On metric equivalence of v_i -products

F. Gécseg and B. IMREH

In [7] it is shown that the v_3 -product is metrically equivalent to the product. Here we strengthen this result by proving that already the v_1 -product is metrically equivalent to the general product. It is also obtained that, if a class \mathcal{K} of automata is not metrically complete for the product, then $\text{HSP}_q(\mathcal{K}) = \text{HSP}_{v_1}(\mathcal{K})$.

In this paper by an automaton we mean a finite automaton. The only exceptions are varieties of automata; they may contain automata with infinite statesets. For all notions and notations not defined here, see [1], [7], [8] and [9].

We start with

Lemma 1. If a finite class \mathscr{K} of automata is not metrically complete for the product, then every finitely generated automaton $\mathfrak{A} = (X, A, \delta)$ from $\mathrm{HSPP}_{v_1}(\mathscr{K})$ is in $\mathrm{HSP}_{v_1}(\mathscr{K})$.

Proof. First let us note that the concept of the v_1 -product can be generalized in a natural way to products with infinitely many factors, and every automaton in $\mathbf{PP}_{v_1}(\mathcal{K})$ is a v_1 -product with possibly infinitely many factors. Thus, take a v_1 -product

$$\mathfrak{B} = (X, B, \delta') = \prod (\mathfrak{A}_i | i \in I) [X, \varphi, \gamma]$$

with |X| = m and $\mathfrak{A}_i = (X_i, A_i, \delta_i) \in \mathscr{K}$ $(i \in I)$. Let $\{a_1, ..., a_n\}$ be a generating set of \mathfrak{A} . Suppose that a subautomaton of \mathfrak{B} can be mapped homomorphically onto \mathfrak{A} , and let \mathbf{b}_i be a counter image of a_i (i=1, ..., n) under this homomorphism. Denote by $\mathfrak{B}' = (X, B', \delta'')$ the subautomaton of \mathfrak{B} generated by $\{\mathbf{b}_1, ..., \mathbf{b}_n\}$. Moreover, set $u = \max\{|A_i| \ i \in I\}$ and $v = |\mathscr{K}|$. Let $k \ge 0$ be a fixed integer such that, for arbitrary $\mathfrak{C} = (X_{\mathfrak{C}}, C, \delta_{\mathfrak{C}}) \in \mathscr{K}, \ c \in C, \ p \in X_{\mathfrak{C}}^*$ with $|p| \ge k$ and $x_1, x_2 \in X_{\mathfrak{C}}, \ cpx_1 = cpx_2$. (Since \mathscr{K} is not metrically complete, there exists such a k.) We shall show the existence of a v_1 -product $\mathfrak{B} = (X, \overline{B}, \delta)$ of automata from $\{\mathfrak{A}_i|i\in I\}$ with a number of factors not exceeding vu^{nt} , where $t = \frac{m^{k+1}-1}{m-1}$ if m>1, and t=k+1for m=1, such that a subautomaton $\mathfrak{B}' = (X, \overline{B}', \delta')$ of \mathfrak{B} is isomorphic to \mathfrak{B}' . Define the binary relation ϱ on I in the following way: $i \equiv j(\varrho)$ $(i, j\in I)$ if and only if $\mathfrak{A}_i = \mathfrak{A}_j$ and $\delta_i(\operatorname{pr}_i(\mathbf{b}_r), \varphi_i(\mathbf{b}_r, p)) = \delta_j(\operatorname{pr}_j(\mathbf{b}_r), \varphi_j(\mathbf{b}_r, p))$ hold for arbitrary r $(1 \le r \le n)$ and $p \in X^*$ with $|p| \le k$. By the choice of k, $\delta_i(\operatorname{pr}_i(\mathbf{b}_r), \varphi_i(\mathbf{b}_r, q)) =$ $= \delta_j(\operatorname{pr}_j(\mathbf{b}_r), \varphi_j(\mathbf{b}_r, q))$ is valid for any r $(1 \le r \le n)$ and $q \in X^*$. Moreover, since t is the number of words over X with length less than or equal to k, we have at most vu^{nt} ϱ -classes. From every ϱ -class take exactly one element, and let $\{i_1, ..., i_l\}$ be their set. Form the v_1 -product

$$\mathfrak{B} = (X, \overline{B}, \overline{\delta}) = \prod (\mathfrak{A}_{i_i} | j = 1, ..., l) [X, \varphi', \gamma']$$

in the following way:

(i) For every j $(1 \le j \le l, \gamma'(i_i) = \emptyset$ if $\gamma(i_j) = \emptyset$, and $\gamma'(i_j) = \{i_{i_j}\}$ $(j_1 \in \{1, ..., l\})$ if $\gamma(i_i) = \{j_2\}$ and $i_i \equiv j_2(\varrho)$.

(ii) For every j $(1 \le j \le l)$ and $x \in X$, $\varphi'_{i_j}(x) = \varphi_{i_j}(x)$ if $\gamma'(i_j) = \emptyset$. (iii) For every j $(1 \le j \le l)$, if $\gamma'(i_j) = \{i_{j_1}\}$, then $\varphi'_{i_j}(a, x) = \varphi_{i_j}(a, x)$ $(a \in A_{i_{j_1}}, A_{j_2})$ $x \in X$).

Moreover, let $\mathbf{\overline{b}}_i$ (i=1, ..., n) be those states of \mathfrak{B} which, for every j(=1, ..., l), satisfy the equality $pr_{i_j}(\bar{\mathbf{b}}_i) = pr_{i_j}(\mathbf{b}_i)$. Denote by $\bar{\mathfrak{B}}' = (X, \bar{B}', \bar{\delta}')$ the subautomaton of \mathfrak{B} generated by $\{\overline{b_1}, ..., \overline{b_n}\}$. Moreover, consider the mapping $\psi: B' \to \overline{B'}$ given by $\psi(\mathbf{b}_i p) = \overline{\mathbf{b}}_i p$ ($p \in X^*$, i = 1, ..., n). Clearly, ψ is an isomorphism of \mathfrak{B}' onto $\overline{\mathfrak{B}}'$.

Lemma 2. If a finite class \mathcal{K} of automata is not metrically complete for the product, then the equality $HSPP_{a}(\mathcal{H}) = HSPP_{v}(\mathcal{H})$ holds.

Proof. Obviously, $HSPP_{v_1}(\mathscr{K}) \subseteq HSPP_g(\mathscr{K})$. Thus, it is enough to show $HSPP_g(\mathscr{K}) \subseteq HSPP_{v_1}(\mathscr{K})$. This latter inclusion holds if and only if $HSPP_g(\mathscr{K}) \cap$ $\bigcap \mathscr{K}_X \subseteq \mathbf{HSPP}_{v_1}(\mathscr{K}) \cap \mathscr{K}_x$ for all input alphabet X, where \mathscr{K}_X is the similarity class of all automata with input alphabet X. Since automata identities have at most two variables, $HSPP_{g}(\mathcal{K}) \cap \mathcal{K}_{X} = HSP(\{\mathfrak{A}_{2}\})$, where \mathfrak{A}_{2} is a free automaton of the variety $\mathrm{HSPP}_{\mathfrak{g}}(\mathscr{K}) \cap \mathscr{K}_{\mathfrak{X}}$ generated by two elements. Let \mathfrak{A}_1 be a free automaton in $\mathrm{HSPP}_{\mathfrak{g}}(\mathscr{X})\cap\mathscr{H}_{\mathfrak{X}}$ generated by a single element. One can show that every finitely generated automaton in $\mathrm{HSPP}_{q}(\mathscr{K}) \cap \mathscr{K}_{X}$ is in $\mathrm{HSP}_{q}(\mathscr{K}), \mathfrak{A}_{2}$ can be represented homomorphically by a quasi-direct square of \mathfrak{A}_1 , or by a quasi-direct product of \mathfrak{A}_1 by a two-state discrete automaton with a single input signal depending on the forms of the p-identities holding in \mathfrak{A}_2 (see the Theorem in [3] and the proof of Theorem 2.1 from [5]). Since every finitely generated automaton from $HSPP_{a_0}(\mathscr{X})$ is in $HSP_{an}(\mathscr{H})$, by the Theorem of [3] and Proposition 12 from [4], if a two-state discrete automaton is in HSPP_a(\mathscr{K}) then it is in HSQ(\mathscr{K}), where Q is the quasidirect product operator. Therefore, to prove $HSPP_{g}(\mathcal{K}) \subseteq HSPP_{y_{1}}(\mathcal{K})$ it is sufficient to show that $\mathfrak{A}_1 \in \mathbf{HSPP}_{\mathfrak{p}_1}(\mathscr{X})$ for an arbitrary input alphabet X. By the proof of Theorem 2 of [7], we may suppose that there is a largest positive integer t such that for an automaton $\mathfrak{C} = (X, C, \delta_C)$ in \mathscr{X} , a state $c \in C$ and a word $r \in X^*$ with |r| = t - 1 the state cr is ambiguous.

Assume that the identity zp = zq $(p, q \in X^*)$ does not hold in \mathfrak{A}_1 , where z is a variable, $p = x_1 \dots x_k x_{k+1} \dots x_m$, $q = x_1 \dots x_k y_{k+1} \dots y_n$, and $x_{k+1} \neq y_{k+1}$ if m, n > k. If $m, n \leq t$, or m < t and $n \geq t$, then by the proof of Theorem 2 in [7], zp = zq is not satisfied by $\mathbf{P}_{v_1}(\mathcal{K})$. Thus, we may assume that $m, n \ge t$.

Since $\mathfrak{A}_1 \in \mathbf{HSPP}_{\mathfrak{a}}(\mathscr{K})$, there are an automaton $\mathfrak{A} = (\overline{X}, A, \delta)$ in \mathscr{K} , a state $a_0 \in A$ and two words $p' = x'_1 \dots x'_l x'_{l+1} \dots x'_m$, $q' = x'_1 \dots x'_l y'_{l+1} \dots y'_n$ in \overline{X}^* such that $a_0 p' \neq a_0 q'$, $l \ge k$ and $x'_{l+1} \neq y'_{l+1}$ if m, n > l. We shall suppose that there are no words $\overline{p} = \overline{x}_1 \dots \overline{x}_r \overline{x}_{r+1} \dots \overline{x}_m$ and $\overline{q} = \overline{x}_1 \dots \overline{x}_r \overline{y}_{r+1} \dots \overline{y}_n$ in \overline{X}^* with $a_0 \overline{p} \neq a_0 \overline{q}$ and r > l.

Let
$$a_i = a_0 x'_1 \dots x'_i$$
 $(i = 1, \dots, m)$ and
 $b_i = \begin{cases} a_0 x'_1 \dots x'_i & \text{if } 1 \le i \le l, \\ a_0 x'_1 \dots x'_i y'_{i+1} \dots y'_i & \text{if } l < i \le n. \end{cases}$

In the sequel we can confine ourselves to the case m, n > l. Assume to the contrary, say m=l. Consider the v_1 -product $\mathfrak{B}=(X, B, \delta')=\mathfrak{A}[X, \varphi, \gamma]$ with $\gamma(1)=\{1\}$,

$$\varphi(b_i, x_{i+1}) = x'_{i+1} \quad (i = 0, ..., \min\{m-1, u\}),$$

$$\varphi(b_i, y_{i+1}) = y'_{i+1} \quad (i = l, ..., \min\{n-1, u\})$$

where u is the largest index for which the states $b_0, ..., b_n$ are pairwise distinct, and φ is given arbitrarily in all other cases. Observe that if $b_i = b_j$ for $0 \le i < j \le n$ then $\delta(b_r, x') = \delta(b_r, y')$ for arbitrary $r \ge i$ and $x', y' \in X$; otherwise \mathscr{K} would be metrically complete for the product. (This observation will be used silently throughout the paper.) By the construction of \mathfrak{B} , $a_0 p_{\mathfrak{B}} = a_0 p'_{\mathfrak{A}}$ and $a_0 q_{\mathfrak{B}} = a_0 q'_{\mathfrak{A}}$. Therefore, $a_0 p_{\mathfrak{B}} \neq a_0 q_{\mathfrak{B}}$.

We say that a_m and b_n induce disjoint cycles, if the subautomata generated by a_m and b_n are disjoint. Otherwise they induce the same cycle.

Let us distinguish the following cases.

Case 1. The states a_m and b_n induce disjoint cycles. By our assumptions on p' and q'; $\{a_{l+1}, ..., a_m\} \cap \{b_{l+1}, ..., b_m\} = \emptyset$. Let u_1 $(0 \le u_1 < m)$ be the largest index such that the elements $a_0, a_1, ..., a_{u_1}$ are pairwise distinct. The number u_2 $(0 \le u_2 < n)$ has the same meaning for $b_0, b_1, ..., b_{u_2}$.

Take the v_1 -product

$$\mathfrak{B} = (X, B, \delta') = \mathfrak{A}[X, \varphi, \gamma]$$

 $\gamma(1) = \{1\}.$

where

$$\varphi(a_{l-k+i}, x_{i+1}) = x'_{l-k+i+1} \quad (0 \le i \le u_1 + k - l),$$

$$\varphi(b_{l+i}, y_{k+i+1}) = y'_{l+i+1} \quad (0 \le i \le u_2 - l),$$

and in all other cases φ is given arbitrarily. Take $\mathbf{b} = (a_{l-k})$. Then $\mathbf{b}p = (a_{l-k}x'_{l-k+1}...x'_m\bar{x}^{l-k})$ and $\mathbf{b}q = (a_{l-k}x'_{l-k+1}...x'_ly'_{l+1}...y'_n\bar{x}^{l-k})$, where $\bar{x} \in \overline{X}$ is arbitrary. (Remember that $m, n \ge t$.) Therefore, $\mathbf{b}p \neq \mathbf{b}q$.

Case 2. The states a_m and b_n induce the same cycle, i.e., in the intersection of the subautomata generated by a_m and b_n there is a cycle C of length w. We distinguish some subcases.

Case 2.1. $m \neq n \pmod{w}$. Then w > 1. Take an arbitrary v_1 -product $\mathfrak{B} = (X, A, \delta')$ of \mathfrak{A} with a single factor. In \mathfrak{B} , for any $c \in C$, we have $cp \neq cq$. Case 2.2. $m \equiv n \pmod{w}$. Some further subcases are needed.

Case 2.2.1. $a_m, b_n \in C$ or m = n.

If
$$\{a_{l+1}, ..., a_m\} \cap \{b_{l+1}, ..., b_n\} = \emptyset$$
, then let u_1 $(0 \le u_1 < m)$ be the largest

131

index such that the elements $a_0, a_1, ..., a_{u_1}$ are pairwise distinct. The number u_2 $(0 \le u_2 < n)$ has the same meaning for $b_0, b_1, ..., b_{u_2}$.

Take the v_1 -product

$$\mathfrak{B} = (X, B, \delta') = (\mathfrak{U} \times \ldots \times \mathfrak{U})_{l-k+1 \text{ times}} [X, \varphi, \gamma]$$

where

$$\begin{split} \gamma(1) &= \{1\}; \quad \gamma(i) = \{i-1\} \quad (i=2, \ldots, l-k+1), \\ \varphi_1(a_{l-k+i}, x_{i+1}) &= x'_{l-k+i+1} \quad (0 \leq i \leq u_1+k-l), \\ \varphi_1(b_{l+i}, y_{k+i+1}) &= y'_{l+i+1} \quad (0 \leq i \leq u_2-l), \end{split}$$

and for every j(=2, ..., l-k+1),

$$\varphi_j(a_{l-k-(j-2)+i}, x_{i+1}) = x'_{l-k-(j-2)+i} \quad (0 \le i \le u_1 - l + k + j - 2),$$

$$\varphi_j(b_{l-(j-2)+i}, y_{k+i+1}) = \begin{cases} x'_{l-(j-2)+i} & \text{if } 0 \le i \le j - 2\\ y'_{l-(j-2)+i} & \text{if } j - 2 < i \le u_2 - l + j - 2, \end{cases}$$

and in all other cases φ is given arbitrarily in accordance with the definition of the v_1 -product.

Take $\mathbf{b} = (a_{l-k}, a_{l-k-1}, ..., a_0)$. Then $\mathbf{b}p = (a_{l-k}p_0, a_{l-k-1}p_1, ..., a_0p_{l-k})$ and $\mathbf{b}q = (a_{l-k}q_0, a_{l-k-1}q_1, ..., a_0q_{l-k})$ where, for every j(=0, ..., l-k), $p_j = x'_{l-k-j+1} \dots x'_m \bar{x}^{l-k-j}$ and $q_j = x'_{l-k-j+1} \dots x'_l y'_{l+1} \dots y'_n \bar{x}^{l-k-j}$, and $\bar{x} \in \bar{X}$ is arbitrary. Thus $p_{l-k} = p'$ and $q_{l-k} = q'$, implying $\mathbf{b}p \neq \mathbf{b}q$.

If $\{a_{l+1}, \ldots, a_m\} \cap \{b_{l+1}, \ldots, b_n\} \neq \emptyset$, then let r $(l+1 \le r \le m)$ be the least index for which there is a b_j with $a_r = b_j$. Moreover, let s $(l+1 \le s \le n)$ be the least index such that $b_s = a_r$. Then $r \ne s$, since in the opposite case $\overline{p} = x'_1 \ldots x'_r x'_{r+1} \ldots x'_m$ and $\overline{q} = x'_1 \ldots x'_r y'_{r+1} \ldots y'_n$ would contradict the choice of p' and q'. Assume that r < s. Let u $(0 \le u < m)$ be the largest index for which the states a_0, \ldots, a_u are pairwise distinct. Take the v_1 -product

$$\mathfrak{B} = (X, B, \delta') = (\mathfrak{A} \times \ldots \times \mathfrak{A})_{l-k+1 \text{ times}} [X, \varphi, \gamma]$$

where

$$\begin{aligned} \gamma(1) &= \{1\}; \quad \gamma(i) = \{i-1\} \quad (2 \leq i \leq l-k+1), \\ \varphi_1(a_{l-k+i}, x_{i+1}) &= x'_{l-k+i+1} \quad (0 \leq i \leq u+k-l), \\ \varphi_1(b_{l+i}, y_{k+i+1}) &= y'_{l+i+1} \quad (0 \leq i \leq r-l), \end{aligned}$$

and for every j(=2, ..., l-k+1),

$$\varphi_j(a_{l-k-(j-2)+i}, x_{i+1}) = x'_{l-k-(j-2)+i} \quad (0 \le i \le u-l+k+j-2),$$

$$\varphi_j(b_{l-(j-2)+i}, y_{k+i+1}) = \begin{cases} x'_{l-(j-2)+i} & \text{if } 0 \le i \le j-2, \\ y'_{l-(j-2)+i} & \text{if } j-2 < i \le r-l+j-2, \end{cases}$$

and in all other cases φ is given arbitrarily. Take the state

$$\mathbf{b} = (a_{l-k}, a_{l-k-1}, ..., a_0) \in B$$

Then $bp = (b'_1, \ldots, b'_{l-k}, a_0p')$ and $bq = (b''_1, \ldots, b''_{l-k}, a_0x'_1 \ldots x'_ly'_{l+1} \ldots y'_r \bar{q})$ where $\bar{q} \in \bar{X}^*$ satisfies the equality $|\bar{q}| = n - r$. One can easily check that $a_0p' \neq a_0x'_1 \ldots x'_ly'_{l+1} \ldots y'_r \bar{q}$. Indeed, in the opposite case let \bar{q}' be the initial segment of \bar{q} with length m-r if $m \leq n$, and otherwise let $\bar{q}' = \bar{q}\bar{q}$, where $\bar{q} \in \bar{X}^*$ is arbitrary with $|\bar{q}\bar{q}| = m - r$. From our assumptions it follows that $a_0x'_1 \ldots x'_ly'_{l+1} \ldots y'_r \bar{q}' \neq a_0q'$. Therefore, by r > l, the pair $x'_1 \ldots x'_ly'_{l+1} \ldots y'_r \bar{q}'$, q' contradicts the choice of p' and q'.

Case 2.2.2. $m \neq n$ and at least one of a_m and b_n is not in C.

Case 2.2.2.1. None of a_m and b_n is in C and m < n. Then the states $b_0, ..., b_n$ are pairwise distinct. Take the v_1 -product

$$\mathfrak{B} = (X, B, \delta') = \mathfrak{A}[X, \varphi, \gamma]$$

where

$$\varphi(1) = \{1\},\$$

$$\varphi(b_i, x_{i+1}) = \begin{cases} x'_{i+1} & \text{if } 0 \leq i < l, \\ y'_{i+1} & \text{if } l \leq i < m, \end{cases}$$

$$\varphi(b_i, y_{i+1}) = \begin{cases} x'_{i+1} & \text{if } k \leq i < l, \\ y'_{i+1} & \text{if } l \leq i < n, \end{cases}$$

and φ is given arbitrarily in all other cases. Taking $\mathbf{b}=(b_0)$ we obtain $\mathbf{b}p=(b_m)$ and $\mathbf{b}q=(b_n)$.

Case 2.2.2.2. $a_m \notin C$, $b_n \in C$ and n > m; or $a_m \notin C$, $b_n \in C$ and n < m. The states a_0, a_1, \ldots, a_m are pairwise distinct. Take the v_1 -product

$$\mathfrak{B} = (X, B, \delta') = \mathfrak{A}[X, \varphi, \gamma]$$

where

$$\begin{aligned} \gamma(1) &= \{1\}, \\ \varphi(a_i, x_{i+1}) &= x'_{i+1} \quad (0 \leq i < m), \\ \varphi(a_i, y_{i+1}) &= x'_{i+1} \quad (k \leq i < \min\{m, n\}), \end{aligned}$$

and φ is given arbitrarily in the remaining cases. Let $\mathbf{b} = (a_0)$. If n > m, then $\mathbf{b}p = (a_m)$ and $\mathbf{b}q = (a_m \bar{x}^{n-m})$, where $\bar{x} \in \bar{X}$ is arbitrary. Obviously, $a_m \neq a_m \bar{x}^{n-m}$, since in the opposite case $a_m \in C$. If n < m, then $\mathbf{b}p = (a_m)$ and $\mathbf{b}q = (a_n)$. \Box

Remark. Let \mathscr{K} be an arbitrary class of automata. In [3] it is shown that if an identity does not hold in an infinite product of automata from \mathscr{K} , then there is a finite product of automata from \mathscr{K} which does not satisfy the given identity either. (See also [2], where this result is generalized to automata with infinite input alphabets.) Moreover, by Theorem 1 of [7], the v_1 -product is equivalent to the product as regards metric completeness. Therefore, if \mathscr{K} is metrically complete for the product, then none of the nontrivial *p*-identities holds in $HSPP_{v_1}(\mathscr{K})$. Thus, using Lemma 2, we obtain that $HSPP_g(\mathscr{K}) = HSPP_{v_1}(\mathscr{K})$ for arbitrary class of automata. However, Lemma 2 will be sufficient to prove our main result.

By Lemmas 1 and 2, we obtain

Corollary 3. If a class \mathscr{K} of automata is not metrically complete for the product, then $HSP_{a}(\mathscr{K}) = HSP_{v_{1}}(\mathscr{K})$.

Proof. The inclusion $\operatorname{HSP}_{v_1}(\mathscr{K}) \subseteq \operatorname{HSP}_g(\mathscr{K})$ is obvious. If $\mathfrak{A} \in \operatorname{HSP}_g(\mathscr{K})$, then there exists a finite subset \mathscr{K} such that $\mathfrak{A} \in \operatorname{HSP}_g(\mathscr{K})$. Therefore, by Lemmas 1 and 2, $\mathfrak{A} \in \operatorname{HSP}_{v_1}(\mathscr{K})$. \Box

Let us note that by the proof of the Theorem in [6], $HSP_{a_0}(\mathcal{K}) = HSP_g(\mathcal{K})$ if \mathcal{K} is not metrically complete for the product. Thus, for such classes \mathcal{K} , the equality $HSP_{a_0}(\mathcal{K}) = HSP_{v_1}(\mathcal{K})$ holds, too.

Now we are ready to state and prove the main result of the paper.

Theorem 4. The v_1 -product is metrically equivalent to the general product.

Proof. Let \mathscr{K} be an arbitrary class of automata. If \mathscr{K} is metrically complete for the product, then by Theorem 1 in [7], \mathscr{K} is metrically complete with respect to the v_1 -product. If \mathscr{K} is not metrically complete, then $\operatorname{HSP}_g(\mathscr{K}) = \operatorname{HSP}_{v_1}(\mathscr{K})$, as it is stated in Corollary 3. \Box

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE 1 SZEGED, HUNGARY H--6720

References

- [1] Dömösi, P., B. IMREH, On ν_i-products of automata, Acta Cybernet., v. VII. 2, 1983, pp. 149---162.
- [2] ÉSIK, Z., On identities preserved by general products of algebras, Acta Cybernet., v. VI. 3, 1983, pp. 285-289.
- [3] ÉSIK, Z., F. GÉCSEG, General products and equational classes of automata, Acta Cybernet., VI. 3, 1983, pp. 281-284.
- [4] ÉSIK, Z., F. GÉCSEG, On a representation of tree automata, Theorical Computer Science, to appear.
- [5] ÉSIK, Z., F. GÉCSEG, A decidability result for homomorphic representation of automata by α_0 -products, Acta Mathematica Hungarica, submitted for publication.
- [6] ESIK, Z., GY. HORVÁTH, The α_z-product is homomorphically general, Papers on Automata Theory V, no. DM 83-3, pp. 49-62, Karl Marx University of Economics, Department of Mathematics, Budapest (1983).
- [7] GÉCSEG, F., Metric representations by v_i -products, Acta Cybernet., v. VII. 2, 1985, pp. 203–209.
- [8] Gécseg, F., Products of automata, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
- [9] GÉCSEG, F., B. IMREH, A comparison of α_i -products and ν_i -products, Foundations of Control Engineering, submitted for publication.

(Received Sept. 12, 1986)