Results on compositions of deterministic root-to-frontier tree transformations

Z. FÜLöp and S. VÁgVölgyi

Introduction

In this paper we examine the class of deterministic root-to-frontier tree transformations ($\mathscr{D} \mathscr{R}$) and some of its usual subclasses such as linear, nondeleting, homomorphism and so on. We present some equalities and inclusions between the compositions of different classes and, as an application, show that $\mathscr{D} \mathscr{R}^{2}=\mathscr{D} \mathscr{R}^{n}$ foreeach; $n \geqq 2$.

We also study all the classes which can be written in the form $\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}$ where each \mathscr{K}_{i} is $\mathscr{D} \mathscr{R}$ or one of its subclasses. We pick out a finite number of these classes and show that every class $\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}$ either equals to one of them or has a rather special form.

1. Notions and notations

For an arbitrary set Y, we denote by $|Y|$ and $\mathscr{P}(Y)$ the cardinality and the power set of Y, respectively. If Y is a singleton, then we identify it with its unique element. Y^{*} is the free monoid generated by Y with empty word λ.

The set of nonnegative integers is denoted by N. For every $n \in N,[n]$ denotes the set $\{1, \ldots, n\}$, especially $[0]=\emptyset$.

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set and $v: F \rightarrow N$ is the arity function. Elements of F are considered as operational symbols; more exactly, if $f \in F$ and $v(F)=n$ then f is an n-ary operational symbol. We use the notation $F=\bigcup_{n \in N} F_{n}$ where the sets $F_{n}=v^{-1}(n)$ are pairwise disjoint.

Now let F be a ranked alphabet and Y a set. The set of all terms or trees over Y of type F is defined as the smallest set $T_{F}(Y)$ satisfying
(a) $Y \cup F_{0} \subseteq T_{F}(Y)$ and,
(b) $f\left(p_{1}, \ldots, p_{n}\right) \in T_{F}(Y)$ whenever $f \in F_{n}(n \in N)$ and $p_{i} \in T_{F}(Y)$ ($\left.i \in[n]\right)$.

If $Y=\emptyset$ then $T_{F}(Y)$ is simply written as T_{F}.
We define the height $h(p) \in N$, frontier $f r(p) \subseteq Y^{*}$ and the set of subtrees $\operatorname{sub}(p) \subseteq T_{F}(Y)$ of a tree $p \in T_{F}(Y)$ by induction:
(a) if $p \in F_{0}$ then $h(p)=0, f r(p)=\lambda$ and $\operatorname{sub}(p)=\{p\}$;
(b) if $p \in Y$ then $h(p)=0, f r(p)=p$ and $\operatorname{sub}(p)=\{p\}$;
(c) if $p=f\left(p_{1}, \ldots, p_{n}\right)$ then $h(p)=1+\max \left\{h\left(p_{i}\right) \mid i \in[n]\right\}, f r(p)=f r\left(p_{1}\right) \ldots f r\left(p_{n}\right)$ and $\operatorname{sub}(p)=\bigcup_{i \in[p]} \operatorname{sub}\left(p_{i}\right) \cup\{p\}$.
We shall need a countably infinite set $X=\left\{x_{1}, x_{2}, \ldots\right\}$, elements of which are considered as auxiliary variables. The set of the first n elements x_{1}, \ldots, x_{n} of X is denoted by X_{n}.

Letting $Y=X_{n}$ we have the set $T_{F}\left(X_{n}\right)$. Here, the elements of X_{n} can be used to point out places in the frontier of a tree $p \in T_{F}\left(X_{n}\right)$. There is a distinguished subset $\hat{T}_{F}\left(X_{n}\right)$ of $T_{F}\left(X_{n}\right)$ defined as follows: $\dot{p} \in \hat{T}_{F}\left(X_{n}\right)$ iff $p \in T_{F}\left(X_{n}\right)$ and $f r(p)$ is a permutation of X_{n}, in other words, each element of X_{n} appears exactly once in p.

Now let $p \in T_{F}\left(X_{n}\right)$ and $y_{1}, \ldots, y_{n} \in Y$. We denote by $p\left(y_{1}, \ldots, y_{n}\right)$ the tree obtained by substituting all the occurrences of x_{i} in p by y_{i} for each $i \in[n]$. Note that $p\left(y_{i}, \ldots, y_{n}\right)$ is an element of $T_{F}(Y)$.

By a tree transformation τ we mean a relation from T_{F} to T_{G} where F and G are arbitrary ranked alphabets, that is we have $\tau \subseteq F_{F} \times T_{G}$. In this way, the identical relation $\iota_{F}=\left\{(p, p) \mid p \in T_{F}\right\}$ is clearly a tiree transformation. The class of all identical tree transformations is denoted by \mathscr{I}. The restriction $\tau \mid T$ of τ to a subset T of T_{F} is defined by

$$
\tau \mid T=\{(p, q) \mid(p, q) \in \tau \quad \text { and } \quad p \in T\}
$$

For any tree transformations $\tau \subseteq T_{F} \times T_{G}$ and $\sigma \subseteq T_{G} \times T_{H}$ the domain (dom τ) range (range τ) of τ and the composition ($\tau \circ \sigma$) of τ and σ are defined as usual in the case of relations.

Let \mathscr{K}_{1} and \mathscr{K}_{2} be two classes of tree transformations. By their composition $\mathscr{K}_{1} \circ \mathscr{K}_{2}$ we mean $\left\{\tau_{1} \circ \tau_{2} \mid \tau_{1} \in \mathscr{K}_{1}\right.$ and $\left.\tau_{2} \in \mathscr{K}_{2}\right\}$. For any class \mathscr{K} of tree transformations and $n \in N$ we put $\mathscr{K}^{n}=\mathscr{K}$ if $n=1$ and $\mathscr{K}^{n}=\mathscr{K}^{n-1} \circ \mathscr{K}$ if $n>1$. We say that \mathscr{K} is closed under composition if $\mathscr{K}^{2} \subseteq \mathscr{H}$ holds. If $\mathscr{I} \subseteq \mathscr{K}$, as with most of the reasonable classes \mathscr{K}, then obviously $\mathscr{K}^{2} \subseteq \mathscr{K}$ iff $\mathscr{K}^{2}=\mathscr{K}$.

In this paper we are interested only in tree transformations which can be induced by deterministic root-to-frontier tree transducers.

By a deterministic root-to-frontier tree transducer (or shortly $D R$ transducer) we mean a system

$$
\begin{equation*}
\mathfrak{A}=\left(F, A, G, P, a_{0}\right), \quad \text { where } \tag{1}
\end{equation*}
$$

(a) F and G are ranked alphabets;
(b) A is a ranked alphabet - disjoint with F and G - consisting of unary operational symbols, the state set of \mathfrak{X};
(c) a_{0} is a distinguished element of A, the initial state;
(d) P is a finite set of productions (or rewriting rules) of the form

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{m}\right) \rightarrow q \tag{2}
\end{equation*}
$$

where $a \in A, m \geqq 0, f \in F_{m}$ and $q \in T_{G}\left(A \times X_{m}\right)$. To guarantee \mathfrak{M} a deterministic behaviour, any two different productions of P are required to have different left-hand sides.
Throughout the paper terms of the form $a(p)$ ($a \in A$ and p is a term) are written simply as ap. If we need to specify a production (2) in a more detailed form, then we can write (2) as

$$
\begin{equation*}
a f\left(x_{1}, \ldots, \dot{x}_{m}\right) \rightarrow \bar{q}\left(a_{1} x_{i_{1}}, \ldots, a_{n} x_{i_{n}}\right) \tag{3}
\end{equation*}
$$

for a suitable $n \geqq 0, \bar{q} \in \hat{T}_{G}\left(X_{n}\right), a_{j} \in A, x_{i} \in X_{m}(j \in[n])$, or as

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{m}\right) \rightarrow \bar{q}\left(a_{1_{1}} x_{1}, \ldots, a_{1_{n_{1}}} x_{1}, \ldots, a_{m_{1}} x_{m}, \ldots, a_{m_{n_{m}}} x_{m}\right) \tag{4}
\end{equation*}
$$

for some $n_{i} \geqq 0, a_{i j} \in A,\left(i \in[m], j \in\left[n_{i}\right]\right)$ and $\bar{q} \in \hat{T}_{G}\left(X_{n}\right)$ where $n=n_{1}+\ldots+n_{m}$.
Productions of P can be used to transform (or rewrite) terms of $A \times T_{F}$ to terms of T_{G}, by defining the relation \Rightarrow (called direct derivation) on the set $T_{G}\left(A \times T_{F}(X)\right)$ in the following way: for $p, q \in T_{G}\left(A \times T_{F}(X)\right)$ we say that $p \Rightarrow q$ iff q can be obtained from p by replacing an occurrence of a subtree $a f\left(p_{1}, \ldots, p_{m}\right)$ of p by the tree $\bar{q}\left(a_{1} p_{i_{1}}, \ldots, a_{n} p_{i_{n}}\right)$ provided the rule (3) is in P. Denoting the reflexive-transitive closure (i.e. the iterated application) of the direct derivation by $\underset{\mathfrak{a}}{\underset{\sharp}{*}}$, the tree transformation $\tau_{\mathfrak{M}(a)}$ induced by \mathfrak{H} with state $a \in A$ is defined by

$$
\tau_{\mathrm{ql}(a)}=\left\{(p, q) \mid p \in T_{F}, q \in T_{G} \quad \text { and } \quad a p \underset{\mathbb{\exists}}{*} q\right\} .
$$

By the tree transformation $\tau_{\mathfrak{g}}$ induced by \mathfrak{A} we mean $\tau_{\mathfrak{A l}\left(a_{0}\right)}$, i.e.,

$$
\tau_{\mathfrak{I}}=\left\{(p, q) \mid p \in T_{F}, q \in T_{G} \quad \text { and } \quad a_{0} p \stackrel{*}{\rightrightarrows} q\right\} .
$$

We say that a tree transformation $\tau \subseteq T_{F} \times T_{G}$ can be induced by a $D R$ transducer if $\tau=\tau_{\mathscr{I}}$ for some $D R$ transducer \mathfrak{A}.

Next we introduce some restrictions on $D R$ transducers. A $D R$ transducer (1) is totally defined if for each $a \in A$ and $f \in F$ there is a rule (2) in P. (1) is called a homomorphism (H) transducer if it is totally defined and has only one state, i.e. $A=$ $=\left\{a_{0}\right\}$. Moreover, we say that (1) is
(a) linear (L) if for every rule (4) of P and $i \in[m], n_{i} \leqq 1$,
(b) nondeleting (N) if for each rule (4) of P and $i \in[m], n_{i} \geqq 1$,
(c) linear nondeleting ($L N$) if it is both linear and nondeleting.

The subclasses L, N and $L N$ of H transducers are defined in a similar way.
If K is some subclass of the class of all $D R$ transducers defined above, then the class of all tree transformations that can be induced by K transducers is denoted by \mathscr{K}. For example $\mathscr{L} \mathscr{D} \mathscr{R}$ denotes the class of all tree transformations that can be induced by $L D R$ transducers. Finally, we present a diagram showing the inclusion relations among the classes $\mathscr{D} \mathscr{R}, \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{H}, \mathscr{N} \mathscr{H}, \mathscr{L} \mathscr{H}, \mathscr{I}$.

2. Equalities and inclusions

By one of the earlier results $\mathscr{D} \mathscr{R}$ is not closed under composition (see [4]). This means that, in general, we cannot give a $D R$ transducer \mathbb{C}, for any two $D R$ transducers \mathfrak{H} and \mathfrak{B} such that $\tau_{\mathbb{C}}=\tau_{\mathfrak{g}} \circ \tau_{\mathfrak{B}}$. However, we can define a $D R$ transducer $\mathfrak{H} \circ \mathfrak{B}$ called the syntactic composition of \mathfrak{A} and \mathfrak{B} with a series of useful properties. This was also stated, in an implicit form, in [3].

Definition 1. Let $\mathfrak{U}=\left(F, A, G, P, a_{0}\right)$ and $\mathfrak{B}=\left(G, B, H, P^{\prime}, b_{0}\right)$ be $D R$ transducers. By the syntactic composition of \mathfrak{H} and \mathfrak{B} we mean the $D R$ transducer $\mathfrak{H} \circ \mathfrak{B}=$ $=\left(\dot{F}, B \times A, H, P^{\prime \prime},\left(b_{0}, a_{0}\right)\right)$ where $P^{\prime \prime}$ is defined in the following manner: the rule

$$
\begin{array}{r}
(b, a) f\left(x_{1}, \ldots, x_{m}\right) \rightarrow q^{\prime}\left(\left(b_{1_{1}}, a_{1}\right) x_{i_{1}}, \ldots,\left(b_{1_{v_{1}}}, a_{1}\right) x_{i_{1}}, \ldots,\right. \\
\left.\left(b_{n_{1}}, a_{n}\right) x_{i_{n}}, \ldots,\left(b_{n_{v_{n}}}, a_{n}\right) x_{i_{n}}\right)
\end{array}
$$

is in $P^{\prime \prime}$ for some $v_{j} \in N, b_{j_{k}} \in B,\left(j \in[n], k \in\left[v_{j}\right]\right)$ and $q^{\prime} \in T_{G}\left(X_{v}\right)\left(v=v_{1}+\ldots+v_{n}\right)$ if and only if there is a rule (3) in P and a state $b \in B$ with

$$
b \bar{q} \underset{\underset{刃 y}{*}}{\stackrel{*}{\Rightarrow}} q^{\prime}\left(b_{1_{1}} x_{1}, \ldots, b_{1_{v_{1}}} x_{1}, \ldots, b_{n_{1}} x_{n}, \ldots, b_{n_{v_{n}}} x_{n}\right) .
$$

(We let \mathfrak{B} work on \bar{q} as long as it can.)
Lemma 2. Under the notations of the above definition, for any $a \in A, b \in B$, $p \in T_{F}$ and $q \in T_{H}$

$$
\begin{equation*}
\left(\exists r \in T_{G}\right)(a p \underset{\mathfrak{A}}{*} r \wedge b r \underset{\mathfrak{B}}{*} q) \Rightarrow(b, a) p \underset{\mathfrak{A O B}}{\stackrel{*}{\Rightarrow}} q \tag{5}
\end{equation*}
$$

The proof, as usual, can easily be performed by induction on $h(p)$.
Now we can make the following observations.
(a) We cannot converse (5) because \mathfrak{B} may be deleting, therefore there may be a tree $p \in T_{F}$ such that $\mathscr{H} \circ \mathfrak{B}$ can transform p to a tree $q \in T_{H}$ by deleting some subtree p^{\prime} of p but \mathfrak{A} can not transform p^{\prime} with any state $a \in A$. Thus p may be in dom $\tau_{\mathfrak{U}_{\circ \mathfrak{B}}}$ but not in dom $\tau_{\mathfrak{g}}$ hence not even in dom ($\tau_{\mathfrak{g}} \circ \tau_{\mathfrak{g}}$). It can be seen that we can eliminate this problem by requiring \mathfrak{H} to be totally defined (see also in [4]) or \mathfrak{B} to be nondeleting.
(b) Moreover, (5) can also be conversed if p is in dom $\tau_{\text {II }}$ since in this case \mathfrak{H} can always transform p^{\prime} with some state $a \in A$.
(c) $\mathfrak{A} \circ \mathfrak{B}$ inherits any property \mathfrak{A} and \mathfrak{B} have, where property means one of the following: completely defined, one-state, $L, N, L N$.

We give a summary of the above observations:
Lemma 3. For any $D R$ transducers \mathfrak{A} and \mathfrak{B} the following hold:
(a) if \mathfrak{H} is totally defined or \mathfrak{B} is nondeleting then $\tau_{\mathscr{I} \circ \mathfrak{B}}=\tau_{\mathscr{A}} \circ \tau_{\mathfrak{B}}$,
(b) $\tau_{\mathfrak{I f} \circ \mathfrak{G}} /$ dom $\tau_{\mathfrak{I I}}=\tau_{\mathfrak{A}} \circ \tau_{\mathfrak{B}}$,
(c) if \mathfrak{U} and \mathfrak{B} are x then $\mathfrak{H} \circ \mathfrak{B}$ is also x where $x=$ completely defined, onestate, $L, N, L N$.

From the above lemma we have a series of equalities some of which were stated in different works.

$$
\begin{align*}
& \mathscr{H} \circ \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R} \tag{6}\\
& \mathscr{L} \mathscr{H} \circ \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R} \tag{11}\\
& \mathscr{N} \mathscr{H} \circ \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R} \\
& \mathscr{L} \mathscr{H} \circ \mathscr{L} \mathscr{D} \mathscr{R}=\mathscr{L} \mathscr{D} \mathscr{R} \tag{14}\\
& \mathscr{N} \mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R}=\mathscr{N} \mathscr{D} \mathscr{R} \tag{10}\\
& \text { (7) } \quad \mathscr{H} \circ \mathscr{N} \mathscr{H}=\mathscr{H} \tag{12}\\
& \text { (8) } \quad \mathscr{H} \circ \mathscr{L} \mathscr{H}=\mathscr{H} \tag{13}\\
& \mathscr{N} \mathscr{H} \circ \mathscr{H}=\mathscr{H} \tag{9}\\
& \mathscr{L} \mathscr{H} \circ \mathscr{H}=\mathscr{H} \tag{15}\\
& \mathscr{N} \mathscr{H} \circ \mathscr{N} \mathscr{H}=\mathscr{N} \mathscr{H} \tag{16}\\
& \mathscr{L} \mathscr{H} \circ \mathscr{L} \mathscr{H}=\mathscr{L} \mathscr{H} \tag{17}
\end{align*}
$$

These follow from the fact that an $H(L H, N H)$ transducer is always completely defined.

Moreover, we also obtain

$$
\begin{align*}
\mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{D} \mathscr{R} & =\mathscr{D} \mathscr{R} \tag{18}\\
\mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} & =\mathscr{D} \mathscr{R} \tag{19}\\
\mathscr{D} \circ \mathscr{R} \mathscr{H} & =\mathscr{D} \mathscr{R} \tag{20}\\
\mathscr{N} \mathscr{D} \circ \mathscr{N} \mathscr{D} \mathscr{R} & =\mathscr{N} \mathscr{D} \mathscr{R} \tag{21}\\
\mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{N} \mathscr{R} & =\mathscr{N} \mathscr{D} \mathscr{R} \tag{22}\\
\mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H} & =\mathscr{N} \mathscr{D} \mathscr{R} \tag{23}\\
\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} & =\mathscr{L} \mathscr{D} \mathscr{R} \tag{24}\\
\mathscr{L} \mathscr{N} \mathscr{D} \circ \mathscr{R} \circ \mathscr{N} \mathscr{R} & =\mathscr{N} \mathscr{D} \mathscr{R} \tag{25}\\
\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} & =\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \tag{26}
\end{align*}
$$

Here we used that the second components are all nondeleting.
A frequently quoted equality is

$$
\begin{equation*}
\mathscr{H} \circ \mathscr{L} \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R} \tag{27}
\end{equation*}
$$

which can be found in [1] and [2]. From the proof of (27), it turns out that we may also declare it in the form

$$
\begin{equation*}
\mathscr{N} \mathscr{H} \circ \mathscr{L} \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R} \tag{28}
\end{equation*}
$$

moreover, if we consider only H transducers we get

$$
\begin{equation*}
\mathscr{N} \mathscr{H} \circ \mathscr{L} \mathscr{H}=\mathscr{H} \tag{29}
\end{equation*}
$$

By lemma 3, $\mathscr{L} \mathscr{H} \circ \mathscr{N} \mathscr{H} \subseteq \mathscr{H}$ and it is not difficult to see the conversed inclusion shown by the following lemma.

Lemma 4. $\mathscr{H} \cong \mathscr{L} \mathscr{H} \circ \mathscr{N} \mathscr{H}$.

Proof. Let us be given an H transducer $\mathfrak{A}=(F, a, G, P, a)$. Obviously, each production can be taken in the following form:

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{m}\right) \rightarrow q\left(a x_{i_{1}}, \ldots, a x_{i_{n}}\right) \tag{30}
\end{equation*}
$$

where $m \geqq 0, f \in F_{m}, \quad 1 \leqq i_{1}<\ldots<i_{n} \leqq m$ and q is a suitable tree from $T_{G}\left(X_{n}\right)$ containing at least one occurrence of x_{j} for every $j \in[n]$. For each production (30) take a new operational symbol f with arity n and put $\bar{F}=\{\vec{f} \mid f \in F\}$. Now we can introduce the H transducers $\mathfrak{B}=\left(F, b ; \bar{F}, P^{\prime}, b\right)$ and $\mathbb{C}=\left(\bar{F}, c, G, P^{\prime \prime}, c\right)$ as follows: whenever a production (30) is in P let the productions $b f\left(x_{1}, \ldots, x_{m}\right) \rightarrow \vec{f}\left(b x_{i_{1}}, \ldots, b x_{i_{n}}\right)$ and $c f\left(x_{1}, \ldots, x_{n}\right) \rightarrow q\left(c x_{1}, \ldots, c x_{n}\right)$ be in P^{\prime} and $P^{\prime \prime}$, respectively. Clearly, \mathfrak{B} is an $L H$ and \mathbb{C} is an NH transducer, moreover the equivalence

$$
a p \underset{\underset{\boldsymbol{I}}{*}}{\stackrel{*}{\Rightarrow}} q \Leftrightarrow\left(\exists p \in T_{F}\right)(b p \underset{\boldsymbol{\mathcal { B }}}{\stackrel{*}{\Rightarrow}} r \wedge c r \stackrel{*}{\underset{\boldsymbol{\mathcal { E }}}{*}} q)
$$

can be proved, for each $p \in T_{F}$ and $q \in T_{G}$, by induction on $h(p)$. Hence we have our lemma and the equality:

$$
\begin{equation*}
\mathscr{L} \mathscr{H} \circ \mathscr{N} \mathscr{H}=\mathscr{H} . \tag{31}
\end{equation*}
$$

Our next lemma follows from exercise 2 on p. 213 of [3]. This states that dom $\tau_{\mathfrak{A}}$ can always be recognized by some $D R$ recognizer (for definition see also [3]) for any $D R$.transducer \mathfrak{H}. However, we mention that the following correction is needed in the definition of the $D R$ recognizer in [3]: the realisation of an operational symbol of arity 0 must be considered as a subset of the state set and not as an element of it.

Lemma 5. For any given $D R$ transducer $\mathfrak{A}=\left(F, A, G, P, a_{0}\right)$ there exists an $L N D R$ transducer $\mathfrak{H}^{\prime}=\left(F, \mathscr{P}(A), F, P^{\prime},\left\{a_{0}\right\}\right)$ such that $\tau_{\mathscr{2}} \cdot=\boldsymbol{i}_{F} \mid$ dom $\tau_{\mathfrak{A}}$.

Proof. Let P^{\prime} be constructed as follows: for any $B=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathscr{P}(A), m \in N$ and $f \in F_{m}$ the rule $B f\left(x_{1}, \ldots, x_{m}\right) \rightarrow f\left(B_{1} x_{1}, \ldots, B_{m} x_{m}\right)$ is in P^{\prime} if and only if the next conditions hold:
(a) for each $i \in[k]$ there is a production

$$
a_{i} f\left(x_{1}, \ldots, x_{m}\right) \rightarrow q_{i}\left(a_{1_{1}}^{i} x_{1}, \ldots, a_{1_{n_{1}}}^{i} x_{1}, \ldots, a_{m_{1}}^{i} x_{m}, \ldots, a_{m_{n_{m}}}^{i} x_{m}\right)
$$

in P where $n_{1}, \ldots ; n_{m} \geqq 0$ (depend on i), $a_{j_{k}}^{i} \in A$,

$$
\left(j \in[m], k \in\left[n_{j}\right]\right), q_{i} \in \hat{T}_{G}\left(X_{n}\right), \quad\left(n=n_{1}+\ldots+n_{m}\right)
$$

(b)

$$
\dot{B_{j}}=\bigcup_{i \in[n]}\left\{a_{\dot{j}_{1}}^{i}, \ldots, a_{j_{n_{j}}}^{i}\right\}, \quad j \in[m] .
$$

Then we can verify the following statement : for any

$$
\begin{gathered}
B=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathscr{P}(A) \text { and } p \in T_{F} \\
B p \stackrel{*}{\Rightarrow} p \Leftrightarrow(\forall j \in[k])\left(\exists \dot{q} \in T_{G}\right)\left(a_{j} p \stackrel{*}{\Rightarrow} q\right) .
\end{gathered}
$$

Now let \mathfrak{A} and \mathfrak{B} be two arbitrary $D \mathcal{D}$ transducers. Then, by lemmas 3 and 5 we have
from where

$$
\begin{equation*}
\mathscr{D} \mathscr{R}^{2}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R} \tag{32}
\end{equation*}
$$

and, if \mathfrak{A} and \mathfrak{B} are $L D R$ transducers then

$$
\begin{equation*}
\mathscr{L} \mathscr{D} \mathscr{R}^{2}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{D} \mathscr{R} . \tag{33}
\end{equation*}
$$

We are ready to prove one of our main results.
Theorem 6. For any $n \geqq 2$

$$
\begin{gather*}
\mathscr{D} \mathscr{R}^{n}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R} \quad \text { and } \tag{34}\\
\mathscr{L} \mathscr{D} \mathscr{R}^{n}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{D} \mathscr{R} \tag{35}
\end{gather*}
$$

Proof. We follow an induction on n. The case $n=2$ is already proved, the induction step of (34) (and similarly that of (35)) is shown by the following computation:

$$
\mathscr{D} \mathscr{R}^{n+1} \stackrel{(32)}{=} \mathscr{L} \mathscr{N} \mathscr{D} \circ \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R}^{n-1}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R}^{n} \stackrel{\text { i.h. }}{=} \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R} \stackrel{(26)}{=}
$$

$$
\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R} .
$$

Consequence 7. For every $n \geqq 2$

$$
\begin{gather*}
\mathscr{D} \mathscr{R}^{n}=\mathscr{D} \mathscr{R}^{2} \text { and } \tag{36}\\
\mathscr{L} \mathscr{D} \mathscr{R}^{n}=\mathscr{L} \mathscr{D} \mathscr{R}^{2} . \tag{37}
\end{gather*}
$$

We shall also need the following result.

Lemma 8.

$$
\begin{equation*}
\mathscr{D} \mathscr{R} \cong \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \tag{38}
\end{equation*}
$$

Proof. Let $\mathfrak{U}=\left(F, A, G, P, a_{0}\right)$ be a $D R$ transducer. We construct an NDR transducer \mathfrak{B} and an $L H$ transducer \mathbb{C} such that $\tau_{\mathfrak{H}}=\tau_{\mathfrak{G}} \circ \tau_{\mathbb{C}}$. To this end, consider an arbitrary but fixed order of the productions from P and number them from 1 to $|P|$ in the following form

$$
\begin{equation*}
i: a f\left(x_{1}, \ldots, x_{m}\right) \rightarrow \bar{q}\left(a_{1_{1}} x_{1}, \ldots, a_{1_{n_{1}}} x_{1}, \ldots, a_{m_{1}} x_{m}, \ldots, a_{m_{n_{m}}} x_{m}\right), \tag{39}
\end{equation*}
$$

where

$$
n_{j} \geqq 0, a_{j_{k}} \in A,\left(j \in[m], k \in\left[n_{j}\right]\right) \quad \text { and } \quad \bar{q} \in \hat{T}_{G}\left(\dot{X}_{n}\right),
$$

$\left(n=n_{1}+\ldots+n_{m}\right)$. We mention that the symbols used in the specification of the i-th production depend on i. Now, for each $i \in[|P|]$ and $j \in[m]$ define u_{j} by

$$
u_{j}=\left\{\begin{array}{ccc}
n_{j} & \text { if } & n_{j}>0 \\
1 & \text { if } & n_{j}=0
\end{array}\right.
$$

and take a new operational symbol $f_{i} \ddagger F$ with arity $u=u_{1}+\ldots+u_{m}$: Then construct the $D R$ transducer. $\mathfrak{B}=\left(F, A \cup\{b\}, F^{\prime}, P^{\prime}, a_{0}\right)$ where
(a) $F^{\prime}=F \cup\left\{f_{i}|\in| P \mid\right\}$;
(b) $b \notin A$ is a new state;
(c) P^{\prime} is defined as follows: the rule

$$
\begin{equation*}
a f\left(x_{1}, \ldots, x_{m}\right) \rightarrow f_{1}\left(b_{1_{1}} x_{1}, \ldots, b_{1_{u_{1}}}, \ldots, b_{m_{1}} x_{m}, \ldots, b_{m_{u_{m}}} x_{m}\right) \tag{40}
\end{equation*}
$$

is in P^{\prime} iff the conditions
(i) the i-th production of P is of the form (39) and
(ii)

$$
b_{j_{1}}, \ldots, b_{j_{u_{j}}}=\left\{\begin{array}{lll}
a_{j_{1}}, \ldots, a_{j_{n_{j}}} & \text { if } & n_{j}>0 \\
b & \text { if } & n_{j}=0
\end{array} j \in[\mathrm{~m}]\right.
$$

hold, moreover the rule $b f\left(x_{1}, \ldots, x_{m}\right) \rightarrow f\left(b x_{1}, \ldots, b x_{m}\right)$ is in P^{\prime} for each $m \geqq 0, f \in F_{m}$.
Next, introduce the H transducer $\mathfrak{C}=\left(F^{\prime}, c, G, P^{\prime \prime}, c\right)$ where the rule

$$
\begin{equation*}
c f_{i}\left(x_{1}, \ldots, x_{u}\right) \rightarrow \bar{q}\left(c x_{1}, \ldots, c x_{n_{1}}, \ldots, c x_{u_{1}+\ldots+u_{m-1}+1}, \ldots, c x_{u_{1}+\ldots+u_{m-1}+n_{m}}\right) \tag{41}
\end{equation*}
$$

is in $P^{\prime \prime}$ iff the i-th production of P is (39), moreover, to make \mathbb{C} totally defined, let the rule $c f\left(x_{1}, \ldots, x_{m}\right) \rightarrow q$ be in $P^{\prime \prime}$ with an arbitrary $q \in T_{G}\left(\{c\} \times X_{m}\right)$ for each $m \geqq 0$, $f \in F_{m}$.

First note that \mathfrak{B} is nondeleting since $u_{j} \geqq 1,(j \in[m]), \tau_{\mathfrak{B}(b)} \mid T_{F}=l_{\boldsymbol{F}}$ and \mathfrak{C} is linear. To prove $\tau_{\mathfrak{g}}=\tau_{\mathfrak{F}} \circ \tau_{⿷}$ it is enough to show that for each $a \in A, p \in T_{F}$ and $q \in T_{G}$ the equivalence

$$
\begin{equation*}
a p \stackrel{*}{\stackrel{\rightharpoonup}{\mathrm{q}}} q \tag{42}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left(\exists r \in T_{F}\right)(a p \underset{\underset{\mathfrak{g}}{*}}{\stackrel{*}{*}} r \wedge c r \underset{\overrightarrow{\mathbf{c}}}{*} q) \tag{43}
\end{equation*}
$$

holds. We proceed by induction on $h(p)$.
If $h(p)=0$, that is $p=f \in F_{0}$, then $a f \rightarrow q \in P$ iff there exists an $i \in[|P|]$ for which $a f \rightarrow f_{i} \in P^{\prime}$ and $c f_{i} \rightarrow q \in P^{\prime \prime}$. Now let $h(p)>0$, that is $p=f\left(p_{1}, \ldots, p_{m}\right)$, where $m>0$. Suppose that the production applied at the first step of (42) is (39). Then

$$
\begin{equation*}
a_{j_{k}} p_{j} \stackrel{*}{\vec{\imath}} q_{j_{k}} \quad\left(j \in[m], k \in\left[n_{j}\right]\right) . \tag{4}
\end{equation*}
$$

under some $q_{j_{k}} \in T_{G}$ for which $q=\bar{q}\left(q_{1_{1}}, \ldots, q_{n_{n_{2}}}, \ldots, q_{m_{1}}, \ldots, q_{m_{n_{m}}}\right)$ holds. From here, by induction hypothesis we have

$$
\begin{equation*}
\left(\exists r_{j_{k}}^{\prime} \in T_{F}\right)\left(a_{j_{k}} p_{J} \stackrel{*}{\underset{\nrightarrow}{*}} r_{j_{k}^{\prime}}^{\prime} \wedge c r_{j_{k}^{\prime}}^{\prime \stackrel{\rightharpoonup}{\mathbb{G}}} a_{j_{k}}\right) \quad\left(j \in[m], k \in\left[n_{j}\right]\right) \tag{45}
\end{equation*}
$$

moreover, by the construction of \mathfrak{B} and \mathfrak{C}, (40) and (41) are in P^{\prime} and $P^{\prime \prime}$, respectively. Letting

$$
r_{j_{1}}, \ldots, r_{j_{u_{j}}}=\left\{\begin{array}{lll}
r_{1}^{\prime}, \ldots, r_{j_{n_{j}}}^{\prime} & \text { if } & n_{j}>0 \\
p_{j} & \text { if } & n_{j}=0
\end{array} \quad j \in[\mathrm{~m}],\right.
$$

and taking into consideration that $\tau_{\boldsymbol{F}(b) \mid} \mid T_{F}=\boldsymbol{l}_{F}$ we get that

$$
\begin{equation*}
b_{j_{k}} p_{j} \stackrel{*}{\overrightarrow{\mathfrak{y}}} r_{j_{k}}, \quad\left(j \in[m], k \in\left[u_{j}\right]\right) \wedge c r_{j_{k}} \stackrel{*}{\overrightarrow{\boldsymbol{c}}} q_{j_{k}} \quad\left(j \in[m], k \in\left[n_{j}\right]\right) \tag{46}
\end{equation*}
$$

from where (43) follows with

$$
\begin{equation*}
r=f_{i}\left(r_{1_{1}}, \ldots, r_{1_{u_{1}}}, \ldots, r_{m_{1}}, \ldots, r_{m_{u_{m}}}\right) . \tag{47}
\end{equation*}
$$

Conversely, suppose that r in (43) is of the form of (47). Then the productions used in the first step of the derivations of (43) are (40) and (41), respectively. Therefore (39) is in P. Moreover, (46) implies (44), by induction hypothesis, hence we have (42).

We note that if \mathfrak{A} is linear in the above lemma then so is \mathfrak{B}. Hence we also obtain:

Consequence 9.

$$
\begin{equation*}
\mathscr{L} \mathscr{D} \mathscr{R} \subseteq \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \tag{48}
\end{equation*}
$$

Applying our last two results we have two further interesting identities.
Theorem 10. For each $n \geqq 2$

$$
\begin{gather*}
\mathscr{D} \mathscr{R}^{n}=\mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \tag{49}\\
\mathscr{L} \mathscr{D} \mathscr{R}^{n}=\mathscr{L} \mathscr{N} \mathscr{D} \circ \mathscr{L} \mathscr{H} \tag{50}
\end{gather*}
$$

Proof. $\mathscr{D} \mathscr{R}^{n} \stackrel{(34)}{=} \mathscr{L} \mathscr{N} \mathscr{R} \circ \mathscr{D} \mathscr{R} \stackrel{(38)}{\equiv} \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \stackrel{(25)}{=} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H}$ and in the same way we get (50).

By the above results we can easily verify the equality

$$
\begin{equation*}
\mathscr{D} \mathscr{R}^{2}=\mathscr{N} \mathscr{H} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H}, \tag{51}
\end{equation*}
$$

namely, we have $\mathscr{D R}^{2} \stackrel{(49)}{=} \mathscr{N} \mathscr{R} \circ \mathscr{L} \mathscr{H} \subseteq \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \stackrel{(28)}{=} \mathscr{H} \circ \mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \xlongequal{(48)} \stackrel{N}{\mathscr{H}} \circ$ $\mathscr{L} \mathcal{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \circ \mathscr{L} \mathscr{H} \stackrel{(17)}{=} \mathscr{H} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \subseteq \mathscr{D} \mathscr{R}^{3} \stackrel{(36)}{=} \mathscr{D} \mathscr{R}^{2}$.

The equalities (49), (51), (32) are able to produce the class $\mathscr{D} \mathscr{R}^{2}$ as a composition of two or three simpler classes of tree transformations. Using them we obtain some additional presentations for the class $\mathscr{D} \mathscr{R}^{2}$ summarized by the following lemma.

Lemma 11.

(a) For any $\mathscr{X} \in\{\mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{D} \mathscr{R}\}$ and $\mathscr{Y} \in\{\mathscr{L} \mathscr{H}, \mathscr{H}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{D} \mathscr{R}\}$

$$
\begin{equation*}
\mathscr{X} \circ \mathscr{Y}=\mathscr{D}_{\mathscr{R}^{2}} \tag{52}
\end{equation*}
$$

(b) For any $\mathscr{X} \in\{\mathscr{N} \mathscr{H}, \mathscr{N} \mathscr{D} \mathscr{R}\}, \mathscr{Y} \in\{\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{D} \mathscr{R}\}$ and $\mathscr{Z} \in\{\mathscr{L} \mathscr{H}, \mathscr{H}, \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{D} \mathscr{R}\}$

$$
\begin{equation*}
\mathscr{X} \circ \mathscr{Y} \circ \mathscr{Z}=\mathscr{D}_{\mathscr{R}^{2}} \tag{53}
\end{equation*}
$$

(c) $\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{D} \mathscr{R}=\mathscr{D} \mathscr{R}{ }^{2}$
(d) For arbitrary $\mathscr{X} \in\{\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}\}$ and $\mathscr{Y} \in\{\mathscr{L} \mathscr{H}, \mathscr{L} \mathscr{D} \mathscr{R}\}$

$$
\begin{equation*}
\mathscr{X} \circ \mathscr{Y}=\mathscr{L} \mathscr{D} \mathscr{R}^{2} \tag{55}
\end{equation*}
$$

Proof. We prove the case (a) only, since (b), (c) and (d) can be verified in the same way applying (51), (32) and (50), respectively.

$$
\mathscr{D} \mathscr{R}^{2} \stackrel{(49)}{=} \mathcal{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \subseteq \mathscr{X} \circ \mathscr{Y} \subseteq \mathscr{D} \mathscr{R}^{2}
$$

3. On mixed composition of different subclasses

We now investigate the set of all classes of tree transformations being a composition of finitely many ones introduced in Section 1. To be more precise we need some further notions and notations. Let $S=\{\mathscr{D} \mathscr{R}, \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{N} \mathscr{R}, \mathscr{H}, \mathcal{N} \mathscr{H}, \mathscr{L} \mathscr{H}\}$ and denote by $[S]$ the set of all classes of tree transformations generated by S with composition, that is

$$
[S]=\left\{\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n} \mid n \geqq 1, \quad \mathscr{K}_{i} \in S\right\} .
$$

One of the most important questions concerning [S] is that whether [S] is infinite. We know, by consequence 7 , that $\mathscr{C} \subseteq \mathscr{D}_{\mathscr{R}^{2}}$ for any $\mathscr{C} \in[S]$, however, in spite of this, [S] may be infinite. In this paper we do not answer this question, instead, we present a theorem which, we hope, gives a deep insight into the structure of $[S]$.

First define the classes \mathscr{C}_{k} for each $k \geqq 0$ as follows
(a) $\mathscr{C}_{0}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R}$
(b) $\mathscr{C}_{k+1}= \begin{cases}\mathscr{C}_{k} \circ \mathscr{N} \mathscr{H} & \text { if } \quad k=2 m \\ \mathscr{C}_{k} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} & \text { if } \quad k=2 m+1 . \quad(m \geqq 0) ~\end{cases}$

Moreover, we shall use Table 1 in the following sense. Each row and each column of the table is marked by a class of tree transformations. Their composition, in rowcolumn order, is written in the corresponding square of the table. To get the depicted form of this composition, the equalities and inclusions the serial numbers of which appear in the lower part of the square can be used. If no serial number is indicated, then the form of the corresponding composition is meant by definition. For example,

$$
\mathscr{L} \mathscr{D} \mathscr{R}^{2} \circ \mathscr{N} \mathscr{H} \stackrel{(55)}{=} \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \circ \mathscr{N} \mathscr{H} \stackrel{(31)}{=} \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H} .
$$

Now we can prove our last theorem.
Theorem 12. There are two finite subsets S_{1} and S_{2} of [S] such that for any element \mathscr{C} of [S] one of the following conditions holds
(a) $\mathscr{C} \in S_{1}$,
(b) there exist a $\mathscr{C}^{\prime} \in S_{2}$ and a $k \geqq 0$ such that $\mathscr{C}=\mathscr{C}^{\prime} \circ \mathscr{C}_{k}$,
(c) $\mathscr{C}=\mathscr{C}_{k}$ for some $k \geqq 0$.

Proof. Define S_{1} and S_{2} by

```
\(S_{1}=S \cup\left\{\mathscr{D} \mathscr{R}^{2}, \mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}^{2}, \mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H}, \mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R}, \mathscr{L} \mathscr{D} \mathscr{R}^{2} \circ \mathscr{N} \mathscr{D} \mathscr{R}\right.\),
\(\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H}\}\)
```

and

$$
S_{2}=\{\mathscr{H}, \mathscr{N} \mathscr{H}, \mathscr{L} \mathscr{H}, \mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{N} \mathscr{H} ; \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H}\}
$$

For any $\mathscr{C} \in[S]$ there exists a minimal number $n \geqq 1$ such that $\mathscr{C}=\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}$ for some $\mathscr{K}_{i} \in S$. We prove the theorem by induction on this number n.

If $\mathscr{C}=\mathscr{K}_{1}$ for some $\mathscr{K}_{1} \in S$ then, by $S \subseteq S_{1}$, case (a) holds.
Now let $\mathscr{C}=\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n+1}$ under a minimal $n \geqq 1$ and some $\mathscr{K}_{i} \in S$. Then, since our theorem is supposed to hold for $\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}$, three main cases are possible.
Table 1.

	$\mathscr{D R}$	$\mathscr{N} \mathscr{O} \mathscr{R}$	$\mathscr{L} \mathscr{D} \mathscr{R}$	$\mathscr{L N Q}$	\mathscr{H}	$\mathscr{N} \mathscr{H}$	$\mathscr{L} \mathscr{H}$
\mathscr{D}	$\mathscr{D} \mathscr{R}^{2}$	$\begin{aligned} & \mathscr{\mathscr { D } \mathscr { R }} \\ & (18) \end{aligned}$	$\begin{gathered} \mathscr{D Q R}^{2} \\ (52) \end{gathered}$	$\begin{aligned} & \mathscr{D R} \\ & (19) \end{aligned}$	$\mathscr{D} \mathscr{R}^{2}$ (52)	$\begin{aligned} & \overline{\mathscr{D R}} \\ & (20) \end{aligned}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52) \end{gathered}$
$\mathscr{N} \mathscr{8}$	$\begin{aligned} & \mathscr{O R}{ }^{2} \\ & (52) \end{aligned}$	$\mathscr{N \mathscr { D } \mathscr { R }}$ (21)	$\begin{gathered} \mathscr{D Q R}^{2} \\ (52) \end{gathered}$	$\underset{(22)}{\mathscr{N} \mathscr{P} \mathscr{R}}$	$\begin{aligned} & \mathscr{D} \mathscr{R}^{2} \\ & (52) \end{aligned}$	$\mathscr{N \mathscr { D } \mathscr { R }}$ (23)	$\begin{gathered} \mathscr{D}^{2} \\ (52) \end{gathered}$
\mathscr{L} ロ®	$\begin{aligned} & \mathscr{D} \mathscr{R}^{2} \\ & (54) \end{aligned}$	$\overline{\mathscr{L} \mathscr{D} \mathscr{R}} \overline{\mathcal{N} \mathscr{D} \mathscr{R}}$	$\mathscr{L} \mathscr{D} \mathscr{R}^{2}$	$\begin{aligned} & \mathscr{L} \mathscr{D} \mathscr{R} \\ & (24) \end{aligned}$	$\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H}$ (48) (15)	$\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathfrak{N} \mathscr{H}$	$\begin{gathered} \mathscr{L} \mathscr{D} \mathscr{R}^{2} \\ (55) \end{gathered}$
$\mathscr{L N O \mathscr { R }}$	$\begin{aligned} & \overline{\mathscr{D} \mathscr{R}^{2}} \\ & (\mathbf{3 2)} \end{aligned}$	$\mathscr{N} \mathscr{D} \mathscr{R}$ (25)	$\begin{gathered} \mathscr{L} \mathscr{D} \mathscr{R}{ }^{2} \\ (33) \end{gathered}$	$\begin{gathered} \mathscr{L} \mathcal{N O} \mathscr{O} \mathscr{R} \\ (36) \\ \hline \end{gathered}$	$\mathscr{L S P O R} \bigcirc \mathscr{H}$	\mathscr{C}_{1}	$\begin{gathered} \mathscr{L} \mathscr{D} \mathscr{R}{ }^{2} \\ (55) \end{gathered}$
\mathscr{H}	$\begin{aligned} & \mathscr{D R} \\ & (6) \end{aligned}$	$\mathscr{H} \bigcirc \mathfrak{N O R}$	$\begin{aligned} & \mathscr{D R} \\ & (27) \end{aligned}$	$\mathscr{H} \circ \mathscr{C}_{0}$	$\begin{aligned} & \mathscr{H} \\ & (11) \end{aligned}$	$\begin{gathered} \mathscr{H} \\ (12) \end{gathered}$	$\begin{gathered} \mathscr{H} \\ (13) \end{gathered}$
$\mathscr{N} \mathscr{H}$	$\begin{aligned} & \mathscr{D} \mathscr{R} \\ & (8) \end{aligned}$	$\underset{\substack{\mathcal{N} \mathscr{R} \\ \hline(10)}}{ }$	$\begin{aligned} & \mathscr{D} \mathscr{R} \\ & (28) \end{aligned}$	$\mathscr{N} \mathscr{H} \bigcirc \mathscr{C}_{0}$	$\begin{gathered} \mathscr{H} \\ (14) \end{gathered}$	$\underset{\substack{\mathcal{N} \mathscr{H}}}{ }$	$\begin{gathered} \mathscr{H} \\ (29) \end{gathered}$
$\mathscr{L}_{\mathscr{H}}$	$\mathscr{D} \mathscr{R}$ (7)	$\begin{gathered} \mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R} \\ (10)(31) \end{gathered}$	$\mathscr{L} \mathscr{D} \mathscr{R}$ (9)	$\mathscr{L} \mathscr{H} \bigcirc \mathscr{C}_{0}$	$\begin{gathered} \mathscr{H} \\ (15) \end{gathered}$	$\begin{gathered} \mathscr{H} \\ (31) \end{gathered}$	$\overline{\mathscr{L} \mathscr{H}}$ (17)
$\mathscr{D O R}{ }^{2}$	$\begin{aligned} & \mathscr{D D}^{2} \\ & (36) \end{aligned}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (18) \end{gathered}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52)(36) \end{gathered}$	$\begin{aligned} & \mathscr{D O}^{2} \\ & (19) \end{aligned}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52)(36) \end{gathered}$	$\begin{aligned} & \mathscr{D R}^{2} \\ & (20) \end{aligned}$	$\begin{gathered} {\mathscr{Q} \mathscr{R}^{2}}_{(52)(36)} \end{gathered}$
$\overline{\mathscr{L C R}} \bigcirc \underline{\mathcal{N} \mathscr{D} \mathscr{R}}$	$\begin{gathered} \mathscr{D}^{2} \\ (52)(54)(36) \end{gathered}$	$\mathscr{L C D R} \circ \mathfrak{N} \mathscr{D} \mathscr{R}$ (21)	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52)(54)(36) \end{gathered}$	$\begin{gathered} \mathscr{L} \mathscr{D R} \circ \mathscr{N} \mathscr{D} \mathscr{R} \\ (22) \end{gathered}$	$\begin{gathered} \mathscr{D P R}^{2} \\ (52)(54)(36) \end{gathered}$	$\underset{\substack{\text { (23) }}}{\mathscr{L O D} \mathscr{R} \mathscr{R}}$	$\begin{gathered} \mathscr{\mathscr { P R }}{ }^{2} \\ (52)(54)(36) \end{gathered}$
$\mathscr{L} \mathscr{D} \mathscr{R}{ }^{2}$	$\begin{gathered} {\mathscr{D} \mathscr{R}^{2}}_{(54)(36)} \end{gathered}$	$\underline{\mathscr{L O R}}{ }^{2} \bigcirc \mathfrak{N O R}$	$\mathscr{L} \mathscr{D} \mathscr{R}^{2}$ (37)	$\mathscr{L} \mathscr{O} \mathscr{R}^{2}$ (24)	$\underset{(55)(15)}{\mathscr{L} \mathcal{N} \mathscr{H} \circ \mathscr{H}}$	$\begin{gathered} \mathscr{L} \mathcal{N P} \mathscr{R} \circ \mathscr{H} \\ (55)_{(31)} \end{gathered}$	$\begin{gathered} \mathscr{L} \mathscr{D} \mathscr{R}^{2} \\ (55)(37) \end{gathered}$
$\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathfrak{N} \mathscr{H}$	$\begin{gathered} \mathscr{D O R}^{2} \\ (8)(54) \end{gathered}$	$\overline{\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathcal{N} \mathscr{D} \mathscr{R}}$ (10)	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (28)(54) \end{gathered}$	$\begin{gathered} \mathscr{L} \mathscr{R} \mathscr{R} \circ \\ \square \mathscr{N} \mathscr{H} \circ \mathscr{C}_{0} \end{gathered}$	$\underset{(14)}{\mathscr{L} \mathscr{N} \mathscr{R} \mathscr{H}}$	$\mathscr{L} \mathscr{D} \mathscr{R} \circ \mathfrak{N} \mathscr{H}$ (16)	$\begin{aligned} & \mathscr{L} \mathcal{N} \mathscr{P R} \circ \mathscr{H} \\ & (29)(48)(15) \end{aligned}$
$\mathscr{H} \bigcirc \mathscr{N} \mathscr{D} \mathscr{R}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52)(6) \end{gathered}$	$\mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R}$ (21)	$\begin{gathered} \mathscr{D}_{2}^{2} \\ (52)(6) \end{gathered}$	$\mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R}$ (22)	$\begin{gathered} \mathscr{\mathscr { D } \mathscr { R } ^ { 2 }} \\ (52)(6) \end{gathered}$	$\mathscr{H} \circ \mathscr{N} \mathscr{D} \mathscr{R}$ (23)	$\begin{gathered} \mathscr{O Q}^{2} \\ (52)(6) \end{gathered}$
	$\begin{gathered} \mathscr{D \mathscr { R } ^ { 2 }} \\ (52)(54)(36) \end{gathered}$	$\overline{\mathscr{L} \mathscr{D} \mathscr{R}^{2} ○ \mathscr{N} \mathscr{D} \mathscr{R}}$ (21)	$\begin{gathered} {\mathscr{D} \mathscr{R}^{2}}_{(52)(54)(36)} \end{gathered}$	$\begin{gathered} \overline{\mathscr{L} \mathscr{D} \mathscr{R}^{2} \cap \mathcal{N} \mathscr{O} \mathscr{R}} \\ \text { (22) } \end{gathered}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (52)(54)(36) \end{gathered}$	$\mathscr{L} \mathscr{D} \mathscr{R}^{2} \circ \mathcal{N} \mathscr{D} \mathscr{R}$ (23)	$\begin{gathered} {\mathscr{D} \mathscr{R}^{2}}_{(52)(54)(36)} \end{gathered}$
$\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \bigcirc \mathscr{H}$	$\begin{gathered} \mathscr{D O R}^{2} \\ (6)(32) \end{gathered}$	$\begin{aligned} & \mathscr{L} \mathscr{D R} \mathscr{R}^{2} \cap \mathcal{N O} \mathscr{R} \\ & (31)(55)(10) \end{aligned}$	$\begin{gathered} \mathscr{D} \mathscr{R}^{2} \\ (27)(32) \end{gathered}$	$\begin{gathered} \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \\ \bigcirc \mathscr{H} \circ \mathscr{C}_{0} \end{gathered}$	$\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H}$ (11)	$\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{H}$ (12)	$\mathscr{L} \mathscr{N D} \mathscr{R} \circ \mathscr{H}$ (13)

Case (a). There exists a $\mathscr{C}^{\prime \prime} \in S_{1}$ such that $\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}=\mathscr{C}^{\prime \prime}$, thus $\mathscr{C}=\mathscr{C}^{\prime \prime} \circ \mathscr{K}_{n+1}$. Here \mathscr{C} can be given in one of the following three forms, verifying our theorem:

$$
\begin{equation*}
\mathscr{C}=\mathscr{C}^{\prime \prime} \circ \mathscr{C}_{0} \quad \text { if } \mathscr{C}^{\prime \prime} \in S_{2} \quad \text { and } \quad \mathscr{K}_{n+1}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \tag{i}
\end{equation*}
$$

(ii)

$$
\mathscr{C}=\mathscr{C}_{1} \quad \text { if } \quad \mathscr{C}^{\prime \prime}=\mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \quad \text { and } \quad \mathscr{K}_{n+1}=\mathscr{N} \mathscr{H}
$$

(iii)

$$
\mathscr{C} \in S_{1} \text { in any other cases, by Table } 1 .
$$

Case (b). There exist $\mathscr{C}^{\prime \prime} \in S_{2}$ and $k \geqq 0$ for which

$$
\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}=\mathscr{C}^{\prime \prime} \circ \mathscr{C}_{k}, \quad \text { so } \mathscr{C}=\mathscr{C}^{\prime \prime} \circ \mathscr{C}_{k} \circ \mathscr{K}_{n+1}
$$

Now seven subcases detailed from (i) to (vii) can be raised proving again our theorem.

$$
\begin{equation*}
\mathscr{C}=\mathscr{D} \mathscr{R}^{2} \quad \text { if } \quad \mathscr{K}_{n+1}=\mathscr{D} \mathscr{R}, \quad \text { by } \quad \text { (32); } \tag{i}
\end{equation*}
$$

(ii) $\mathscr{C}=\mathscr{C} \mathscr{C}^{\prime \prime} \circ \mathscr{N} \mathscr{D} \mathscr{P} \in S_{1}$ if $\mathscr{K}_{n+1}=\mathcal{N} \mathscr{D} \mathscr{R}$, by (10), (25) and table 1 ;
(iii) $\mathscr{C}= \begin{cases}\mathscr{L} \mathscr{D} \mathscr{R}^{2} & \text { if } \mathscr{K}_{n+1}=\mathscr{L} \mathscr{D} \mathscr{R}, \quad k=0 \text { and } \mathscr{C}^{\prime \prime}=\mathscr{L} \mathscr{H}, \\ & \text { by }(33) \text { and }(9) \\ \text { if } \mathscr{K}_{n+1}=\mathscr{L} \mathscr{D} \mathscr{R}, \text { and } k \geqq 1 \text { or } \mathscr{C}^{\prime \prime} \neq \mathscr{L} \mathscr{H} \\ \mathscr{D} \mathscr{R}^{2} & \begin{array}{l}\text { since in this case } \mathscr{D} \mathscr{R}^{2} \stackrel{(51)}{=} \mathscr{N} \mathscr{H} \circ \mathscr{L} \mathscr{N} \mathscr{D} \mathscr{R} \circ \mathscr{L} \mathscr{H} \subseteq \\ \\ \subseteq \mathscr{C}^{\prime \prime} \circ \mathscr{C}_{k} \circ \mathscr{K}_{n+1} \subseteq \mathscr{D} \mathscr{R}^{2} ;\end{array}\end{cases}$
(iv) $\mathscr{C}=\left\{\begin{array}{lll}\mathscr{C}^{\prime \prime} \circ \mathscr{C}_{k} & \text { if } & \mathscr{K}_{n+1}=\mathscr{L} \mathcal{N} \mathscr{D} \mathscr{R}\end{array} \quad\right.$ and $\quad k=2 m$, by $(26) \quad(m \geqq 0)$

(vi) $\mathscr{C}= \begin{cases}\mathscr{C}^{\prime \prime} \circ \mathscr{C}_{k+1} & \text { if } \quad \mathscr{K}_{n+1}=\mathscr{N} \mathscr{H} \text { and } k=2 m \\ \mathscr{C}^{\prime \prime \circ} \mathscr{C}_{k} & \text { if } \quad \mathscr{K}_{n+1}=\mathscr{N} \mathscr{H} \text { and } k=2 m+1, \text { by (16); } \quad(m \geqq 0)\end{cases}$
(vii) $\mathscr{C}= \begin{cases}\mathscr{D} \mathscr{R}^{2} & \text { if } \mathscr{K}_{n+1}=\mathscr{L} \mathscr{H}, \mathscr{C}^{\prime \prime} \neq \mathscr{L} \mathscr{H} \text { or } k \geqq 2, \\ \mathscr{L} \mathscr{D}_{\mathscr{R}^{2}} & \text { similarly as in }(\mathrm{v}) \\ \mathscr{H} \mathscr{K}_{n+1}=\mathscr{L} \mathscr{H}, \mathscr{C}^{\prime \prime}=\mathscr{L} \mathscr{H} \text { and } k=0, \\ \mathscr{L} \mathscr{D} \mathscr{R} \circ \mathscr{H} & \text { by }(50) \text { ind }(9) \\ & \text { see as in }(\mathrm{v}) .\end{cases}$

Case (c). $\mathscr{K}_{1} \circ \ldots \circ \mathscr{K}_{n}=\mathscr{C}_{k}$ for some $k \geqq 0$, so $\mathscr{C}=\mathscr{C}_{k} \circ \mathscr{K}_{n+1}$. This case can be handled similarly to the case (b), the detailed proof is omitted.

[^0]
References

[1] Baker, B. S., Composition of top-down and bottom-up tree transductions, Inf. and Control, v. 41, 1979, pp. 186-213.
[2] Engelfriet, J., Bottom-up and top-down tree transformations - A comparison, Math. Syst. Theory, v. 9, 1975, pp. 198-231.
[3] Gécseg, F. and M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, 1984.
[4] Rounds, W. C., Mappings and grammars on trees, Math. Syst. Theory, v. 4, 1970, pp. 257-287.
(Received Jan. 27, 1986)

[^0]: RESEARCH GROUP ON THEORY OF AUTOMATA
 HUNGARIAN ACADEMY OF SCIENCES
 SOMOGYI U. 7.
 SZEGED, HUNGARY
 H-6720

