On metric equivalence of $\boldsymbol{v}_{\boldsymbol{i}}$-products

F. Gécseg and B. Imreh

In [7] it is shown that the v_{3}-product is metrically equivalent to the product. Here we strengthen this result by proving that already the v_{1}-product is metrically equivalent to the general product. It is also obtained that, if a class \mathscr{K} of automata is not metrically complete for the product, then $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathbf{v}_{1}}(\mathscr{K})$.

In this paper by an automaton we mean a finite automaton. The only exceptions are varieties of automata; they may contain automata with infinite statesets. For all notions and notations not defined here, see [1], [7], [8] and [9].

We start with
Lemma 1. If a finite class \mathscr{K} of automata is not metrically complete for the product, then every finitely generated automaton $\mathfrak{H}=(X, A, \delta)$ from $\operatorname{HSPP}_{v_{1}}(\mathscr{K})$ is in $\mathbf{H S P}_{\mathrm{v}_{1}}(\mathscr{K})$.

Proof. First let us note that the concept of the ν_{1}-product can be generalized in a natural way to products with infinitely many factors, and every automaton in $\mathbf{P P}_{v_{1}}(\mathscr{K})$ is a v_{1}-product with possibly infinitely many factors. Thus, take a v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\Pi\left(\mathfrak{H}_{i} \mid i \in I\right)[X, \varphi, \gamma]
$$

with $|X|=m$ and $\mathscr{H}_{i}=\left(X_{i}, A_{i}, \delta_{i}\right) \in \mathscr{K}(i \in I)$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a generating set of \mathfrak{A}. Suppose that a subautomaton of \mathfrak{B} can be mapped homomorphically onto \mathfrak{G}, and let b_{i} be a counter image of $a_{i}(i=1, \ldots, n)$ under this homomorphism. Denote by $\mathfrak{B}^{\prime}=\left(X, B^{\prime}, \delta^{\prime \prime}\right)$ the subautomaton of \mathfrak{B} generated by $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$. Moreover, set $u=\max \left\{\left|A_{i}\right| i \in I\right\}$ and $v=|\mathscr{K}|$. Let $k \geqq 0$ be a fixed integer such that, for arbitrary $\mathbb{C}=\left(X_{\mathscr{C}}, C, \delta_{\mathbb{C}}\right) \in \mathscr{K}, c \in C, p \in X_{\mathscr{E}}^{*}$ with $|p| \geqq k$ and $x_{1}, x_{2} \in X_{\mathscr{E}}$, $c p x_{1}=c p x_{2}$. (Since \mathscr{K} is not metrically complete, there exists such a k.) We shall show the existence of a v_{1}-product $\overline{\mathfrak{B}}=(X, \bar{B}, \bar{\delta})$ of automata from $\left\{\mathscr{A}_{i} \mid i \in I\right\}$ with a number of factors not exceeding $v u^{n t}$, where $t=\frac{m^{k+1}-1}{m-1}$ if $m>1$, and $t=k+1$ for $m=1$, such that a subautomaton $\overline{\mathfrak{B}}^{\prime}=\left(X, \bar{B}^{\prime}, \bar{\delta}^{\prime}\right)$ of $\overline{\mathfrak{B}}$ is isomorphic to \mathfrak{B}^{\prime}.

Define the binary relation ϱ on I in the following way: $i \equiv j(\varrho)(i, j \in I)$ if and only if $\mathfrak{A}_{i}=\mathfrak{A}_{j}$ and $\delta_{i}\left(\mathrm{pr}_{i}\left(\mathbf{b}_{r}\right), \varphi_{i}\left(\mathbf{b}_{r}, p\right)\right)=\delta_{j}\left(\mathrm{pr}_{j}\left(\mathbf{b}_{r}\right), \varphi_{j}\left(\mathbf{b}_{r}, p\right)\right)$ hold for arbi$\operatorname{trary} r(1 \leqq r \leqq n)$ and $p \in X^{*}$ with $|p| \leqq k$. By the choice of $k, \delta_{i}\left(\operatorname{pr}_{i}\left(\mathbf{b}_{r}\right), \varphi_{i}\left(\mathbf{b}_{r}, q\right)\right)=$ $=\delta_{j}\left(\operatorname{pr}_{j}\left(\mathbf{b}_{r}\right), \varphi_{j}\left(\mathbf{b}_{r}, q\right)\right)$ is valid for any $r(1 \leqq r \leqq n)$ and $q \in X^{*}$. Moreover, since
t is the number of words over X with length less than or equal to k, we have at most $v u^{n t} \varrho$-classes. From every ϱ-class take exactly one element, and let $\left\{i_{1}, \ldots, i_{l}\right\}$ be their set. Form the v_{1}-product

$$
\overline{\mathfrak{B}}=(X, \bar{B}, \bar{\delta})=\Pi\left(\mathfrak{H}_{i j} \mid j=1, \ldots, l\right)\left[X, \varphi^{\prime}, \gamma^{\prime}\right]
$$

in the following way:
(i) For every $j\left(1 \leqq j \leqq l, \gamma^{\prime}\left(i_{j}\right)=\emptyset\right.$ if $\gamma\left(i_{j}\right)=\emptyset$, and $\gamma^{\prime}\left(i_{j}\right)=\left\{i_{j_{1}}\right\}\left(j_{1} \in\{1, \ldots, l\}\right)$ if $\gamma\left(i_{j}\right)=\left\{j_{2}\right\}$ and $i_{j_{1}} \equiv j_{2}(\varrho)$.
(ii) For every j ($1 \leqq j \leqq l$) and $x \in X, \varphi_{i j}^{\prime}(x)=\varphi_{i,}(x)$ if $\gamma^{\prime}\left(i_{j}\right)=\emptyset$.
(iii) For every $j(1 \leqq j \leqq l)$, if $\gamma^{\prime}\left(i_{j}\right)=\left\{i_{j_{1}}\right\}$, then $\varphi_{i j}^{\prime}(a, x)=\varphi_{i_{j}}(a, x)\left(a \in A_{i_{j_{1}}}\right.$, $x \in X$).

Moreover, let $\mathrm{K}_{i}(i=1, \ldots, n)$ be those states of $\overline{\mathcal{B}}$ which, for every $j(=1, \ldots, l)$, satisfy the equality $\mathrm{pr}_{i_{j}}\left(\overline{\mathrm{~b}}_{i}\right)=\mathrm{pr}_{i_{j}}\left(\mathbf{b}_{i}\right)$. Denote by $\overline{\mathfrak{B}}^{\prime}=\left(X, \bar{B}^{\prime}, \bar{\delta}^{\prime}\right)$ the subautomaton of $\overline{\mathfrak{B}}$ generated by $\left\{\bar{b}_{1}, \ldots, \overline{\mathrm{~b}}_{n}\right\}$. Moreover, consider the mapping $\psi: \bar{B}^{\prime} \rightarrow \bar{B}^{\prime}$ given by $\psi\left(\mathbf{b}_{i} p\right)=\bar{b}_{i} p\left(p \in X^{*}, i=1, \ldots, n\right)$. Clearly, ψ is an isomorphism of \mathfrak{B}^{\prime} onto $\overline{\mathfrak{B}}^{\prime}$.

Lemma 2. If a finite class \mathscr{K} of automata is not metrically complete for the product, then the equality $\mathbf{H S P P}_{g}(\mathscr{K})=\operatorname{HSPP}_{\mathrm{v}_{1}}(\mathscr{K})$ holds.

Proof. Obviously, $\mathbf{H S P P}_{\mathbf{v}_{1}}(\mathscr{K}) \subseteq \mathbf{H S P P}_{g}(\mathscr{K})$. Thus, it is enough to show $\operatorname{HSPP}_{g}(\mathscr{K}) \subseteq \operatorname{HSPP}_{v_{1}}(\mathscr{K})$. This latter inclusion holds if and only if $\mathbf{H S P P}_{g}(\mathscr{K}) \cap$ $\cap \mathscr{K}_{X} \subseteq \mathbf{H S P P}_{v_{1}}(\mathscr{K}) \cap \mathscr{K}_{x}$ for all input alphabet X, where \mathscr{K}_{X} is the similarity class of all automata with input alphabet X. Since automata identities have at most two variables, $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}=\operatorname{HSP}\left(\left\{\mathfrak{Q}_{2}\right\}\right)$, where \mathfrak{N}_{2} is a free automaton of the variety HSPP $_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ generated by two elements. Let \mathfrak{A}_{1} be a free automaton in $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ generated by a single element. One can show that every finitely generated automaton in $\operatorname{HSPP}_{g}(\mathscr{K}) \cap \mathscr{K}_{X}$ is in $\mathbf{H S P}_{g}(\mathscr{K}), \mathfrak{A}_{2}$ can be represented homomorphically by a quasi-direct square of \mathfrak{A}_{1}, or by a quasi-direct product of \mathfrak{M}_{1} by a two-state discrete automaton with a single input signal depending on the forms of the p-identities holding in \mathscr{H}_{2} (see the Theorem in [3] and the proof of Theorem 2.1 from [5]). Since every finitely generated automaton from $\operatorname{HSPP}_{a_{0}}(\mathscr{K})$ is in $\operatorname{HSP}_{\alpha_{0}}(\mathscr{K})$, by the Theorem of [3] and Proposition 12 from [4], if a two-state discrete automaton is in $\operatorname{HSPP}_{g}(\mathscr{K})$ then it is in $\operatorname{HSQ}(\mathscr{K})$, where \mathbf{Q} is the quasidirect product operator. Therefore, to prove $\mathbf{H S P P}_{g}(\mathscr{K}) \subseteq \operatorname{HSPP}_{v_{2}}(\mathscr{K})$ it is sufficient to show that $\mathfrak{A}_{1} \in \mathbf{H S P P}_{v_{1}}(\mathscr{K})$ for an arbitrary input alphabet X. By the proof of Theorem 2 of [7], we may suppose that there is a largest positive integer t such that for an automaton $\mathbb{C}=\left(X, C, \delta_{C}\right)$ in \mathscr{K}, a state $c \in C$ and a word $r \in X^{*}$ with $|r|=t-1$ the state $c r$ is ambiguous.

Assume that the identity $z p=z q\left(p, q \in X^{*}\right)$ does not hold in \mathfrak{Y}_{1}, where z is a variable, $p=x_{1} \ldots x_{k} x_{k+1} \ldots x_{m}, q=x_{1} \ldots x_{k} y_{k+1} \ldots y_{n}$, and $x_{k+1} \neq y_{k+1}$ if $m, n>k$: If $m, n \leqq t$, or $m<t$ and $n \geqq t$, then by the proof of Theorem 2 in [7], $z p=z q$ is not satisfied by $\mathbf{P}_{v_{1}}(\mathscr{K})$. Thus, we may assume that $m, n \geqq t$.

Since $\mathscr{A}_{1} \in \mathbf{H S P P} \mathbf{S}_{g}(\mathscr{K})$, there are an automaton $\mathfrak{V}=(\bar{X}, A, \delta)$ in \mathscr{K}, a state $a_{0} \in A$ and two words $p^{\prime}=x_{1}^{\prime} \ldots x_{l}^{\prime} x_{l+1}^{\prime} \ldots x_{m}^{\prime}, q^{\prime}=x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime}$ in \bar{X}^{*} such that $a_{0} p^{\prime} \neq a_{0} q^{\prime}, l \geqq k$ and $x_{l_{+1}^{\prime}}^{\prime} \neq y_{l+1}^{\prime}$ if $m, n>l$. We shall suppose that there are no words $\bar{p}=\bar{x}_{1} \ldots \bar{x}_{r} \bar{x}_{r+1} \ldots \bar{x}_{m}$ and $\bar{q}=\bar{x}_{1} \ldots \bar{x}_{r} \bar{y}_{r+1} \ldots \bar{y}_{n}$ in \bar{X}^{*} with $a_{0} \bar{p} \neq a_{0} \bar{q}$ and $r>l$.

Let $a_{i}=a_{0} x_{1}^{\prime} \ldots x_{i}^{\prime}(i=1, \ldots, m)$ and

$$
b_{i}=\left\{\begin{array}{l}
a_{0} x_{1}^{\prime} \ldots x_{i}^{\prime} \quad \text { if } \quad 1 \leqq i \leqq l, \\
a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{+1}^{\prime} \ldots y_{i}^{\prime} \text { if } l<i \leqq n
\end{array}\right.
$$

In the sequel we can confine ourselves to the case $m, n>l$. Assume to the contrary, say $m=l$. Consider the v_{1}-product $\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]$ with $\gamma(1)=\{1\}$,

$$
\begin{array}{ll}
\varphi\left(b_{i}, x_{i+1}\right)=x_{i+1}^{\prime} & (i=0, \ldots, \min \{m-1, u\}) \\
\varphi\left(b_{i}, y_{i+1}\right)=y_{i+1}^{\prime} & (i=l, \ldots, \min \{n-1, u\})
\end{array}
$$

where u is the largest index for which the states b_{0}, \ldots, b_{n} are pairwise distinct, and φ is given arbitrarily in all other cases. Observe that if $b_{i}=b_{j}$ for $0 \leqq i<j \leqq n$ then $\delta\left(b_{r}, x^{\prime}\right)=\delta\left(b_{r}, y^{\prime}\right)$ for arbitrary $r \geqq i$ and $x^{\prime}, y^{\prime} \in X$; otherwise \mathscr{K} would be metrically complete for the product. (This observation will be used silently throughout the paper.) By the construction of $\mathfrak{B}, a_{0} p_{\mathfrak{B}}=a_{0} p_{\mathfrak{A}}^{\prime}$ and $a_{0} q_{\mathfrak{B}}=a_{0} q_{\mathfrak{Q}}^{\prime}$. Therefore, $a_{0} p_{\mathfrak{B}} \neq a_{0} q_{\mathfrak{B}}$.

We say that a_{m} and b_{n} induce disjoint cycles, if the subautomata generated by a_{m} and b_{n} are disjoint. Otherwise they induce the same cycle.

Let us distinguish the following cases.
Case 1. The states a_{m} and b_{n} induce disjoint cycles. By our assumptions on p^{\prime} and $q^{\prime} ;\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{m}\right\}=\emptyset$. Let $u_{1}\left(0 \leqq u_{1}<m\right)$ be the largest index such that the elements $a_{0}, a_{1}, \ldots, a_{u_{1}}$ are pairwise distinct. The number $u_{2}\left(0 \leqq u_{2}<n\right)$ has the same meaning for $b_{0}, b_{1}, \ldots, b_{u_{2}}$.

Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} \quad\left(0 \leqq i \leqq u_{1}+k-l\right), \\
\varphi\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} \quad\left(0 \leqq i \leqq u_{2}-l\right)
\end{gathered}
$$

and in all other cases φ is given arbitrarily. Take $\mathbf{b}=\left(a_{l-k}\right)$. Then $\mathbf{b} p=$ $=\left(a_{l-k} x_{l-k+1}^{\prime} \ldots x_{m}^{\prime} \bar{x}^{l-k}\right)$ and $\mathbf{b} q=\left(a_{l-k} x_{l-k+1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime} \bar{x}^{l-k}\right)$, where $\bar{x} \in \bar{X}$ is arbitrary. (Remember that $m, n \geqq t$.) Therefore, $\mathbf{b} p \neq \mathbf{b} q$.

Case 2. The states a_{m} and b_{n} induce the same cycle, i.e., in the intersection of the subautomata generated by a_{m} and b_{n} there is a cycle C of length w. We distinguish some subcases.

Case 2.1. $m \neq n(\bmod w)$. Then $w>1$. Take an arbitrary v_{1}-product $\mathfrak{B}=\left(X, A, \delta^{\prime}\right)$ of \mathfrak{H} with a single factor. In \mathfrak{B}, for any $c \in C$, we have $c p \neq c q$.

Case 2.2. $m \equiv n(\bmod w)$. Some further subcases are needed.
Case 2.2.1. $a_{m}, b_{n} \in C$ or $m=n$.
If $\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{n}\right\}=\emptyset$, then let $u_{1}\left(0 \leqq u_{1}<m\right)$ be the largest
index such that the elements $a_{0}, a_{1}, \ldots, a_{u_{1}}$ are pairwise distinct. The number u_{2} ($0 \leqq u_{2}<n$) has the same meaning for $b_{0}, b_{1}, \ldots, b_{u_{2}}$.

Take the v_{1}-product
where

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\underbrace{(\mathfrak{H} \times \ldots \times \mathfrak{H})}_{l-k+1 \text { times }}[X, \varphi, \gamma]
$$

$$
\begin{array}{cl}
\gamma(1)=\{1\} ; \quad \gamma(i)=\{i-1\} & (i=2, \ldots, l-k+1) \\
\varphi_{1}\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} & \left(0 \leqq i \leqq u_{1}+k-l\right) \\
\varphi_{1}\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} & \left(0 \leqq i \leqq u_{2}-l\right)
\end{array}
$$

and for every $j(=2, \ldots, l-k+1)$,

$$
\begin{aligned}
& \varphi_{j}\left(a_{l-k-(j-2)+i}, x_{i+1}\right)=x_{l-k-(j-2)+i}^{\prime} \quad\left(0 \leqq i \leqq u_{1}-l+k+j-2\right), \\
& \varphi_{j}\left(b_{l-(j-2)+i}, y_{k+i+1}\right)=\left\{\begin{array}{lll}
x_{i-(j-2)+i}^{\prime} & \text { if } 0 \leqq i \leqq j-2 \\
y_{l-(j-2)+i}^{\prime} & \text { if } \quad j-2<i \leqq u_{2}-l+j-2,
\end{array}\right.
\end{aligned}
$$

and in all other cases φ is given arbitrarily in accordance with the definition of the ν_{1}-product.

Take $\mathbf{b}=\left(a_{l-k}, a_{l-k-1}, \ldots, a_{0}\right)$. Then $\mathbf{b} p=\left(a_{l-k} p_{0}, a_{l-k-1} p_{1}, \ldots, a_{0} p_{l-k}\right)$ and $\mathbf{b} q=\left(a_{l-k} q_{0}, a_{l-k-1} q_{1}, \ldots, a_{0} q_{l-k}\right)$ where, for every $j(=0, \ldots, l-k), p_{j}=x_{l-k-j+1}^{\prime} \ldots$ $\ldots x_{m}^{\prime} \bar{x}^{l-k-j}$ and $q_{j}=x_{l-k-j+1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{n}^{\prime} \bar{x}^{l-k-j}$, and $\bar{x} \in \bar{X}$ is arbitrary. Thus $p_{l-k}=p^{\prime}$ and $q_{l-k}=q^{\prime}$, implying $\mathbf{b} p \neq \mathbf{b} q$.

If $\left\{a_{l+1}, \ldots, a_{m}\right\} \cap\left\{b_{l+1}, \ldots, b_{n}\right\} \neq \emptyset$, then let $r(l+1 \leqq r \leqq m)$ be the least index for which there is a b_{j} with $a_{r}=b_{j}$. Moreover, let $s(l+1 \leqq s \leqq n)$ be the least index such that $b_{s}=a_{r}$. Then $r \neq s$, since in the opposite case $\bar{p}=x_{1}^{\prime} \ldots x_{r}^{\prime} x_{r+1}^{\prime} \ldots x_{m}^{\prime}$ and $\bar{q}=x_{1}^{\prime} \ldots x_{r}^{\prime} y_{r+1}^{\prime} \ldots y_{n}^{\prime}$ would contradict the choice of p^{\prime} and q^{\prime}. Assume that $r<s$. Let $u(0 \leqq u<m)$ be the largest index for which the states a_{0}, \ldots, a_{u} are pairwise distinct. Take the v_{1}-product
where

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=(\underbrace{(\mathfrak{H} \times \ldots \times \mathfrak{H})}_{l-k+1 \text { times }}[X, \varphi, \gamma]
$$

$$
\begin{array}{cl}
\gamma(1)=\{1\} ; \quad \gamma(i)=\{i-1\} & (2 \leqq i \leqq l-k+1), \\
\varphi_{1}\left(a_{l-k+i}, x_{i+1}\right)=x_{l-k+i+1}^{\prime} & (0 \leqq i \leqq u+k-l), \\
\varphi_{1}\left(b_{l+i}, y_{k+i+1}\right)=y_{l+i+1}^{\prime} & (0 \leqq i \leqq r-l),
\end{array}
$$

and for every $j(=2, \ldots, l-k+1)$,

$$
\begin{gathered}
\varphi_{j}\left(a_{l-k-(j-2)+i}, x_{i+1)}=x_{l-k-(j-2)+i}^{\prime} \quad(0 \leqq i \leqq u-l+k+j-2),\right. \\
\varphi_{j}\left(b_{l-(j-2)+i}, y_{k+i+1}\right)= \begin{cases}x_{l-(j-2)+i}^{\prime} & \text { if } 0 \leqq i \leqq j-2 \\
y_{l-(j-2)+i}^{\prime} & \text { if } j-2<i \leqq r-l+j-2,\end{cases}
\end{gathered}
$$

and in all other cases φ is given arbitrarily. Take the state

$$
\mathrm{b}=\left(a_{l-k}, a_{l-k-1}, \ldots, a_{0}\right) \in B
$$

Then $\mathbf{b} p=\left(b_{1}^{\prime}, \ldots, b_{l-k}^{\prime}, a_{0} p^{\prime}\right)$ and $\mathbf{b} q=\left(b_{1}^{\prime \prime}, \ldots, b_{l-k}^{\prime \prime}, a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}\right)$ where $\bar{q} \in \bar{X}^{*}$ satisfies the equality $|\bar{q}|=n-r$. One can easily check that $a_{0} p^{\prime} \neq a_{0} x_{1}^{\prime} \ldots x_{l}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}$. Indeed, in the opposite case let \bar{q}^{\prime} be the initial segment of \bar{q} with length $m-r$ if $m \leqq n$, and otherwise let $\bar{q}^{\prime}=\bar{q} \bar{q}$, where $\overline{\bar{q}} \in \bar{X}^{*}$ is arbitrary with $|\bar{q} \bar{q}|=m-r$. From our assumptions it follows that $a_{0} x_{1}^{\prime} \ldots x_{1}^{\prime} y_{l+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}^{\prime} \neq a_{0} q^{\prime}$. Therefore, by $r>l$; the pair $x_{1}^{\prime} \ldots x_{1}^{\prime} y_{1+1}^{\prime} \ldots y_{r}^{\prime} \bar{q}^{\prime}, q^{\prime}$ contradicts the choice of p^{\prime} and q^{\prime}.

Case 2.2.2. $m \neq n$ and at least one of a_{m} and b_{n} is not in C.
Case 2.2.2.1. None of a_{m} and b_{n} is in C and $m<n$. Then the states b_{0}, \ldots, b_{n} are pairwise distinct. Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{A}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(b_{i}, x_{i+1}\right)=\left\{\begin{array}{lll}
x_{i+1}^{\prime} & \text { if } & 0 \leqq i<l, \\
y_{i+1}^{\prime} & \text { if } & l \leqq i<m,
\end{array}\right. \\
\varphi\left(b_{i}, y_{i+1}\right)=\left\{\begin{array}{lll}
x_{i+1}^{\prime} & \text { if } & k \leqq i<l, \\
y_{i+1}^{\prime} & \text { if } & l \leqq i<n,
\end{array}\right.
\end{gathered}
$$

and φ is given arbitrarily in all other cases. Taking $\mathbf{b}=\left(b_{0}\right)$ we obtain $\mathbf{b} p=\left(b_{m}\right)$ and $\mathbf{b} q=\left(b_{n}\right)$.

Case 2.2.2.2. $a_{m} \notin C, b_{n} \in C$ and $n>m$; or $a_{m} \notin C, b_{n} \in C$ and $n<m$. The states $a_{0}, a_{1}, \ldots, a_{m}$ are pairwise distinct. Take the v_{1}-product

$$
\mathfrak{B}=\left(X, B, \delta^{\prime}\right)=\mathfrak{H}[X, \varphi, \gamma]
$$

where

$$
\begin{gathered}
\gamma(1)=\{1\}, \\
\varphi\left(a_{i}, x_{i+1}\right)=x_{i+1}^{\prime} \quad(0 \leqq i<m) \\
\varphi\left(a_{i}, y_{i+1}\right)=x_{i+1}^{\prime} \quad(k \leqq i<\min \{m, n\}),
\end{gathered}
$$

and φ is given arbitrarily in the remaining cases. Let $\mathbf{b}=\left(a_{0}\right)$. If $n>m$, then $\mathbf{b} p=\left(a_{m}\right)$ and $\mathbf{b} q=\left(a_{m} \bar{x}^{n-m}\right)$, where $\bar{x} \in \bar{X}$ is arbitrary. Obviously, $a_{m} \neq a_{m} \bar{x}^{n-m}$, since in the opposite case $a_{m} \in C$. If $n<m$, then $\mathbf{b} p=\left(a_{m}\right)$ and $\mathbf{b} q=\left(a_{n}\right)$.

Remark. Let \mathscr{K} be an arbitrary class of automata. In [3] it is shown that if an identity does not hold in an infinite product of automata from \mathscr{K}, then there is a finite product of automata from \mathscr{K} which does not satisfy the given identity either. (See also [2], where this result is generalized to automata with infinite input alphabets.) Moreover, by Theorem 1 of [7], the v_{1}-product is equivalent to the product as regards metric completeness. Therefore, if \mathscr{K} is metrically complete for the product, then none of the nontrivial p-identities holds in $\mathbf{H S P P}_{\mathbf{v}_{1}}(\mathscr{K})$. Thus, using Lemma 2, we obtain that $\mathbf{H S P P}_{g}(\mathscr{K})=\operatorname{HSPP}_{v_{1}}(\mathscr{K})$ for arbitrary class of automata. However, Lemma 2 will be sufficient to prove our main result.

By Lemmas 1 and 2, we obtain
Corollary 3. If a class \mathscr{K} of automata is not metrically complete for the product, then $\operatorname{HSP}_{g}(\mathscr{K})=\mathbf{H S P}_{v_{1}}(\mathscr{K})$.

Proof. The inclusion $\operatorname{HSP}_{v_{1}}(\mathscr{K}) \cong \operatorname{HSP}_{g}(\mathscr{K})$ is obvious. If $\mathfrak{A} \in \mathbf{H S P}_{g}(\mathscr{K})$, then there exists a finite subset $\overline{\mathscr{K}}$ such that $\mathscr{M}_{\in} \mathbf{H S P}_{g}(\overline{\mathscr{K}})$. Therefore, by Lemmas 1 and $2, \mathfrak{U} \in \mathbf{H S P}_{\mathbf{v}_{1}}(\overline{\mathscr{K}})$.

Let us note that by the proof of the Theorem in [6], $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})=\mathbf{H S P}_{\boldsymbol{g}}(\mathscr{K})$ if \mathscr{K} is not metrically complete for the product. Thus, for such classes \mathscr{K}, the equality $\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})=\mathbf{H S P}_{v_{1}}(\mathscr{K})$ holds, too.

Now we are ready to state and prove the main result of the paper.
Theorem 4. The v_{1}-product is metrically equivalent to the general product.
Proof. Let \mathscr{K} be an arbitrary class of automata. If \mathscr{K} is metrically complete for the product, then by Theorem 1 in [7], \mathscr{K} is metrically complete with respect to the v_{1}-product. If \mathscr{K} is not metrically complete, then $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathbf{v}_{1}}(\mathscr{K})$, as it is stated in Corollary 3.

DEPT. OF COMPUTER SCIENCE

A. JOZZSEF UNIVERSITY

ARADI VÉRTANÚK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Dömösi, P., B. Imreh, On v_{i}-products of automata, Acta Cybernet., v. VII. 2, 1983, pp. 149162.
[2] Ésik, Z., On identities preserved by general products of algebras, Acta Cybernet., v. VI. 3, 1983, pp. 285-289.
[3] Ésik, Z., F. Gécseg, General products and equational classes of automata, Acta Cybernet., VI. 3, 1983, pp. 281-284.
[4] Esik, Z., F. Gécseg, On a representation of tree automata, Theorical Computer Science, to appear.
[5] EsIk, Z., F. GÉCseg, A decidability result for homomorphic representation of automata by α_{0}-products, Acta Mathematica Hungarica, submitted for publication.
[6] Esik, Z., Gy. Horváth, The α_{2}-product is homomorphically general, Papers on Automata Theory V, no. DM 83-3, pp. 49-62, Karl Marx University of Economics, Department of Mathematics, Budapest (1983).
[7] Gécseg, F., Metric representations by v_{i}-products, Acta Cybernet., v. VII. 2, 1985, pp. 203209.
[8] Gécseg, F., Products of automata, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
[9] Gécseg, F., B. Imreh, A comparison of α_{i}-products and v_{i}-products, Foundations of Control Engineering, submitted for publication.
(Received Sept. 12, 1986)

