-1} \\
& \quad \vdots \\
& \delta\left(b_{s-1}, u_{1} u_{2}\right)=0^{s-2} 1100^{n-s-1} \\
& \delta\left(b_{s}, u_{1} u_{2}\right)=(p-1)^{s-1}(p-1)(p-1)(p-1)^{n-s-1} \\
& \delta\left(b_{s+1}, u_{1} u_{2}\right)=0^{s-1} 010^{n-s-1} \\
& \delta\left(b_{s+2}, u_{1} u_{2}\right)=1^{s-1} 101^{n-s-1} \\
& \delta\left(b_{s+3}, u_{1} u_{2}\right)=1^{s-1} 1001^{n-s-2} \\
& \quad \vdots \\
& \delta\left(b_{n}, u_{1} u_{2}\right)=1^{s-1} 100^{n-s-2} 1 .
\end{aligned}
$$

Step 3.

We have

$$
\begin{aligned}
u_{3}= & y(s+1,0,2) \ldots y(s+1,0, p-1) y(s+1,0,0) \\
& y(s+1, p-1,0) y(s+1, p-1,1) y(s, 0,1) y(s, p-1,0)
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(b_{t}, u_{1} u_{2} u_{3}\right)=\left(b_{t} ; u_{1} u_{2}\right), \quad t \neq s, s+1, \\
& \delta\left(b_{s}, u_{1} u_{2} u_{3}\right)=(p-1)^{s-1} 01(p-1)^{n-s-1} \\
& \delta\left(b_{s+1}, u_{1} u_{2} u_{3}\right)=0^{s-1} 100^{n-s-1}
\end{aligned}
$$

Step 4.

We have

$$
\begin{aligned}
u_{4}= & y(s-1, p-1,0) \ldots y(1, p-1,0) \\
& y(n, p-1,0) \ldots y(s+3, p-1,0) y(s+2,1,0) .
\end{aligned}
$$

$$
\delta\left(b_{t}, u_{1} u_{2} u_{3} u_{4}\right)=\delta\left(b_{t}, u_{1} u_{2} u_{3}\right), \quad t \neq s
$$

$$
\delta\left(b_{s}, u_{1} u_{2} u_{3} u_{4}\right)=0^{s-1} 010^{n-s-1}
$$

Step 5.

$$
\begin{aligned}
u_{5}= & y(s, 1,2) \ldots y(s, 1, p-1) y(s, 1,0) \\
& \vdots \\
& y(1,1,2) \ldots y(1,1, p-1) y(1,1,0) \\
& y(n, 1,2) \ldots y(n, 1, p-1) y(n, 1,0) \\
& \vdots \\
& y(s+3,1,2) \ldots y(s+3,1, p-1) y(s+3,1,0) .
\end{aligned}
$$

We obtained:

$$
\begin{aligned}
& \delta\left(b_{t}, u\right)=b_{t}, \quad t \neq s, s+1, \\
& \delta\left(b_{s}, u\right)=b_{s+1} \\
& \delta\left(b_{s+1}, u\right)=b_{s} .
\end{aligned}
$$

This ends the proof.

BOLYAI INSTITUTE
A. JOZSEF UNIVERSITY

ARADI V. TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Dömösi, P. and Imreh, B., On v_{i}-products of automata, Acta Cybernet., 6 (1983), 149-162.
[2] Ésix, Z. and Dömösi, P., Complete classes of automata for the α_{0}-product, Theoret. Comput. Sci., 47 (1986), 1-14.
[3] Ésik, Z. and Virígh, J., On products of automata with identity, Acta Cybernet., 7 (1986), 299_ 311.
(Received Feb. 10, 1986).

