On isomorphic realization of automata with α_{0}-products

Z. Ésik

1. Notions and notations

In this section we give a brief summary of some basic concepts to be used in the sequel.

An automaton is a triplet $\mathbf{A}=(A, X, \delta)$ with finite state set A, finite input set X and transition $\delta: A \times X \rightarrow A$. The sets A and X are nonempty. The transition is also treated in the extended sense, i.e., as a mapping $A \times X^{*} \rightarrow A$, where X^{*} is the free monoid generated by X. Take a word $p \in X^{*}$. The transition induced by p is the state map $\delta_{p}: A \rightarrow A$ with $\delta_{p}(a)=\delta(a, p)(a \in A)$. The collection of these transitions forms a monoid $S(\mathbf{A})$ under composition of mappings. We call $S(\mathbf{A})$ the characteristic monoid of \mathbf{A}.

The concepts as subautomaton, homomorphism, congruence relation and isomorphism are used with their usual meaning. Given an automaton $\mathrm{A}=(A, X, \delta)$ and a state $a \in A$, the subautomaton generated by a has state set $\left\{\delta(a, p) \mid p \in X^{*}\right\}$. An automaton (B, Y, δ^{\prime}) is an X-subautomaton of an automaton (A, X, δ) if $B \subseteq A$, $Y \subseteq X$ and δ^{\prime} is the restriction of δ to $B \times Y$. The factor automaton of an automaton \mathbf{A} with respect to a congruence relation θ of \mathbf{A} is denoted \mathbf{A} / θ. We write $\theta_{1}<\theta_{2}$ to mean that θ_{1} is a refinement of θ_{2} and $\theta_{1} \neq \theta_{2}$. An automaton is called simple if it has only the trivial congruence relations ω (identity relation) and t (total relation). Thus trivial (i.e., one-state) automata are simple.

Let $\mathrm{A}_{i}=\left(A_{i}, X_{i}, \delta_{i}\right)(i=1, \ldots, n, n \geqq 0)$ be automata. Take a finite nonempty set X and a family of feedback functions $\varphi_{i}: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{i}(i=1, \ldots, n)$. By the product $\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}[X, \varphi]$ we mean the automaton $\left(A_{1} \times \ldots \times A_{n}, X, \delta\right)$, where

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, x_{1}\right), \ldots, \delta_{n}\left(a_{n}, x_{n}\right)\right)
$$

with

$$
x_{i}=\varphi_{i}\left(a_{1}, \ldots, a_{n}, x\right) \quad(i=1, \ldots, n)
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $x \in X$. The integer n is referred to as the length of the product. If, for every i, φ_{i} is independent of the state variables a_{i}, \ldots, a_{n}, we speak about an α_{0}-product. In an α_{0}-product a feedback function φ_{i} is alternatively treated as a mapping $A_{1} \times \ldots \times A_{i-1} \times X \rightarrow X_{i}$: Moreover, φ_{i} extends to a mapping $A_{1} \times \ldots \times A_{i-1} \times X^{*} \rightarrow X_{i}^{*}$ in a natural way.

Let \mathscr{K} be a (possibly empty) class of automata. We will use the following notations:
$\mathbf{P}_{a_{0}}(\mathscr{K}):=$ all α_{0}-products of automata from \mathscr{K};
$\mathbf{P}_{\mathbf{1 z}_{0}}(\mathscr{K}):=$ all α_{0}-products with length at most 1 of automata from \mathscr{K};
$\mathbf{S}(\mathscr{K}):=$ all subautomata of automata from \mathscr{K};
$\mathbf{H}(\mathscr{K}):=$ all homomorphic images of automata from \mathscr{K};
$\mathbf{I}(\mathscr{K}):=$ all isomorphic images of automata from \mathscr{K};
$\mathscr{K}^{*}:=$ the collection of all automata $\mathrm{A}=(A, X, \delta)$ such that there is an automaton $\mathbf{B}=\left(A, Y, \delta^{\prime}\right) \in \mathscr{K}$ with the following properties: (i) \mathbf{B} is an X-subautomaton of \mathbf{A}; (ii) for every sign $x \in X$ there is a word $p \in Y^{*}$ inducing the same transition as p, i.e., $\delta_{p}^{\prime}=\delta_{x}$. (Note that we have $S(\mathbf{A})=S(B)$.)

We call a class \mathscr{K} of automata an α_{0}-variety if it is closed under \mathbf{H}, \mathbf{S} and $\mathbf{P}_{\alpha_{0}}$. An α_{0}-variety is never empty. An α_{0}^{*}-variety is an α_{0}-variety \mathscr{K} with $\mathscr{K}^{*} \subseteq \mathscr{K}$. For later use we note that $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})\left(\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}^{*}\right)\right)$ is the smallest α_{0}-variety ($\overline{\left.\alpha_{0}^{*}-v a r i e t y\right)}$ containing a class \mathscr{K}. Similarly, ISP $_{\alpha_{0}}(\mathscr{K})$ is the smallest class containing \mathscr{K} and closed under \mathbf{I}, \mathbf{S} and $\mathbf{P}_{a_{0}}$. It is worth noting that $\mathbf{S P}_{\mathbf{1 z o}_{0}}(\mathscr{K})$ contains ail \bar{X}-subautomata of automata in \mathscr{K}.

A class \mathscr{K}_{0} is said to be isomorphically α_{0}-complete for \mathscr{K} if $\mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. The following statement is a direct consequence of results in [5] (see also [3], [4]):

Proposition 1.1. If $\mathscr{K}_{\mathbf{0}}$ is isomorphically α_{0}-complete for \mathscr{K} and $\mathbf{A} \in \mathscr{K}$ is a simple automaton then $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1} \alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Thus, any isomorphically α_{0}-complete class for \mathscr{K} must "essentially" contain all simple automata in \mathscr{K}. The converse fails in general, yet it holds for some important classes: the class of all automata and the classes of permutation automata, monotone automata and definite automata are equally good examples (see [2], [3], [6], [7], [9]). Isomorphically α_{0}-complete classes for the class of all commutative automata essentially consist of automata very close to simple commutative automata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton. On the other hand no finite subclass of nilpotent automata is isomorphically α_{0}-complete for the class of all nilpotent automata. Thus, the class of nilpotent automata is a counterexample. Isomorphically α_{0}-complete classes for nilpotent automata are studied in [8].

Some more notation. The cardinality of a set A is denoted $|A|$. The symbol \mathbf{E} denotes the automaton $\left(\{0,1\},\left\{x_{0}, x_{1}\right\}, \delta\right)$ with $\delta\left(0, x_{0}\right)=0, \delta\left(0, x_{1}\right)=\delta\left(1, x_{0}\right)=$ $=\delta\left(1, x_{1}\right)=1$. We call \mathbf{E} the elevator.

The relation of the α_{0}-product to other product concepts is explained in [3]. The Krohn-Rhodes Decomposition Theorem gives a basis for studying α_{0}-products. For this, see [1], [3], [4].

2. Preliminary results

Let $\mathbf{A}=(A, X, \delta)$ be an automaton. As usual, we say that \mathbf{A} is strongly connected if it is generated by any state $a \in A$. Further, \mathbf{A} is called a cone if there is a state $a_{0} \in A$ with the following properties:
(i) $\delta\left(a_{0}, x\right)=a_{0}$, for all $x \in X$,
(ii) $A-\left\{a_{0}\right\}$ is nonempty and every state $a \in A-\left\{a_{0}\right\}$ generates \mathbf{A}.

Obviously, the state a_{0} with the above properties is unique, whence it will be referred to as the apex of \mathbf{A}. The set $A-\left\{a_{0}\right\}$ constitutes the base of \mathbf{A}. It should be noted that every simple automaton is either a strongly connected automaton or a cone or an automaton $\left(\left\{a_{1}, a_{2}\right\}, X, \delta\right)$ with $\delta\left(a_{i}, x\right)=a_{i}, i=1,2, x \in X$.

Theorem 2.1. Let \mathscr{K} be a class of automata with $\mathbf{H}(\mathscr{K}) \subseteq \mathscr{K}, \mathbf{S}(\mathscr{K}) \subseteq \mathscr{K}$ and $\mathscr{K}^{*} \subseteq \mathscr{K}$. If $\mathrm{E} \in \mathscr{K}$ then for an arbitrary class $\mathscr{K}_{0}, \mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ if and only if every strongly connected automaton and every cone belonging to \mathscr{K} is in ISP $_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Proof. The necessity of the statement is trivial. For the sufficiency let $\mathbf{A}=(A, X, \delta)$ be an automaton in \mathscr{K}. We are going to apply induction on $|A|$ to show that $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Since $\mathscr{K}^{*} \sqsubseteq \mathscr{K}$ and $\mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ is closed under X-subautomata, it can be assumed that for every word $p \in X^{*}$ there is a sign $\bar{p} \in X$ inducing the same transition as p, i.e., $\delta(a, \bar{p})=\delta(a, p)$ for all $a \in A$.

If $|A|=1$ then \mathbf{A} is strongly connected and $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Suppose that $|A|>1$. If \mathbf{A} is strongly connected or a cone then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ by assumption. Otherwise two cases arise.

Case 1: A contains a nontrivial proper subautomaton $\mathbf{B}=(B, X, \delta)$ generated by a state $b_{0} \in B$. Let $\varrho \subseteq A \times A$ be the relation defined by $a \varrho b$ if and only if $a=b$ or $a, b \in B$. A straightforward computation proves that ϱ is a congruence relation of \mathbf{A}. For every state $b \in B$ fix an $x_{b} \in X$ with $\delta\left(b_{0}, x_{b}\right)=b$. Take the α_{0}-product

$$
\mathbf{C}=\left(C, X, \delta^{\prime}\right)=\mathbf{A} / \varrho \times \mathbf{B}[X, \varphi],
$$

where $\varphi_{1}(x)=x$,

$$
\varphi_{2}(\{a\}, x)=\left\{\begin{array}{lll}
x_{b_{0}} & \text { if } & \delta(a, x) \notin B \\
x_{b} & \text { if } & \delta(a, x)=b \in B
\end{array}\right.
$$

and $\varphi_{2}(B, x)=x$ for every $x \in X$ and $a \in A-B$. Set

$$
C^{\prime}=\left\{\left(\{a\}, b_{0}\right) \mid a \in A-B\right\} \cup\{(B, b) \mid b \in B\} .
$$

It is immediately seen that $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime}\right)$ is a subautomaton of \mathbf{C} isomorphic to \mathbf{A}. Since both \mathbf{A} / ϱ and \mathbf{B} are in \mathscr{K} and have fewer states than \mathbf{A}, we have \mathbf{A} / ϱ, $\mathbf{B} \in \operatorname{ISP}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ from the induction hypothesis. The result follows by the fact that $\mathbf{I S P}_{\alpha_{0}}\left(\mathscr{\mathscr { H }}_{0}\right)$ is closed under I, S and $\mathbf{P}_{\alpha_{0}}$.

Case 2: There are distinct states $a_{1}, a_{2} \in A$ with $\delta\left(a_{i}, x\right)=a_{i}, i=1,2, x \in X$. Define $\varrho \subseteq A \times A$ by $a \varrho b$ if and only if $a=b$ or $a, b \in\left\{a_{1}, a_{2}\right\}$: Again, ϱ is a congruence relation of \mathbf{A}. Let

$$
\mathbf{C}=\left(C, X, \delta^{\prime}\right)=\mathbf{A} / \varrho \times \mathbf{E}[X, \varphi]
$$

be the α_{0}-product with $\varphi_{1}(x)=x$,

$$
\varphi_{2}(\{a\}, x)= \begin{cases}x_{1} & \text { if } \delta(a, x)=a_{2}, \\ x_{0} & \text { otherwise }\end{cases}
$$

and $\varphi_{2}\left(\left\{a_{1}, a_{2}\right\}, x\right)=x_{0}$, where $x \in X$ and $a \in A-\left\{a_{1}, a_{2}\right\}$. It follows that $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime}\right)$ with

$$
C^{\prime}=\left\{(\{a\}, 0) \mid a \in A-\left\{a_{1}, a_{2}\right\}\right\} \cup\left\{\left(\left\{a_{1}, a_{2}\right\}, 0\right),\left(\left\{a_{1}, a_{2}\right\}, 1\right)\right\}
$$

is a subautomaton of \mathbf{C} isomorphic to \mathbf{A}. Since \mathscr{K} is closed under homomorphic images and \mathbf{A} / ϱ has fewer states than \mathbf{A} we have $\mathbf{A} / \varrho \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ from the induction hypothesis. On the other hand, $\mathbf{E} \in \mathscr{H}$ and \mathbf{E} is a cone. Thus $\mathbf{E} \in \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ and we conclude $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Remark. Let \mathscr{K} be a class as in Theorem 2.1, i.e. $\mathscr{K}^{*} \subseteq \mathscr{K}, \mathbf{H}(\mathscr{K}) \subseteq \mathscr{K}$ and $\mathbf{S}(\mathscr{K}) \subseteq \mathscr{K}$. Assuming $\mathbf{E} \notin \mathscr{K}$ it follows that \mathscr{K} consists of permutation automata. (See the last section for the definition of permutation automata.) Every permutation automaton is the disjoint sum of strongly connected permutation automata. Now obviously, if \mathscr{K} contains a nontrivial strongly connected automaton then $\mathscr{K} \subseteq \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ for a class \mathscr{K}_{0} if and only if $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ for every strongly connected permutation automaton $\mathbf{A} \in \mathscr{K}$. (Or even, the same holds if α_{0}-product is replaced by the so-called quasi-direct product.) If in addition \mathscr{K} is closed under X-subautomata then, as we shall see later, $\mathscr{K} \cong \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ if and only if every simple strongly connected permutation automaton in \mathscr{K} is already contained by ISP $_{1 \bar{m}_{i}}\left(\mathscr{K}_{0}\right)$. Suppose now that every strongly connected automaton in \mathscr{K} is trivial. Then, if \mathscr{K} contains a nontrivial automaton, we have $\mathscr{K} \subseteq$ ISP $_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ if and only if $(\{0,1\},\{x\}, \delta) \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$ with $\delta(0, x)=0$ and $\delta(1, x)=\overline{1}$. Further, $\mathscr{K} \subseteq \mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$ holds for every \mathscr{K}_{0} if \mathscr{K} consists of trivial automata.

The following two lemmas establish some simple facts about homomorphic realization of cones and strongly connected automata in the presence of \mathbf{E}.

Lemma 2.2. Let $\mathbf{A}=(A, X, \delta)$ be a cone in $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K} \cup\{\mathbf{E}\})$. There exist an automaton $\mathbf{D} \in \mathbf{P}_{\alpha_{0}}(\mathscr{K})$ and an α_{0}-product $\mathbf{D} \times \mathbf{E}[X, \varphi]$ containing a subautomaton that can be mapped homomorphically onto A.

Proof. Let $\mathbf{B}=\left(B, X, \delta^{\prime}\right)=\mathbf{B}_{1} \times \ldots \times \mathbf{B}_{n}[X, \psi]$ be an α_{0}-product with $\mathbf{B}_{t} \in \mathscr{K} \cup$ $\cup\{\mathbf{E}\}, t=1, \ldots, n$. Let $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ be a subautomaton of \mathbf{B} and $h: C \rightarrow A$ a homomorphism of \mathbf{C} onto \mathbf{A}. We may assume \mathbf{C} to be in a sense minimal: no proper subautomaton of \mathbf{C} is mapped homomorphically onto \mathbf{A}.

Denote by a_{0} the apex and by A_{0} the base of A. Set $C_{0}=h^{-1}\left(A_{0}\right), C_{1}=h^{-1}\left(\left\{a_{0}\right\}\right)$. Clearly then $\mathbf{C}_{1}=\left(C, X, \delta^{\prime}\right)$ is a subautomaton of \mathbf{C}, and \mathbf{C} is generated by any state $a \in C_{0}$.

Let $1 \leqq i_{1}<\ldots<i_{r} \leqq n$ be all the indices $t=1, \ldots, n$ with $\mathbf{B}_{t} \in \mathscr{K}$. If $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in C_{0}$, we have $a_{t}=b_{t}$ whenever $t \ddagger\left\{i_{1}, \ldots, i_{r}\right\}$ for otherwise C would not be generated by every state in C_{0}. Let $j_{1}, \ldots, j_{s} \in\{1, \ldots, n\}-\left\{i_{1}, \ldots, i_{r}\right\}$ be those indices t such that for any $\left(a_{1}, \ldots, a_{n}\right) \in C_{0}, a_{t}=0$ if and only if $t \in\left\{j_{1}, \ldots, j_{s}\right\}$. For every $a=\left(a_{1}, \ldots, a_{r}\right) \in B_{i_{1}} \times \ldots \times B_{i_{r}}$ put $\bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in B$ with $\bar{a}_{i_{1}}=a_{1}, \ldots, \bar{a}_{i_{r}}=$ $=a_{r}, \bar{a}_{j_{1}}=\ldots=\bar{a}_{j_{s}}=0$ and $\bar{a}_{t}=1$ otherwise.

To end the proof we give an α_{0}-product $\mathbf{B}^{\prime}=\mathbf{B}_{i_{1}} \times \ldots \times \mathbf{B}_{i_{r}} \times \mathbf{E}\left[X, \psi^{\prime}\right]$ and a subautomaton $\mathbf{C}^{\prime}=\left(C^{\prime}, X, \delta^{\prime \prime}\right)$ of \mathbf{B}^{\prime} such that \mathbf{A} is a homomorphic image of \mathbf{C}^{\prime}. For every $a \in B_{i_{1}} \times \ldots \times B_{i_{r}}, i=0,1, x \in X$ and $j=1, \ldots, r$, define

$$
\begin{gathered}
\psi_{j}^{\prime}(a, i, x)=\psi_{i_{j}}(\bar{a}, x), \\
\psi_{r+1}^{\prime}(a, i, x)= \begin{cases}x_{1} & \text { if } \delta^{\prime}(\bar{a}, x) \in C_{1}, \\
x_{0} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Let \mathbf{C}^{\prime} be the subautomaton generated by the set

$$
C_{0}^{\prime}=\left\{(a, 0) \mid a \in B_{i_{1}} \times \ldots \times B_{i_{r}}, \bar{a} \in C_{0}\right\} .
$$

Set $C_{1}^{\prime}=C^{\prime}-C_{0}^{\prime}$. It is clear from the construction that states in C_{1}^{\prime} have 1 as their last components. Therefore, C_{1}^{\prime} is the state set of a subautomaton of \mathbf{C}^{\prime}. Moreover, for every $(a, 0),(b, 0) \in C_{0}^{\prime}$ and $x \in X$ we have $\delta^{\prime \prime}((a, 0), x)=(b, 0)$ if and only if $\delta^{\prime}(\bar{a}, x)=\bar{b}$, while $\delta^{\prime \prime}((a, 0), x) \in C_{1}^{\prime}$ if and only if $\delta^{\prime}(\bar{a}, x) \in C_{1}$. It follows that \mathbf{A} is a homomorphic image of \mathbf{C}^{\prime}, a homomorphism being the map that takes each state in C_{1}^{\prime} to a_{0} and each state $(a, 0) \in C_{0}^{\prime}$ to $h(\bar{a})$.

If \mathbf{A} were strongly connected we would not need the last factor of the α_{0}-product \mathbf{B}^{\prime} either. This gives the following:

Lemma 2.3. Every strongly connected automaton in $\mathbf{H S P}_{a_{0}}(\mathscr{K} \cup\{\mathbf{E}\})$ is contained in $\mathbf{H S P}_{a_{0}}(\mathscr{K})$.

Let $\mathbf{A}=(A, X, \delta)$ be a cone with apex a_{0} and base A_{0}. Suppose that the relation $\varrho \subseteq A \times A$ defined by $a \varrho b$ if and only if $a=b=a_{0}$ or $a, b \in A_{0}$ is a congruence relation of \mathbf{A}, which is to say that for every $x \in X$ either $\delta\left(A_{0}, x\right) \cong A_{0}$ or $\delta\left(A_{0}, x\right)=$ $=\left\{a_{0}\right\}$. Set $X_{0}=\left\{x \in X \mid \delta\left(A_{0}, x\right) \subseteq A_{0}\right\}$. Assuming $X_{0} \neq \emptyset$, the automaton $\mathbf{A}_{0}=$ $=\left(A_{0}, X_{0}, \delta\right)$ is a strongly connected X-subautomaton of A , which is guaranteed if $\left|A_{0}\right|>1$. By definition, we call A a 0 -simple cone if and only if $X_{0} \neq \emptyset$ and \mathbf{A}_{0} is simple. Thus, \mathbf{E} is both a simple cone and a 0 -simple cone. Given a strongly connected automaton $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$, there is a natural way to imbed \mathbf{A}_{0} into a 0 -simple cone \mathbf{A}_{0}^{c} : define $\mathbf{A}_{0}^{c}=\left(A \cup\left\{a_{0}\right\}, X_{0} \cup\left\{x_{0}\right\}, \delta\right)$ where $a_{0} \notin A_{0}, x_{0} \notin X_{0}, \delta\left(a, x_{0}\right)=a_{0}$ for every $a \in A_{0} \cup\left\{a_{0}\right\}$ and $\delta\left(a_{0}, x\right)=a_{0}, \delta(a, x)=\delta_{0}(a, x)$ if $a \in A_{0}, x \in X_{0}$. Obviously, \mathbf{A}_{0}^{c} is 0 -simple if and only if \mathbf{A}_{0} is simple.

If \mathbf{A} is a simple cone (i.e., a simple automaton that is a cone) then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ for a class \mathscr{K} if and only if $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1 \alpha}_{0}}(\mathscr{K})$. In the next statement we investigate what can be said about \mathscr{K} if $\operatorname{ISP}_{\alpha_{0}}(\mathscr{K})$ contains a 0 -simple cone.

Lemma 2.4. If a 0 -simple cone $\mathbf{A}=\mathbf{A}_{0}^{c}$ is in $\mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ then either $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$ or $\mathbf{E} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$ and there is an automaton $\mathbf{D} \in \mathscr{K}^{\alpha_{0}}$ such that \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{D}.

Proof. Let $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$ and $\mathbf{A}=(A, X, \delta)$ so that $A=A_{0} \cup\left\{a_{0}\right\}, X=X_{0} \cup$ $\cup\left\{x_{0}\right\}$ where $a_{0} \notin A_{0}, x_{0} \notin X_{0}, \delta\left(a, x_{0}\right)=a_{0}(a \in A), \delta\left(a_{0}, x\right)=a_{0}$ and $\delta(a, x)=\delta_{0}(a, x)$ $\left(a \in A_{0}, x \in X_{0}\right)$. Since $\mathbf{A} \in \mathbf{I S} \mathbf{P}_{\alpha_{0}}(\mathscr{K})$ there exist an α_{0}-product $\mathbf{B}=\left(B, X, \delta^{\prime}\right)=$ $=\mathbf{B}_{1} \times \ldots \times \mathbf{B}_{n}[X, \varphi]\left(\mathbf{B}_{t} \in \mathscr{K}, t=1, \ldots, n\right)$ and a subautomaton $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ of \mathbf{B} such that \mathbf{A} is isomorphic to \mathbf{C} under a mapping $h: A \rightarrow C$. We may assume that n is minimal, i.e., whenever an α_{0}-product of automata from \mathscr{K} contains a subautomaton isomorphic to \mathbf{A}, the length of that product is at least n.

Suppose that $\mathbf{A} \notin \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K})$. We then have $n>1$. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be arbitrary states in C. For every $t=1, \ldots, n$, put $a \theta_{t} b$ if and only if $a_{1}=b_{1}, \ldots, a_{t}=b_{t}$. Further, let $a \varrho b$ if and only if $a=b=h\left(a_{0}\right)$ or $a, b \in h\left(A_{0}\right)$. Each of these relations is a congruence relation of \mathbf{C}, and since n is minimal, $\theta_{1}>\ldots>\theta_{n}(=\omega)$ and $\theta_{1} \neq l$. Since \mathbf{A} is 0 -simple this leaves $n=2, \theta_{1}=\varrho$ and $\theta_{2}=\omega$. It then follows that \mathbf{E} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{B}_{1} with a single factor and \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}_{2}.

Let $\mathbf{A}_{0}^{\boldsymbol{c}}=\left(A_{0} \cup\left\{a_{0}\right\}, X_{0} \cup\left\{x_{0}\right\}, \delta\right)$ be a 0 -simple cone with $\mathbf{A}_{0}=\left(A_{0}, X_{0}, \delta_{0}\right)$, and take an arbitrary automaton $\mathrm{B}=\left(B, Y, \delta^{\prime}\right)$. It is not difficult to give a necessary and sufficient condition ensuring that \mathbf{A}_{0}^{c} is isomorphic to an α_{0}-product of \mathbf{E} with \mathbf{B}. Clearly this can happen if and only if there are a pair of functions $h: A_{0} \rightarrow B$, $\varphi: X_{0} \rightarrow Y$, a state $b_{0} \in B$ and two not necessarily distinct signs $y_{0}, y_{1} \in Y$ such that:
(i) h is injective;
(ii) for every $a_{1}, a_{2} \in A_{0}$ and $x \in X_{0}$ we have $\delta_{0}\left(a_{1}, x\right)=a_{2}$ if and only if $\delta^{\prime}\left(h\left(a_{1}\right), \varphi(x)\right)=h\left(a_{2}\right)$;
(iii) $\delta^{\prime}\left(h\left(A_{0}\right), y_{0}\right)=\left\{b_{0}\right\}, \delta^{\prime}\left(b_{0}, y_{1}\right)=b_{0}$.

If also $b_{0} \notin h\left(A_{0}\right)$ and $y_{0}=y_{1}$ then $\mathbf{A}_{0}^{\boldsymbol{c}}$ is isomorphic to an α_{0}-product of \mathbf{B} with a single factor.

3. The main result

An automaton $\mathrm{A}=(A, X, \delta)$ is called permutation automaton if δ_{x} is a permutation of the state set for every $x \in X$. This is equivalent to saying that δ_{p} is a permutation for every $p \in X^{*}$ or that $S(\mathbf{A})$ is a group. Let \mathscr{K}_{p} denote the class of all permutation automata. It is known that \mathscr{K}_{p} is an α_{0}^{*}-variety, see [1]. Moreover, from the Krohn-Rhodes Decomposition Theorem we have $\mathscr{K}_{p}=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G$ is a simple group $\}$) where the group-like automaton $\mathbf{A}(G)$ on a (finite) group G is defined to be the automaton (G, G, δ) with $\delta(g, h)=g h, g, h \in G$.

Another class of automata we shall be dealing with is the class \mathscr{K}_{m} of all monotone automata. By definition, an automaton $\mathbf{A}=(A, X, \delta)$ is monotone if $\delta(a, p q)=a$ implies $\delta(a, p)=a$, for all $a \in A$ and $p, q \in X^{*}$. This is equivalent to requiring the existence of an ordering \leqq on A such that $a \leqq \delta(a, p)$ for all $a \in A$ and $p \in X^{*}$ (or $a \leqq \delta(a, x)$ for all $a \in A$ and $x \in X$). The class \mathscr{K}_{m} is known to be an α_{0}^{*}-variety. Further, it is the α_{0}-variety generated by \mathbf{E}, i.e. $\mathscr{K}_{m}=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{E}\})$ (see [1], [10], [11]).

Having defined the classes \mathscr{K}_{p} and \mathscr{K}_{m}, put $\mathscr{K}_{p m}=\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}_{p} \cup \mathscr{K}_{m}\right)=$ $=\mathbf{H S P}_{\alpha_{0}}\left(\mathscr{K}_{p} \cup\{\mathbf{E}\}\right)=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G$ is a simple group $\} \cup\{\mathbf{E}\})$. It follows from Stiffler's switching rules that $\mathbf{A} \in \mathscr{K}_{p m}$ if and only if there is an α_{0}-product \mathbf{B} of a permutation automaton with a monotone automaton such that $\mathbf{A} \in \mathbf{H S}(\{\mathbf{B}\})$. For this and other characterizations of the class $\mathscr{K}_{p m}$, see [1] and [10]. It is immediate from our definition that $\mathscr{K}_{p m}$ is an α_{0}-variety. Or even, it is an α_{0}^{*}-variety.

Lemma 3.1. Let \mathbf{A} be a strongly connected automaton. Then $\mathbf{A} \in \mathscr{K}_{p m}$ if and only if $\mathbf{A} \in \mathscr{K}_{\boldsymbol{p}}$.

Proof. Use Lemma 2.3.

Corollary. If $\mathbf{A}=\mathbf{A}_{\mathbf{0}}^{\boldsymbol{c}}$ is a cone in $\mathscr{K}_{p m}$ then \mathbf{A}_{0} a strongly connected permutation automaton.

Lemma 3.2. Let $\mathrm{A}=(A, X, \delta) \in \mathscr{K}_{p m}$ be a cone with apex a_{0} and base A_{0}. If $\delta(a, p)=\delta(b, p) \in A_{0}$ holds for some $a, b \in A_{0}$ and $p \in X^{*}$ then $a=b$.

Proof. From Lemma 2.2 it follows that \mathbf{A} is a homomorphic image of a subautomaton $\mathbf{C}=\left(C, X, \delta^{\prime}\right)$ of an α_{0}-product $\mathbf{B} \times \mathbf{E}[X, \varphi]$ where \mathbf{B} is a permutation
automaton, say $\mathbf{B}=\left(B, X_{1}, \delta_{1}\right)$. Denote by h an onto homomorphism $\mathbf{C} \rightarrow \mathbf{A}$. Set $C_{0}=h^{-1}\left(A_{0}\right)$. We may assume that every state in C_{0} is a generator of C. Each state in C_{0} must have 0 as its second component since otherwise we would have $C \subseteq B \times\{1\}$, and this would yield that \mathbf{C} and \mathbf{A} are permutation automata.

Let $\left(a_{1}, 0\right),\left(b_{1}, 0\right) \in C_{0}$ with $h\left(a_{1}, 0\right)=a, h\left(b_{1}, 0\right)=b$. Take a word $q \in X^{*}$ with $\delta(a, p q)=a$. We have $\delta\left(a,(p q)^{n}\right)=\delta\left(b,(p q)^{n}\right)=a$, and hence $\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)$, $\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right) \in C_{0}$, for all $n \geqq 1$. Define $r=\varphi_{1}(p q)$. For every integer $n \geqq 1$ we have $\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)=\left(\delta_{1}\left(a_{1}, r^{n}\right), 0\right)$ and $\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right)=\left(\delta_{1}\left(b_{1}, r^{n}\right), 0\right)$, Since B is a permutation automaton, there is an $n \geqq 1$ with $a_{1}=\delta_{1}\left(a_{1}, r^{n}\right)$ and $b_{1}=\delta_{1}\left(b_{1}, r^{n}\right)$. Thus we obtain $a=h\left(a_{1}, 0\right)=h\left(\delta^{\prime}\left(\left(a_{1}, 0\right),(p q)^{n}\right)\right)=h\left(\delta^{\prime}\left(\left(b_{1}, 0\right),(p q)^{n}\right)\right)=h\left(b_{1}, 0\right)=b$.

Theorem 3.3. Let $\mathscr{K} \cong \mathscr{K}_{p m}$ be a class containing \mathbf{E}, closed under X-subautomata and homomorphic images and such that $\mathscr{K}^{*} \subseteq \mathscr{K}$. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K} if and only if the following conditions hold:
(i) every simple cone and every simple strongly connected permutation automaton belonging to \mathscr{K} is in $\operatorname{ISP}_{1_{\alpha_{0}}}\left(\mathscr{K}_{0}\right)$,
(ii) for every 0 -simple cone $\mathbf{A}_{0}^{c} \in \mathscr{K}$ there is a $\mathbf{B} \in \mathscr{K}_{0}$ such that \mathbf{A}_{0}^{c} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}.

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary in virtue of Lemma 2.4.

For the converse recall that \mathscr{K} satisfies the assumptions of Theorem 2.1. Therefore, by Theorem 2.1, it suffices to show that every strongly connected automaton and every cone belonging to \mathscr{K} is contained by $\mathbf{I S P}_{a_{0}}\left(\mathscr{K}_{0}\right)$.

Let $\mathbf{A}=(A, X, \delta) \in \mathscr{K}$ be a cone with base A_{0} and apex a_{0}. Since $\mathscr{K}^{*} \subseteq \mathscr{K}$ and $\operatorname{ISP}_{a_{0}}\left(\mathscr{K}_{0}\right)$ is closed under X-subautomata, we may assume that for every $p \in X^{*}$ there is a $\bar{p} \in X$ inducing the same transition as p. If \mathbf{A} is simple then $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$ by (i). If \mathbf{A} is 0 -simple then \mathbf{A} is isomorphic to an α_{0}-product $\mathbf{A}_{0}^{\epsilon}[X, \varphi]$ with a single factor where $\mathbf{A}_{0}^{c} \in \mathscr{K}$ is a 0 -simple cone. (Recall that \mathscr{K} is closed under X-subautomata.) Therefore, we may assume that \mathbf{A} is of the form \mathbf{A}_{0}^{c}. Now, by (ii), \mathbf{A} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B} where $\mathbf{B} \in \mathscr{K}_{0}$. Since \mathbf{E} is a simple cone we have $\mathbf{E} \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$. It follows that $\mathbf{A} \in \mathbf{I S P}_{\alpha_{0}}\left(\mathscr{K}_{0}\right)$. Suppose that \mathbf{A} is neither simple nor 0 -simple. We proceed by induction on $|A|$. If $|A|=2$ our statement holds vacantly. Let $|A|>2$. There exists a congruence relation $\theta \neq \omega$ of A such that $a \theta b$ implies $a=b$ or $a, b \in A_{0}$, and such that A_{0} contains at least two blocks of the partition induced by θ.

Let $C_{0}=\left\{a_{0}\right\}, C_{1}, \ldots, C_{n}\left(n \geqq 2,\left|C_{1}\right|>1\right)$ be the blocks of θ. Since \mathbf{A} is generated by any state in A_{0}, from Lemma 3.2 we have the following: for every $i, j \in\{1, \ldots, n\}$ there exists a word $p \in X^{*}$ with $\delta\left(C_{i}, p\right)=C_{j}$. Consequently, for every $i \in\{1, \ldots, n\}$ there is a pair of words $\left(p_{i}, q_{i}\right)$ with $\delta\left(C_{1}, p_{i}\right)=C_{i}, \delta\left(C_{i}, q_{i}\right)=C_{1}$ and such that $p_{i} q_{i}$ induces the identity map on C_{1} while $q_{i} p_{i}$ induces the identity map on C_{i}.

Set $X^{\prime}=\left\{x \in X \mid \delta\left(C_{1}, x\right) \subseteq C_{0} \cup C_{1}\right\}, \mathbf{C}=\left(C_{0} \cup C_{1}, X^{\prime}, \delta^{\prime}\right)$, where $\delta^{\prime}(c, x)=\delta(c, x)$ for all $c \in C_{0} \cup C_{1}$ and $x \in X^{\prime}$. Obviously, both A / θ and \mathbf{C} are cones in \mathscr{K}. Fix a sign $x_{0} \in X^{\prime}$ with $\delta^{\prime}\left(C_{1}, x_{0}\right)=C_{0}$. Take the α_{0}-product

$$
\mathbf{B}=\left(B, X, \delta^{\prime \prime}\right)=\mathbf{A} / \theta \times \mathbf{C}[X, \varphi]
$$

where $\varphi_{1}(x)=x$ and

$$
\varphi_{2}\left(C_{i}, x\right)=\left\{\begin{array}{lll}
x_{0} & \text { if } \delta\left(C_{i}, x\right)=C_{0} \\
\bar{p}_{i} x q_{j} & \text { if } \delta\left(C_{i}, x\right)=C_{j}
\end{array} \text { and } \quad i, j \neq 0\right.
$$

It is easy to check that $\mathbf{B}^{\prime}=\left(B^{\prime}, X, \delta^{\prime \prime}\right)$ is a subautomaton of \mathbf{B} where

$$
B^{\prime}=\left\{\left(C_{0}, a_{0}\right)\right\} \cup\left\{\left(C_{i}, a\right) \mid i=1, \ldots, n, a \in C_{1}\right\}
$$

Further, the map $\left(C_{0}, a_{0}\right) \mapsto a_{0},\left(C_{i}, a\right) \mapsto \delta\left(a, p_{i}\right)\left(i=1, \ldots, n, a \in C_{1}\right)$ is an isomorphism of \mathbf{B}^{\prime} onto \mathbf{A}. Hence the result follows from the induction hypothesis.

Suppose now that $\mathrm{A}=(A, X, \delta) \in \mathscr{K}$ is a strongly connected automaton. From Lemma 3.1 we know that A is a permutation automaton. Just as before, we may assume that for every $p \in X^{*}$ there is a sign $\bar{p} \in X$ with $\delta_{p}=\delta_{\bar{p}}$. If \mathbf{A} is simple then $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}(\mathscr{K}) \subseteq \mathbf{I S P}_{a_{0}}(\mathscr{K})$. Otherwise let θ be a congruence relation of \mathbf{A} different from ω and i. Denote by $C_{1}, \ldots, C_{n}\left(n \geqq 2,\left|C_{1}\right|>1\right)$ the blocks of the partition induced by θ. Set $X^{\prime}=\left\{x \in X \mid \delta\left(C_{1}, x\right)=C_{1}\right\}$. One shows that A is isomorphic to an α_{0}-product of \mathbf{A} / θ with \mathbf{C}, where $\mathbf{C}=\left(C_{1}, X^{\prime}, \delta^{\prime}\right), \delta^{\prime}(c, x)=\delta(c, x)\left(c \in C_{1}, x \in X^{\prime}\right)$.

We note that a substantial part of the above proof as well as the proofs of Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]).

Corollary. Let $\mathscr{K} \subseteq \mathscr{K}_{p}$ be closed under X-subautomata and homomorphic images and suppose that $\mathscr{K}^{*} \subseteq \mathscr{K}$. If \mathscr{K} contains a nontrivial strongly connected automaton then a class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K} if and only if $\mathbf{A} \in \mathbf{I S P}_{\mathbf{1 \alpha}_{0}}(\mathscr{K})$ holds for every simple strongly connected automaton \mathbf{A} in \mathscr{K}.

Let \mathscr{G} be a nonempty class of (finite) simple groups closed under division. (Recall that G_{1} divides G_{2} for groups G_{1} and G_{2}, written $G_{1} \mid G_{2}$, if and only if G_{1} is a homomorphic image of a subgroup of G_{2}.) Denote by $\mathscr{K}(\mathscr{G})$ the class $\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G \in \mathscr{G}\}) ; \mathscr{K}(\mathscr{G})$ is an α_{0}^{*}-variety contained in \mathscr{K}_{p}. It follows from the Krohn—Rhodes Decomposition Theorem that every α_{0}^{*}-variety of permutation automata is of the form $\mathscr{K}(\mathscr{G})$ except for the α_{0}^{*}-variety consisting of all automata (A, X, δ) such that δ_{x} is the identity map for each $x \in X$. Moreover, if \mathscr{G} contains a nontrivial simple group then for every permutation automaton \mathbf{A} we have $\mathbf{A} \in \mathscr{K}(\mathscr{G})$ if and only if $G \mid S(\mathbf{A})$ implies $G \in \mathscr{G}$ for simple groups G. Since $\mathscr{K}(\mathscr{G}) \subseteq \mathscr{K}_{p}$, also $\mathscr{K}_{m}(\mathscr{G})=\mathbf{H S P}_{a_{0}}\left(\mathscr{K}(\mathscr{G}) \cup \mathscr{K}_{m}\right) \subseteq \mathscr{K}_{p m}$. We obviously have

$$
\mathscr{K}_{m}(\mathscr{G})=\mathbf{H S P}_{a_{0}}(\mathscr{K}(\mathscr{G}) \cup\{\mathbf{E}\})=\mathbf{H S P}_{\alpha_{0}}(\{\mathbf{A}(G) \mid G \in \mathscr{G}\} \cup\{\mathbf{E}\}) .
$$

Thus, $\mathscr{K}_{m}(\mathscr{G})$ is an α_{0}-variety in $\mathscr{K}_{p m}$, or even, it is an α_{0}^{*}-variety.
Corollary. $\mathscr{K}_{m}(\mathscr{G}) \subseteq \mathbf{I S P}_{\alpha_{0}}(\mathscr{K})$ if and only if the following hold:
(i) for every simple cone $\mathbf{A} \in \mathscr{K}_{m}(\mathscr{G})$ we have $\mathbf{A} \in \mathbf{I S P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$,
(ii) for every 0 -simple cone $\mathbf{A}_{0}^{c} \in \mathscr{K}_{m}(\mathscr{G})$ there is a $\mathbf{B} \in \mathscr{K}_{0}$ such that $\mathbf{A}_{0}^{\boldsymbol{c}}$ is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{B}.

Proof. Use Theorem 3.3 and the following fact: every simple strongly connected (permutation) automaton in $\mathscr{K}_{\mathrm{m}}(\mathscr{G})$ is isomorphic to an X-subautomaton of a 0 -simple cone A_{0}^{c} in $\mathscr{K}_{m}(\mathscr{G})$.

Corollary [2]. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for \mathscr{K}_{m} if and only if $\mathrm{E} \in \mathrm{ISP}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$.

Proof. Let \mathscr{G} be the class of trivial groups. We have $\mathscr{K}_{m}=\mathscr{K}_{m}(\mathscr{G})$. On the other hand, every cone in \mathscr{K}_{m} is similar to \mathbf{E}. More exactly, if $\mathbf{A} \in \mathscr{K}_{m}$ is a cone then A is isomorphic to an α_{0}-product in $\mathbf{P}_{1 \alpha_{0}}(\{\mathbf{E}\})$.

An automaton $\mathrm{A}=(A, X, \delta)$ is called commutative if $\delta(a, x y)=\delta(a, y x)$ for all $a \in A$ and $x, y \in X$, i.e., if $S(\mathbf{A})$ is commutative. Denote by \mathscr{K} the class of all commutative automata; \mathscr{K} is closed under X-subautomata and homomorphic images. Moreover, $\mathscr{K}^{*} \subseteq \mathscr{K}$ and $\mathscr{K} \subseteq \mathscr{K}_{p m}$. For a prime $p>1$ let \mathbf{C}_{p} be a fixed
 commutative automaton is in the class $\operatorname{ISP}_{1 \alpha_{0}}\left(\left\{\mathbf{C}_{p} \mid p>1\right.\right.$ is a prime $\left.\}\right)$, and every 0 -simple commutative cone is in $\mathbf{I S P}_{1_{\alpha_{0}}}\left(\left\{\mathbf{C}_{p}^{c} \mid p>1\right.\right.$ is a prime $\left.\}\right)$.

Corollary [7]. A class \mathscr{K}_{0} is isomorphically α_{0}-complete for the class of all commutative automata if and only if the following hold:
(i) $\mathbf{E} \in \mathbf{H S} \mathbf{P}_{1 \alpha_{0}}\left(\mathscr{K}_{0}\right)$,
(ii) for every prime $p>1$ there is an $\mathbf{A} \in \mathscr{K}_{0}$ such that \mathbf{C}_{p}^{c} is isomorphic to a subautomaton of an α_{0}-product of \mathbf{E} with \mathbf{A}.

Abstract

Every isomorphically α_{0}-complete class for a class \mathscr{K} of automata must essentially contain all simple automata belonging to \mathscr{K}. In this paper we present some classes \mathscr{K} for which also the converse is true, or isomorphically α_{0}-complete classes can be characterized by means of automata in \mathscr{K} close to simple automata.

BOLYAI INSTITUTE
A. JOZZSEF UNIVERSITY

ARADI VÉRTANUUK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Eilenberg, S., Automata, languages, and machines, v. B, Academic Press, New York, 1976.
[2] Gécseg, F., On products of abstract automata, Acta Sci. Math, 38 (1976), 21-43.
[3] Gécseg, F., Products of automata, Springer, Berlin, 1986.
[4] Ginzburg, A., Algebraic theory of automata, Academic Press, New York, 1968.
[5] Hartmanis, J. and R. E. Stearns, Algebraic structure theory of sequential machines, PrenticeHall, 1966.
[6] Imreh, B., On α_{0}-products of automata, Acta Cybernet., 3 (1978), 301-307.
[7] Imreh, B., On isomorphic representations of commutative automata with respect to α_{0}-products, Acta Cybernet., 5 (1980), 21-32.
[8] Imreh, B., On finite nilpotent automata, Acta Cybernet., 5 (1981), 281-293.
[9] Імreh, B., On finite definite automata, Acta Cybernet., 7 (1985), 61-65.
[10] Stiffler, P., Extension of the fundamental theorem of finite semigroups, Advances in Mathematics, 11 (1973), 159-209.
[11] Brzozowski, J. A. and F. E. Fich, Languages of \mathscr{R}-trivial monoids, J. of Computer and System Sciences, 20 (1980), 32-49.

