
On isomorphic realization of automata with a0-products 

Z. ESIK 

1. Notions and notations 

In this section we give a brief summary of some basic concepts to be used in 
the sequel. 

An automaton is a triplet A—(A, X, 5) with finite state set A, finite input set 
X and transition 5: AxX-»A. The sets A and X are nonempty. The transition is 
also treated in the extended sense, i.e., as a mapping AxX*—A, where X* is the 
free monoid generated by X. Take a word p£X*. The transition induced by p is 
the state map <5p: A—A with 6p(a)=5(a, p) (a£A). The collection of these transi-
tions forms a monoid S(A) under composition of mappings. We call S(A) the char-
acteristic monoid of A. 

The concepts as subautomaton, homomorphism, congruence relation and iso-
morphism are used with their usual meaning. Given an automaton A = { A , X , S ) 
and a state ad A, the subautomaton generated by a has state set {8(a, p)\pdX*}. 
An automaton (B, Y, 5') is an X-subautomaton of an automaton (A, X, S) if BQA, 
YQ.X and 6' is the restriction of 5 to BXY. The factor automaton of an automaton 
A with respect to a congruence relation 6 of A is denoted A/0. We write 0!<02 
to mean that is a refinement of 02 and 01^d2. An automaton is called simple 
if it has only the trivial congruence relations m (identity relation) and i (total rela-
tion). Thus trivial (i.e., one-state) automata are simple. 

Let Ai=(A;,Xi>Si)(i=l,...,n, nsO) be automata. Take a finite nonempty set 
X and a family of feedback functions (pt: AxX ...XA„XX-+Xt (i— 1, ..., n). By 
the product AxX ...XA„[Z, cp] we mean the automaton (AtX ...XA„, X, S), where 

S((au ..., an), x) = (<5i(ai, xj,..., 8n(an, xn)) 
with 

Xi = ( p ^ , ...,an,x) (i = 1, ..., li) 

for all (alt ..., an)£A1X...XAtt and x£X. The integer n is referred to as the length 
of the product. If, for every i, <pt is independent of the state variables ah ..., an, 
we speak about an a0-product. In an a0-product a feedback function (pt is alternatively 
treated as a mapping A1X...XAi_jXZ—Zj. Moreover, <pt extends to a mapping 
^ . . . X ^ I - I X I * - ! * in a natural way. 
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Let Jf be a (possibly empty) class of automata. We will use the following 
notations: 

P a o ( j f ) :=al l a0-products of automata from X ; 
P l a o ( j f ) :=al l a0-products with length at most 1 of automata from 

S(Jf) :=al l subautomata of automata from Jf"; 
H(Jf ) :=a l l homomorphic images of automata from 
I(Jf) :=al l isomorphic images of automata from X 

Jf*:=the collection of all automata A—(A, X, <5) such that there is an 
automaton B=(A, Y, with the following properties: (i) B is an Z-subauto-
maton of A; (ii) for every sign x£X there is a word Y* inducing the same 
transition as p, i.e., S'P=5X. (Note that we have S'(A)=5(B).) 

We call a class J f of automata an a0-variety if it is closed under H, S and Pao. 
An a0-variety is never empty. An ofi-variety is an a0-variety ¿fwith . For 
later use we note that HSPao(jT) (HSPao(jr*)) is the smallest a0-variety (ao-variety) 
containing a class J f \ Similarly, ISPao(jT) is the smallest class containing X and 
closed under I, S and Pao. It is worth noting that SFlao(J^") contains all A-sub-
automata of automata in J f . 

A class is said to be isomorphically a0-complete for ¿f if 
The following statement is a direct consequence of results in [5] (see also [3], [4]): 

Proposition 1.1. If ¿f0 is isomorphically a0-complete for X and A£.3f is a 
simple automaton then AelSP l c t0(jQ. 

Thus, any isomorphically a0-complete class for J f must "essentially" contain 
all simple automata in j f . The converse fails in general, yet it holds for some impor-
tant classes: the class of all automata and the classes of permutation automata, 
monotone automata and definite automata are equally good examples (see [2], [3], 
[6]. [7], [9]). Isomorphically a„ -complete classes for the class of all commutative 
automata essentially consist of automata very close to simple commutative auto-
mata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton. 
On the other hand no finite subclass of nilpotent automata is isomorphically a0-com-
plete for the class of all nilpotent automata. Thus, the class of nilpotent automata 
is a counterexample. Isomorphically a0 -complete classes for nilpotent automata are 
studied in [8]. 

Some more notation. The cardinality of a set A is denoted \A\. The symbol E 
denotes the automaton ({0, 1}, {*„, jeJ, S) with ¿(0, x0)=0, <5(0, x^—Sil, x0)= 
=<5(1, *i)= 1. We call E the elevator. 

The relation of the a0-product to other product concepts is explained in 
[3]. The Krohn—Rhodes Decomposition Theorem gives a basis for studying 
a0 -products. For this, see [1], [3], [4]. 

2. Preliminary results 

Let A—(A, X, <5) be an automaton. As usual, we say that A is strongly con-
nected ii it is generated by any state a€A. Further, A is called a cone if there is a 
state a0£A with the following properties: 

(i) d(a0,x)=aa, for all x£X, 
(ii) A— {a0} is nonempty and every state a£A — {a0} generates A. 
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Obviously, the state a0 with the above properties is unique, whence it will be 
referred to as the apex of A. The set A— {a0} constitutes the base of A. It should 
be noted that every simple automaton is either a strongly connected automaton or 
a cone or an automaton ({a1; a2}, X, 8) with 8(ah x)—ah i— 1, 2, x£X. 

Theorem 2.1. Let JT be a class of automata with and 
j f * c J f . if EgJf then for an arbitrary class JT0) j f gISPao(Jf0) if and only 
if every strongly connected automaton and every cone belonging to J f is in 

Proof. The necessity of the statement is trivial. For the sufficiency let 
A=(A, X, <5) be an automaton in J f . We are going to apply induction on Ml to 
show that AiISPao(JT„). Since j f * g j f and ISPao(^f0) is closed under X-sub-
automata, it can be assumed that for every word p£X* there is a sign p£X inducing 
the same transition as p, i.e., S(a, p)—S(a, p) for all a£A. 

If \A\=l then A is strongly connected and A ^ I S P ^ j Q . Suppose that 
\A\>~ 1. If A is strongly connected or a cone then A€lSPao(.3Q by assumption. 
Otherwise two cases arise. 

Case 1: A contains a nontrivial proper subautomaton B=(B, X, 8) generated 
by a state b0£B. Let qQAxA be the relation defined by agb if and only if a—b 
or a, b£B. A straightforward computation proves that g is a congruence relation 
of A. For every state b£B fix an xb£X with 5(b0,xt)—b. Take the a0-product 

C = (C, X, 5') = A/eXB[I , <p], 
where (p1(x)^x, 

9A\ai> x) - [Xb if d(a,x) = b(LB 

and q>z{B, for every x£X and a£A—B. Set 

C' = {({a}, b)\b£B}. 

It is immediately seen that C'=(C', X, 8') is a subautomaton of C isomorphic 
to A. Since both A¡q and B are in X and have fewer states than A, we have A/q, 
BgISP a o (^) from the induction hypothesis. The result follows by the fact that 
ISPao(X0) is closed under I, S and Pao. 

Case 2: There are distinct states a1}a^A with 8(at,x)—ai, ¿=1,2, x£X. 
Define qQAxA by agb if and only if a=b or a, b£ {a1, a2}. Again, q is a con-
gruence relation of A. Let 

C = (C,X,<5') = AlQXE[X,(p] 

be the a0-product with cp1(x)=x, 

otherwise 

and <p2({ai,a2}> x)=*o> where and a(:A—{a1,a^. It follows that C'—(C, X, 8') 
with 

C ' = {({a}, 0)| a€A - {a,, a2}} U { ( K , a2}, 0), ({al5 a2}, 1)} 

1« 
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is a subautomaton of C isomorphic to A. Since Jf is closed under homomorphic 
images and A/q has fewer states than A we have A / g G l S P ^ j Q from the induc-
tion hypothesis. On the other hand, E € X and E is a cone. Thus E g l S P ^ j Q 
and we conclude A ^ I S P ^ J Q . 

Remark. Let ¿f be a class as in Theorem 2.1, i.e. J f , and 
Assuming E$ J f it follows that J f consists of permutation automata. 

(See the last section for the definition of permutation automata.) Every permuta-
tion automaton is the disjoint sum of strongly connected permutation automata. 
Now obviously, if jJf contains a nontrivial strongly connected automaton then 
Jf gISP a o(J^) for a class Jf0 if and only if A £ l S P a o p Q for every strongly con-
nected permutation automaton (Or even, the same holds if a0-product is 
replaced by the so-called quasi-direct product.) If in addition Jf is closed under 
Z-subautomata then, as we shall see later, j f Q ISP a o ( jQ if and only if every 
simple strongly connected permutation automaton in is already contained by 
ISP,-0 Suppose now that every strongly connected automaton in X is trivial. 
Then, if i f contains a nontrivial automaton, we have Jf Q I S P ^ j Q if and only if 
({0, 1}, {x}, 5)e iSP U o ( jQ with ¿(0, x )=0 and <5(l,x)=l. Further, s t QlSP a o ( sQ 
holds for every if ¿f consists of trivial automata. 

The following two lemmas establish some simple facts about homomorphic 
realization of cones and strongly connected automata in the presence of E. 

Lemma 2.2. Let A=(A, X, S) be a cone in HSP a o( jf U{E}). There exist an 
automaton DiP a o (^f ) and an a0-product DXE[X, <p] containing a subautomaton 
that can be mapped homomorphically onto A. 

Proof. Let B=CB, X, < 5 ' ) = B i X . . . X B n p f , b e a n a0-product with B ,6J iU 
U{E}, t=l,...,n. Let C—(C, X, S') be a subautomaton of B and h: C-»A a 
homomorphism of C onto A. We may assume C to be in a sense minimal: no proper 
subautomaton of C is mapped homomorphically onto A. 

Denote by aQ the apex and by A0 the base of A. Set C0=h~1(A0), C1=/i~1({a0}). 
Clearly then Cx=(C, X, ¿') is a subautomaton of C, and C is generated by any 
state a£C0. 

Let be all the indices t=l,...,n with B,£.3f. If 
(«!, ..., an), (blt ..., b„)£C0, we have a,= b, whenever /(f{/i, ..., i,} for otherwise 
C would not be generated by every state in C„. Let j\, {1, ..., n}— {/ls ..., ir} 
be those indices/such that for any (a1} ..., a„)€C0, at—0 i fandonlyif {j\, ...,js}. 
For every a=(alt ..., a^B^X ...XB,r put a=(au ..., an)£B with a^a^ ...,air= 
=a„ d j . . . = a}= 0 and a,= 1 otherwise. 

To end the proof we give an a0-product B'=Bj1X ...XBfrXE[Ar, \j/'] and a 
subautomaton C '=(C ' , X, 6") of B' such that A is a homomorphic image of C'. 
For every a€BhX ...XBlr, i= 0,1, x£X and j=l,...,r, define 

ipjia, i, x) = il/h(a, x), 

' l x 0 o t h e r w i s e . 
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Let C' be the subautomaton generated by the set 

{(a,0)\a£BtiX...XBir, a£C0}. 

Set C'x—C—Co. It is clear from the construction that states in C[ have 1 as their 
last components. Therefore, C[ is the state set of a subautomaton of C'. Moreover, 
for every (a, 0), (b, 0)eCi and x£X we have d"((a, 0), x)=(b, 0) if and only if 
5'(a, x)=B, while 8"{{a, 0), if and only if 8'{a, JC^CJ. It follows that A is 
a homomorphic image of C', a homomorphism being the map that takes each state 
in C[ to a0 and each state (a, 0)£C'0 to h(a). 

If A were strongly connected we would not need the last factor of the a0 -product 
B' either. This gives the following: 

Lemma 2.3. Every strongly connected automaton in HSPa o(jf U {E}) is con-
tained in HSPao(Jf). 

Let A= (A, X, 8) be a cone with apex a0 and base A0. Suppose that the rela-
tion q^AXA defined by aqb if and only if a—b=a0 or a,b£A0 is a congruence 
relation of A, which is to say that for every x€X either 8(A0, x)QA0 or 8(A0, x)= 
= {a0}. Set XQ— {x^|<5OI0, Assuming X^d, the automaton A„= 
— (A0, X0, 8) is a strongly connected X-subautomaton of A, which is guaranteed if 
\A0\=>-1. By definition, we call A a 0-simple cone if and only if Xo?£0 and A0 is 
simple. Thus, E is both a simple cone and a 0-simple cone. Given a strongly con-
nected automaton A0=(A0, X0, 80), there is a natural way to imbed A„ into a 
0-simple cone Ag: define Ag=(AU {a0}> X0U {x0}, <$) wherea0$A0> x0$X„, 8(a, x0)=a0 
for every a£A0{J{a0} and 8(a0, x)=a0, 8(a, x)=S0(a, x) if a£A0, xZX0. Obvi-
ously, Ag is 0-simple if and only if A0 is simple. 

If A is a simple cone (i.e., a simple automaton that is a cone) then A€lSP a o ( j f ) 
for a class Jf if and only if A£lSP lcI0(Jf). In the next statement we investigate 
what can be said about j f if ISP I 0 ( j f ) contains a 0-simple cone. 

Lemma 2.4. If a 0-simple cone A=Ag is in I S P ^ J f ) then either A£lSP l a o(Jf) 
or E€lSP lc (0(Jf) and there is an automaton D€ & such that A is isomorphic to 
a subautomaton of an a0-product of E with D. 

Proof. Let A0—(A0, X0, <50) and A = ( A , X , 5 ) so that A=A0U {a0}, X= X0\J 
U{x0} where a0$A0, X0, 5(a, x0)=a0 (a£A), 8(a0, x)=a0 and 8(a, x)=80(a, x) 
(a£A0,x£Xo). Since A e l S P ^ X ) there exist an a0-product B=(£ , X, <5')= 
=B1X...XB„[Ar, <p] (B,€JT, t= 1, ..., n) and a subautomaton C=(C, X, 8') of B 
such that A is isomorphic to C under a mapping h: A—C. We may assume that n 
is minimal, i.e., whenever an a„-product of automata from X contains a subauto-
maton isomorphic to A, the length of that product is at least n. 

Suppose that A$ISP l t (0(^f). We then have w>l. Let a=(a1) ..., a„) and 
b=(bx, ..., bn) be arbitrary states in C. For every t~ 1, ..., n, put ad,b if and only 
if a,=bt. Further, let agb if and only if a=b=h(a0) or a, b£h(A0). 
Each of these relations is a congruence relation of C, and since n is minimal, 
01>.. .^0„(=co) and O^i. Since A is 0-simple this leaves n=2, g and 62=co. 
It then follows that E is isomorphic to a subautomaton of an a0-product of Bi 
with a single factor and A is isomorphic to a subautomaton of an a0-product of E 
with B2. 
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Let Ag=(/40U{a0}, Z0U {x0}> 5) be a O-simple cone with Aa={Aa, X0, 60), 
and take an arbitrary automaton B= {B, Y, 8'). It is not difficult to give a necessary 
and sufficient condition ensuring that Ag is isomorphic to an a0 -product of E with B. 
Clearly this can happen if and only if there are a pair of functions h: A0—B, 
<p: X0—Y, a state b0£B and two not necessarily distinct signs ^ ( [ F such that: 

(i) h is injective; 
(ii) for every a1, a2£A0 and x£X0 we have 80(a1,x)=ai if and only if 

5'(h(pJ, (p(x))=h(a2); 
(iii) 8'(h(A0),y0)={b0}, 5'(b0,yi)=b0. 

If also b0$h(A0) and y0=yi then Ag is isomorphic to an a0-product of B with a 
single factor. 

3. The main result 

An automaton A=(A, X, 8) is called permutation automaton if Sx is a permuta-
tion of the state set for every x£X. This is equivalent to saying that dp is a permuta-
tion for every p£X* or that S(A) is a group. Let Jfp denote the class of all permuta-
tion automata. It is known that JfTp is an aj-variety, see [1]. Moreover, from the 
Krohn—Rhodes Decomposition Theorem we have ^ = H S P c t 0 ({A (G) | G is a simple 
group}) where the group-like automaton A(G) on a (finite) group G is defined 
to be the automaton (G, G, 8) with <5(g, h)—gh, g, h$G. 

Another class of automata we shall be dealing with is the class of all 
monotone automata. By definition, an automaton A = (A,X,8) is monotone if 
<5(a,pq)=a implies 8(a,p)—a, for all a£A and p,q£X*. This is equivalent to 
requiring the existence of an ordering S on A such that a^5(a, p) for all a£A 
and X* (or a^8(a, x) for all a£A and The class Jfm is known to be 
an ao-variety. Further, it is the a0-variety generated by E, i.e. J^,=HSPao({E}) 
(see [1], [10], [11]). 

Having defined the classes Jfp and Jfm , put J f p m =HSP^ (JiTp U J Q = 
=HSPao(^"pU{E})=HSPao({A(G)|G is a simple group}U{E}). It follows from 
Stiffler's switching rules that A€$Tpm if and only if there is an a0 -product B of a 
permutation automaton with a monotone automaton such that A£HS({B}). For 
this and other characterizations of the class $Tpm, see [1] and [10]. It is immediate 
from our definition that Xvm is an a0-variety. Or even, it is an oco-variety. 

Lemma 3.1. Let A be a strongly connected automaton. Then A€Jfp m if and 
only if Ae j r p . 

Proof. Use Lemma 2.3. 

Corollary. If A=Ag is a cone in C/fpm then A0 a strongly connected permuta-
tion automaton. 

Lemma 3.2. Let A=(A, X, 8)€JTpm be a cone with apex a0 and base A0. If 
8(a,p)=8(b,p)£A0 holds for some a, b£A0 and pdX* then a=b. 

Proof. From Lemma 2.2 it follows that A is a homomorphic image of a sub-
automaton C=(C, X, 8') of an a0-product BXE[Z, (p] where B is a permutation 



On isomorphic realization of automata with a„ -products 125 

automaton, say B=(j3, X1; 8J. Denote by h an onto homomorphism C--A. Set 
C0=/i_1(y40). We may assume that every state in C0 is a generator of C. Each state 
in C0 must have 0 as its second component since otherwise we would have CQBX {1}, 
and this would yield that C and A are permutation automata. 

Let (oj, 0), (bx, 0)eC0 with h(a1} 0)=a, /i(&i> 0)=b. Take a word q£X* with 
8{a,pq)=a. We have ¿(a, (pqf) = <5(6, (pq)") = a, and hence 8'({ax, 0), (pqf), 
8' ((¿i, 0), (/>?)")£C0, for all MS 1. Define r = <p1(pq). For every integer n g l w e have 
8'((au0), (pc/y) = (81(a1, r»),0) and <5'((Z>i,0), (/><?)") = (¿a (fca,/*),0), Since B is a 
permutation automaton, there is an n^ 1 with at = ¿i(fli, r") and b1 = 81(b1, r"). Thus 
we obtain a = h{a1, 0) — h(8' ({a,, 0), (pq)")) = h(8'((bu 0), (pq)")) = h(bu 0) = b. 

Theorem 3.3. Let Jf Q Jfpm be a class containing E, closed under X-subauto-
mata and homomorphic images and such that .Jf * <= JiT. A class is isomor-
phically a„-complete for j f if and only if the following conditions hold: 

(i) every simple cone and every simple strongly connected permutation auto-
maton belonging to X is in ISP l a o (^ ) , 

(ii) for every 0-simple cone A t h e r e is a B£JF0 such that Ag is isomorphic 
to a subautomaton of an a0-product of E with B. 

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary 
in virtue of Lemma 2.4. 

For the converse recall that Jf satisfies the assumptions of Theorem 2.1. There-
fore, by Theorem 2.1, it suffices to show that every strongly connected automaton 
and every cone belonging to Jf is contained by ISP0o(.3Q. 

Let A=(A, X, 8)€Jf be a cone with base A0 and apex a0. Since 
and ISPao(J^) is closed under X-subautomata, we may assume that for every p^X* 
there is a p£X inducing the same transition as p. If A is simple then A£lSP a o (^ ) 
by (i). If A is 0-simple then A is isomorphic to an a0-product Ag[X, cp] with a single 
factor where Ag£.3f is a 0-simple cone. (Recall that J f is closed under X-sub-
automata.) Therefore, we may assume that A is of the form Ag. Now, by (ii), A is 
isomorphic to a subautomaton of an a0-product of E with B where B£Jf0. Since 
E is a simple cone we have E£lSP l a o (^ ) . It follows that APlSPao(J^). Suppose 
that A is neither simple nor 0-simple. We proceed by induction on \A\. If \A\—2 
our statement holds vacantly. Let \A\>2. There exists a congruence relation ¿Meo 
of A such that aOb implies a=b or a,b£A0, and such that A0 contains at least 
two blocks of the partition induced by 0. 

Let C0—{a0}, Cx, ...,C„ (nS2, |Ci |> l ) be the blocks of 6. Since A is gen-
erated by any state in A0, from Lemma 3.2 we have the following: for every 

1, ..,«} there exists a word p€X* with 8(Ch p)=Cj. Consequently, for 
every /€ {1, ..., n} there is a pair of words (pt, q¡) with ¿(C1,/> ;)=C i, 8(Ch qd—Cx 
and such that ptqi induces the identity map on Cx while qtpi induces the identity 
map on Ct. 

Set X'={x£X\8(C,,x)QCnUC1}, C=(C 0 UC,, X', 8'), where 8'(c, x)=8(c, x) 
for all c£C0UCi and x£X'. Obviously, both A/0 and C are cones in J f . Fix a 
sign x0£X' with 8'(C1, x0)—C0. Take the a0-product 

B = (B, X, 8") = A/0XC[X, <p] 
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where cp1(x)=x and 

o ( c x ) - ( x o ^ 5(C„*) = C„ <РАЧ, x) - if 5(Ci,x) = Cj and i . j ^ O . 

It is easy to check that B'=(.B', X, <5") is a subautomaton of В where 

B ' = {(Q, a0)}U{(С,-, a) | i = 1, .. . ,n, a€C t}. 
Further, the map (C0, a0)^a0, (С„а)<->-5(а,рй ( i = l , ..., n, a€Cj) is an isomor-
phism of B' onto A. Hence the result follows from the induction hypothesis. 

Suppose now that A=(A , X, is a strongly connected automaton. From 
Lemma 3.1 we know that A is a permutation automaton. Just as before, we may 
assume that for every pdX* there is a sign p£X with dp—Sp. If A is simple then 
A6lSP l t [0(X) £ ISP a o ( j f ) . Otherwise let в be a congruence relation of A different 
from со and i. Denote by C l 5 C„ (n~2, |Ci |> 1) the blocks of the partition 
induced by Q. Set X'— {x£X\S(£i, JC)=CJ}. One shows that A is isomorphic to an 
a0-product of А/в with C, where С =(С1,Х',д'), 5'(c, х)=ё(с, x) (с$_Сг, x£X'). 

We note that a substantial part of the above proof as well as the proofs of 
Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]). 

Corollary. Let be closed under X-subautomata and homomorphic 
images and suppose that If Ж contains a nontrivial strongly connected 
automaton then a class Jf0 is isomorphically a0 -complete for Ж if and only if 
A€lSP l a o(X) holds for every simple strongly connected automaton A in Ж. 

Let f be a nonempty class of (finite) simple groups closed under division. 
(Recall that Gy divides G2 for groups Gt and G2, written GX\G2, if and only if Gt 
is a homomorphic image of a subgroup of G2.) Denote by X(<3) the class 
HSPao({A(G)|G£^}); is an aj-variety contained in Xp. It follows from the 
Krohn—Rhodes Decomposition Theorem that every ao-variety of permutation auto-
mata is of the form J f ( ^ ) except for the aj-variety consisting of all automata (A, X, <5) 
such that dx is the identity map for each x£X. Moreover, if ^ contains a nontrivial 
simple group then for every permutation automaton A we have if and 
only if G|S(A) implies for simple groups G. Since also 
Xm(&)=HSPao(X(&)UЖт)ЯЖрт. We obviously have 

jrm(30 = HSPao(X(^)U{E}) = HSPao({A(G)|G€^}U{E}). 
Thus, is an a0-variety in Жрт, or even, it is an aj-variety. 

Corollary. j f m ( ^ ) g i S P I o ( j f ) if and only if the following hold: 

(i) for every simple cone A€Jfm(^) we have A£ISP l c I0(jQ, 
(ii) for every 0-simple cone AS6Xm(&) there is а B£X0 such that Ag is iso-

morphic to a subautomaton of an a0-product of E with B. 
Proof. Use Theorem 3.3 and the following fact: every simple strongly con-

nected (permutation) automaton in ЖтСЗ) is isomorphic to an X-subautomaton of 
a 0-simple cone Ag in 

Corollary [2]. A class X0 is isomorphically a0-complete for Xm if and only 
if E€lSP l a opf0). 



On isomorphic realization of automata with a„ -products 127 

Proof. Let 0 be the class of trivial groups. We have On the 
other hand, every cone in is similar to E. More exactly, if A£ is a cone then 
A is isomorphic to an a0-product in Plao({E}). 

An automaton A=(J, X, <5) is called commutative if ő(a, xy)=ö(a,yx) for 
all a£A and x,y£X, i.e., if S(A) is commutative. Denote by Jf the class of all 
commutative automata; Jf is closed under X-subautomata and homomorphic 
images. Moreover, Jf and XQJiTpm. For a prime p> 1 let Cp be a fixed 
automaton of the form A (Zp)c, where Zp is the cyclic group of order p. Every simple 
commutative automaton is in the class ISP l t [0({Cp |p> 1 is a prime}), and every 
0-simple commutative cone is in ISP1I0({C£|/>>1 is a prime}). 

Corollary [7]. A class is isomorphically a0-complete for the class of all com-
mutative automata if and only if the following hold : 

(i) E€HSP l ao(jf0), 

(ii) for every prime p> 1 there is an A£JfT0 such that Cp is isomorphic to a 
subautomaton of an a0-product of E with A. 

Abstract 

Every isomorphically a„ -complete class for a class Jf"of automata must essentially contain all 
simple automata belonging to In this paper we present some classes Jf"for which also the con-
verse is true, or isomorphically a0-complete classes can be characterized by means of automata 
in close to simple automata. 
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