On α_{i}-product of tree automata

F. Gécseg and B. Imreh

In the theory of finite automata it is a central problem to represent a given automaton by composition of - possibly simpler - automata. The composition of tree automata has received little attention. Namely, the cascade product of tree automata was studied in [4] and the work [5] contains the investigation of the general product of tree automata (see also [1]). In this paper generalizing the notion of α_{i}-product (cf. [2]), we introduce the α_{i}-product of tree automata, and using the idea in [3] give necessary and sufficient conditions for a system of tree automata to be isomorphically complete with respect to the α_{i}-product. From the characterizations of complete systems we obtain the α_{i}-products constitute a proper hierarchy.

1. Definitions

By a set of operational symbols we mean the nonempty union $\Sigma=\Sigma_{0} \cup \Sigma_{1} \cup \ldots$ of pairwise disjoint sets of symbols, and for any nonnegative integer m, Σ_{m} is called the set of m-ary operational symbols. It is said that the rank or arity of a symbol $\sigma \in \Sigma$ is m if $\sigma \in \Sigma_{m}$. Now let a set Σ of operational symbols be given. A set R of nonnegative integers is called the rank-type of Σ if for any $m, \Sigma_{m} \neq \emptyset$ if and only if $m \in R$. Next we shall work always under a fixed rank-type R.

Let Σ be a set of operational symbols with rank-type R. Then by a Σ-algebra \mathscr{A} we mean a pair consisting of a nonempty set A (of elements of \mathscr{A}) and a mapping that assigns to every operational symbol $\sigma \in \Sigma$ an m-ary operation $\sigma^{\alpha d}: A^{m} \rightarrow A$, where the arity of σ is m. The operation $\sigma^{\mathscr{A}}$ is called the realization of σ in \mathscr{A}. The mapping $\sigma \rightarrow \sigma^{\mathscr{\infty}}$ will not be mentioned explicitly, but we write $\mathscr{A}=(A, \Sigma)$. The Σ-algebra \mathscr{A} is finite if A is finite, and it is of finite type if Σ is finite. By a tree automaton we mean a finite algebra of finite type. We say that the rank-type of a tree automaton $\mathscr{A}=(A, \Sigma)$ is R if the rank-type of Σ is R. Let us denote by \mathfrak{A}_{R} the class of all tree automata with rank-type R.

Now let i be a fixed nonnegative integer, and let

$$
\mathscr{A}=(A, \Sigma) \in \mathfrak{N}_{R}, \quad \mathscr{A}_{j}=\left(A_{j}, \Sigma \mathfrak{J}\right) \in \mathfrak{H}_{R} \quad(j \doteq 1, \ldots, k)
$$

Moreover, take a family ψ of mappings

$$
\psi_{m j}:\left(A_{1} \times \ldots \times A_{k}\right)^{m} \times \Sigma_{m} \rightarrow \Sigma_{m}^{j}, \quad m \in R, 1 \leqq j \leqq k
$$

It is said that the tree automaton \mathscr{A} is the α_{i}-product of $\mathscr{A}_{j}(j=1, \ldots, k)$ with respect to ψ if the following conditions are satisfied:
(1) $A=\prod_{t=1}^{k} A_{t}$,
(2) for any $m \in R, j \in\{1, \ldots, k\}$,

$$
\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right) \in\left(A_{1} \times \ldots \times A_{k}\right)^{m}
$$

the mapping $\psi_{m J}$ is independent of elements $a_{r s}(1 \leqq r \leqq m, j+i \leqq s)$,

$$
\begin{aligned}
& \text { (3) for any } m \in R, \quad \sigma \in \Sigma_{m},\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right) \in\left(A_{1} \times \ldots \times A_{k}\right)^{m} \\
& \sigma^{\infty 1}\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right)=\left(\sigma_{1}^{\Omega_{1}}\left(a_{11}, \ldots, a_{m 1}\right), \ldots, \sigma_{k}^{\delta \delta_{k}}\left(a_{1 k}, \ldots, a_{m k}\right)\right),
\end{aligned}
$$

where

$$
\sigma_{j}=\psi_{m j}\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m \bar{k}}\right), \sigma\right) \quad(j=1, \ldots, k)
$$

For the above product we shall use the notation $\prod_{j=1}^{k} \mathscr{A}_{j}(\Sigma, \psi)$ and sometimes we shall write only those variables of $\psi_{m j}$ on which $\psi_{m j}$ depends.

Finally, we shall denote by $[\sqrt[1]{n}]$ the largest integer less than or equal to $\sqrt[1]{n}$.

2. Completeness

Let i be a fixed nonnegative integer and $\mathfrak{B} \subseteq \mathfrak{A}_{R} . \mathfrak{B}$ is called isomorphically complete for \mathfrak{A}_{R} with respect to the $\alpha_{\boldsymbol{\sigma}}$-product if any tree automaton from \mathfrak{A}_{R} can be embedded isomorphically into an α_{i}-product of tree automata from \mathfrak{B}. Furthermore, \mathfrak{B} is called minimal isomorphically complete system if \mathfrak{B} is isomorphically complete and for arbitrary $\mathscr{A} \in \mathfrak{B}, \mathfrak{B} \backslash\{\mathscr{A}\}$ is not isomorphically complete.

For any natural number $n>0$ let us denote by $\mathscr{B}_{n}=\left(\{0, \ldots, n-1\}, \theta^{n}\right)$ the tree automaton where for every m-ary operation $\varrho:\{0, \ldots, n-1\}^{m} \rightarrow\{0, \ldots, n-1\}$ there exists exactly one $\sigma \in \theta_{m}^{n}$ with $\sigma^{\mathscr{O}_{n}}=\varrho$ provided that $m \in R$.

The following statement is obvious.
Lemma. If $\mathscr{A}_{j} \in \mathfrak{A}_{R}(j=1,2,3)$ and \mathscr{A}_{j} can be embedded isomorphically into and α_{i}-product of \mathscr{A}_{j+1} with a single factor $(j=1,2)$ then \mathscr{A}_{1} can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{3} with a single factor.

First we consider the special case $R=\{0\}$. Then the following statement is obvious.

Theorem 1. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i} product if and only if there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_{2} can be embedded isomorphically into an α_{i}-product of \mathscr{A} with a single factor.

Now let us suppose $R \neq\{0\}$. Then the results of completeness is based on the following Theorem:

Theorem 2. If the tree automaton $\mathscr{B}_{n}(n>1)$ can be embedded isomorphically
into an α_{i}-product $\prod_{j=1}^{k} \mathscr{A}_{j}\left(\theta^{n}, \psi\right)$ of the tree automata $\mathscr{A}_{j} \in \mathfrak{H}_{R}(j=1, \ldots, k)$ then $\mathscr{B}_{\left[{ }^{[}{ }^{*} \sqrt{n}\right]}$ can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} with a single factor for some $j \in\{1, \ldots, k\}$, where $i^{*}=i$ if $i>0$ and $i^{*}=1$ else.

Proof. If $k=1$ then the statement is obvious. Now let $k>1$. Assume that \mathscr{B}_{n} can be embedded isomorphically into the α_{i}-procut $\mathscr{A}=\prod_{j=1}^{k} \mathscr{A}_{j}\left(\theta^{n}, \psi\right)$ and let μ denote a suitable isomorphism. Let $\mu(t)=\left(a_{t 1}, \ldots, a_{t k}\right)(t=0, \ldots, n-1)$. We may suppose that there exist natural numbers $u \neq v(0 \leqq u, v \leqq n-1)$ such that $a_{u 1} \neq a_{v 1}$ since otherwise \mathscr{B}_{n} can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} $(j=2, \ldots, k)$. Now assume that there exist natural numbers $p \neq q(0 \leqq p, q \leqq n-1)$ with $a_{p s}=a_{q s}\left(s=1, \ldots, i^{*}\right)$. For any $t(0 \leqq t \leqq n-1)$ let us denote by $\sigma_{p t}^{\mathscr{B}_{n}}$ the m-ary operation of \mathscr{B}_{n} for which $\sigma_{p t}^{\mathscr{F}_{n}}(0, \ldots 0, p)=t$ and $\sigma_{p t}^{\mathscr{P}_{n}}(0, \ldots, 0, q)=q$, for some $m \in R$. Such operations exist since $R \neq\{0\}$. Then for any $t \in\{0, \ldots, n-1\}$

$$
\begin{aligned}
& \left(a_{t 1}, \ldots, a_{t k}\right)=\mu(t)=\mu\left(\sigma_{p t}^{\mathscr{S}_{n}}(0, \ldots, 0, p)\right)=\sigma_{p t}^{\mathscr{L}}(\mu(0), \ldots, \mu(0), \mu(p))= \\
& =\left(\sigma_{1}^{\mathscr{A _ { 1 }}}\left(a_{01}, \ldots, a_{01}, a_{p 1}\right), \sigma_{2}^{\mathscr{A}_{2}}\left(a_{02}, \ldots, a_{02}, a_{p 2}\right), \ldots, \sigma_{k}^{\mathscr{\mathscr { L } _ { k }}}\left(a_{0 k}, \ldots, a_{0 k}, a_{p k}\right)\right)
\end{aligned}
$$

holds, and so $a_{t 1}=\sigma_{1}^{\alpha 1_{1}}\left(a_{01}, \ldots, a_{01}, a_{p 1}\right)$ where

$$
\begin{gathered}
\sigma_{1}=\psi_{m 1}\left(\left(a_{01}, \ldots, a_{0 k}\right), \ldots,\left(a_{01}, \ldots, a_{0 k}\right),\left(a_{p 1}, \ldots, a_{p k}\right), \sigma_{p t}\right)= \\
=\psi_{m 1}\left(a_{01}, \ldots, a_{0 i^{*}}, a_{p 1}, \ldots, a_{p i^{*}}, \sigma_{p t}\right) \text { if } i>0
\end{gathered}
$$

and $\sigma_{1}=\psi_{m 1}\left(\sigma_{p r}\right)$ if $i=0$. In the same way we obtain the equality
where

$$
a_{q 1}=\bar{\sigma}_{1}^{\mathscr{A}}\left(a_{01}, \ldots, a_{01}, a_{q 1}\right)
$$

and

$$
\bar{\sigma}_{1}=\psi_{m 1}\left(a_{01}, \ldots, a_{0 i^{*}}, a_{q 1}, \ldots, a_{q i^{*}}, \sigma_{p t}\right) \quad \text { if } \quad i>0
$$

$$
\bar{\sigma}_{1}=\psi_{m 1}\left(\sigma_{p t}\right) \quad \text { if } \quad i=0
$$

Since $a_{p s}=a_{q s}\left(s=1, \ldots, i^{*}\right)$ we obtain that $\sigma_{1}=\bar{\sigma}_{1}$ which implies the equality $a_{n 1}=a_{q 1}$ for any $t \in\{0, \ldots, n-1\}$. This contradicts our assumption $a_{u 1} \neq a_{v 1}$, therefore the elements ($a_{t 1}, \ldots, a_{i^{*}}$) $(0 \leqq t \leqq n-1)$ are pairwise different. Now we shall show that in this case \mathscr{B}_{n} can be embedded isomorphically into an α_{i}-product $\overline{\mathscr{A}}=\prod_{j=1}^{i^{*}} \mathscr{A}_{j}\left(\theta^{n}, \varphi\right)$. Indeed, let us define the family φ of mappings as follows: for any $m \in R, j \in\left\{1, \ldots, i^{*}\right\},\left(\left(a_{1}^{1}, \ldots, a_{1}^{i^{*}}\right), \ldots,\left(a_{m}^{1}, \ldots, a_{m}^{i^{*}}\right)\right) \in \prod_{j=1}^{i^{*}} A_{j}, \sigma \in \theta^{n}$ elements
(1) if $i>0$ then
$\varphi_{m j}\left(\left(a_{1}^{1}, \ldots, a_{1}^{i *}\right), \ldots,\left(a_{m}^{1}, \ldots, a_{m}^{i *}\right), \sigma\right)=\left\{\begin{array}{l}\psi_{m j}\left(\left(a_{u_{1} 1}, \ldots, a_{u_{1} k}\right), \ldots,\left(a_{u_{m} 1}, \ldots, a_{u_{m} k}\right), \sigma\right) \\ \text { if there exist } u_{1}, \ldots, u_{m} \in\{0, \ldots, n-1\} \\ \text { such that } a_{s}^{r}=a_{u_{t} t}\left(t=1, \ldots, i^{*}, s=1, \ldots, m\right), \\ \text { arbitrary operational symbol from } \\ \Sigma_{m}^{j} \text { otherwise, }\end{array}\right.$
(2) if $i=0$ then $\varphi_{m j}(\sigma)=\psi_{m j}(\sigma)$.

It is clear that $\varphi_{m j}$ is well defined. On the other hand, it is easy to see that the mapping $v(t)=\left(a_{t 1}, \ldots, a_{t i}\right)(t=0, \ldots, n-1)$ is an isomorphism of \mathscr{B}_{n} into $\mathscr{\mathscr { A }}$. Using this isomorphism v we prove that $\mathscr{\mathscr { B }}_{\left[{ }^{[*} \sqrt{n}\right]}$ can be embedded isomorphically into an α_{i}-product of \mathscr{A}_{j} with a single factor for some $j \in\left\{1, \ldots, i^{*}\right\}$. If $i=0$ or $i=1$ then this statement obviously holds. Now assume that $i>1$. Since the elements $\left(a_{n}, \ldots, a_{t^{*}}\right)(t=0, \ldots, n-1)$ are pairwise different, there exists an $s \in\left\{1, \ldots, i^{*}\right\}$ such that the number of pairwise different elements among $a_{0 s}, a_{1 s}, \ldots, a_{n-1 s}$ is greater than or equal to $v=\left[i^{*} \sqrt{n}\right]$. Without loos of generality we may assume that $a_{0 s}, \ldots, a_{v-1 s}$ are pairwise different elements of \mathscr{A}_{s}. For any $m \in R, \sigma \in \theta_{m}^{v}$ let us denote by $\bar{\sigma}$ an operational symbol from θ_{m}^{n} for which $\left.\sigma^{\mathscr{m}_{n}}\right|_{\left.0, \ldots, v-1\}^{m}\right\}}=\sigma^{\mathscr{A}_{v}}$. Now let us define the α_{i}-product $\mathscr{A}_{s}\left(\theta^{v}, \bar{\varphi}\right)$ as follows: for any $m \in R, \sigma \in \theta_{m}^{v},\left(a_{u_{1} s}, \ldots, a_{u_{m} s}\right) \in A_{s}^{m}$

$$
\bar{\varphi}_{m}\left(a_{u_{1} s}, \ldots, a_{u_{m} s}, \sigma\right)=\left\{\begin{array}{l}
\varphi_{m s}\left(\left(a_{u_{1} 1}, \ldots, a_{u_{1} i^{*}}\right), \ldots,\left(a_{u_{m} 1}, \ldots, a_{u_{m} i^{*}}\right), \bar{\sigma}\right) \text { if } \\
0 \leqq u_{t} \leqq v-1(t=1, \ldots, m), \\
\text { arbitrary operational symbol from } \Sigma_{m}^{s} \text { otherwise. }
\end{array}\right.
$$

It can be easily see that the correspondence $v^{\prime}: t \rightarrow a_{t s}(t=0, \ldots, v-1)$ is an isomorphism of \mathscr{B}_{v} into $\mathscr{A}_{s}\left(\theta^{v}, \bar{\varphi}\right)$, which completes the proof of Theorem 2.

Theorem 3. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for $\mathfrak{\mathscr { A }}_{R}$ with respect to the α_{0}-product if and only if for any natural number $n>1$ there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_{n} can be embedded isomorphically into an α_{0}-product of \mathscr{A} with a single factor.

Proof. The necessity follows from Theorem 2 . To prove the sufficiency let us observe that any tree automaton $\mathscr{A} \in \mathfrak{A}_{R}$ with $|A|=n$ can be embedded isomorphically into an α_{0}-product of \mathscr{B}_{n} with a single factor. From this fact, by our Lemma, we obtain the completeness of \mathfrak{B}.

Now let $i>0$ be a fixed nonnegative integer. Then in a similar way as above we obtain the following result.

Theorem 4. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{r}-product if and only if for any natural number $n>1$ there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{F}_{n} can be embedded isomorphically into an α_{i}-product of \mathscr{A} with a single factor.

Since an α_{i}-product with a single factor is an α_{1}-product with a single factor, by Theorem 4, we get the next corollary.

Corollary 1. $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{1}-product if and only if \mathfrak{B} is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product.

Now let i be a nonnegative integer. Then we have the following result for the minimal isomorphically complete systems in the case $R \neq\{0\}$.

Theorem 5. There exists no system $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ which is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product and minimal.

Proof. Let $\mathfrak{B} \subseteq \mathfrak{A}_{R}$ be isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product. Moreover, let $\mathscr{A} \in \mathfrak{B}$ with $|A|=n$. It is obvious that \mathscr{A} can be embedded isomorphically into an α_{i}-product of \mathscr{B}_{s} with a single factor if $s \geqq n$. Take a natural number $s>n$. By Theorem 3 and Theorem 4, there exists an $\overline{\mathscr{A}} \in \mathfrak{B}$ such that \mathscr{B}_{s} can be embedded isomorphically into an α_{i}-product of $\overline{\mathscr{A}}$ with a single factor. Therefore, by our Lemma, \mathscr{A} can be embedded isomorphically into an α_{i}-product of $\overline{\mathscr{A}}$ with a single factor. From this it follows that $\mathfrak{B} \backslash\{\mathscr{A}\}$ is isomorphically complete for \mathfrak{A}_{R} with respect to the α_{i}-product, showing that \mathfrak{B} is not minimal.

3. The hierarchy of α_{i}-products

Let $R: \nexists\{0\}$ be a fixed rank-type. Take a nonempty set $M \subseteq \mathfrak{A}_{R}$, and let i be an arbitrary nonnegative integer. Let $\alpha_{i}(M)$ denote the class of all tree automata from \mathfrak{U}_{R} which can be embedded isomorphically into an α_{i}-product of tree automata from M. It is said that the α_{i}-product is isomorphically more general than the α_{j}-product if for any set $M \subseteq \mathfrak{V}_{R}$ the relation $\alpha_{j}(M) \subseteq \alpha_{i}(M)$ holds and there exists at least one set $\bar{M} \subseteq \mathfrak{U}_{R}$ such that $\alpha_{j}(\bar{M})$ is a proper subclass of $\alpha_{i}(\bar{M})$. This notion was introduced in [2].

As far as the hierarchy of the α_{i}-products is concerned, we have the following Theorem.

Theorem 6. For any $i, j(i, j \in\{0,1, \ldots\})$ the α_{i}-product is isomorphically more general than the α_{j} product if $j<i$.

Proof. We shall prove that the α_{1}-product is isomorphically more general than the α_{0}-product and the α_{i+1}-product is isomorphically more general than the α_{i}-product if $i \geqq 1$.

First let $M=\left\{\mathscr{A}_{2}\right\}$, where $\mathscr{A}_{2}=\left(\{1,2\}, \bigcup_{m \in R}\left\{\sigma_{m 1}, \sigma_{m 2}\right\}\right)$ and the operations of \mathscr{A}_{2} are defined as follows: for any $0 \neq m, m \in R,\left(a_{1}, \ldots, a_{m}\right) \in\{1,2\}^{m}$

$$
\begin{gathered}
\sigma_{m 1}^{\mathscr{A}_{2}}\left(a_{1}, \ldots, a_{m}\right)=\left\{\begin{array}{lll}
1 & \text { if } & a_{m}=2, \\
2 & \text { if } & a_{m}=1,
\end{array}\right. \\
\sigma_{m 2}^{\mathscr{A}_{2}}\left(a_{1}, \ldots, a_{m}\right)=a_{m},
\end{gathered}
$$

and $\sigma_{01}^{\mathscr{A}}=1, \sigma_{02}^{\mathscr{A}_{2}^{2}}=2$ if $0 \in R$.
Now let us denote by $\mathscr{A}_{3}=\left(\{1,2,3\}, \Sigma^{\prime}\right)$ the tree automaton where for any $0 \neq m \in R \quad \sigma \in \Sigma_{m}^{\prime},\left(a_{1}, \ldots, a_{m}\right) \in\{1,2,3\}^{m}$

$$
\sigma^{\mathscr{A}_{3}}\left(a_{1}, \ldots, a_{m}\right)=\left\{\begin{array}{lll}
a_{m}+1 & \text { if } & a_{m}<3 \\
3 & \text { if } & a_{m}=3
\end{array}\right.
$$

and $\bar{\sigma}^{\mathscr{A}_{3}}=1$ if $0 \in R$ and $\bar{\sigma} \in \Sigma_{0}^{\prime}$.
It is easy to see that $\mathscr{A}_{3} \ddagger \alpha_{0}(M)$ and $\mathscr{A}_{3} \in \alpha_{1}(M)$ which yields the required inclusion $\alpha_{0}(M) \subset \alpha_{1}(M)$.

Now let $i \geqq 1$ and $M=\left\{\mathscr{B}_{2}\right\}$. Then, by the proof of Theorem 2, we obtain that $\mathscr{B}_{2^{i+1}} \ddagger \alpha_{i}(M)$. On the other hand, we shall show that $\mathscr{B}_{2^{i+1}} \in \alpha_{i+1}(M)$ which yields the required inclusion $\alpha_{i}(M) \subset \alpha_{i+1}(M)$: To prove the above statement it is enough to show that $\mathscr{B}_{2} \in \alpha_{i}(M)$ if $i>1$. Indeed, let us take the α_{i}-product $\mathscr{A}=\prod_{j=1}^{i} \mathscr{B}_{2}\left(\theta^{2^{t}}, \psi\right)$ where the family ψ of mappings is defined as follows: for any $0 \neq m, \sigma \in \theta_{m}^{2 t}$,

$$
\left(\left(a_{11}, \ldots, a_{1 i}\right), \ldots,\left(a_{m 1}, \ldots, a_{m i}\right)\right) \in(\{0,1\})^{m}
$$

if

$$
\sigma^{\mathscr{B}_{1} i}\left(\sum_{t=1}^{i} a_{1 t} 2^{i-t}, \ldots, \sum_{t=1}^{i} a_{m t} 2^{i-t}\right)=w=\sum_{t=1}^{i} a_{w t} 2^{i-t} \quad \text { and } \quad \bar{\sigma}^{\mathscr{D}_{2}}\left(a_{1 j}, \ldots, a_{m j}\right)=a_{w j}
$$

then

$$
\psi_{m j}\left(\left(a_{11}, \ldots, a_{1 i}\right), \ldots,\left(a_{m 1}, \ldots, a_{m i}\right), \sigma\right)=\bar{\sigma}
$$

In the case $\sigma \in \theta_{0}^{2^{t}}$ if $\sigma^{\mathscr{x}_{i^{t}}}=\sum_{t=1}^{i} a_{v t} \cdot 2^{i-t}$ and $\bar{\sigma}^{\mathscr{P}_{2}}=\bar{u}_{v j}$ then $\dot{\psi}_{m j}(\sigma)=\bar{\sigma}$.
It is easy to see that $\mathscr{B}_{2^{t}}$ can be embedded isomorphically into \mathscr{A} under the isomorphism μ defined as follows: if $w=\sum_{t=1}^{i} a_{i} 2^{i-t}$ then $\mu(w)=\left(a_{1}, \ldots, a_{i}\right)$ ($w=0, \ldots, 2^{i}-1$).

4. A decidability result

In this section we show that it is decidable if an algebra can be represented isomorphically by an α_{i}-product of algebras from a given finite set.

Theorem 7. For any nonnegative integer $i, \mathscr{A} \in \mathfrak{H}_{R}$ and finite set $M \subseteq \mathfrak{H}_{R}$ it can be decided whether or not $\mathscr{A} \in \alpha_{i}(M)$.

Proof. Let us suppose that \mathscr{A} with $A=\left\{a_{1}, \ldots, a_{k}\right\}$ can be embedded isomorphically into an α_{i}-product $\mathscr{B}=\prod_{j=1}^{s} \mathscr{A}_{j}(\Sigma, \varphi)$ of tree automata from M. Let $V=\max \left\{\left|A_{t}\right|: \mathscr{A}_{t} \in M\right\}$ and let $\left(a_{u 1}, \ldots, a_{u s}\right)$ denote the image of a_{u} under a suitable isomorphism $\mu \quad(u=1, \ldots, k)$. We define an equivalence relation π on the set of indices of the α_{i}-product \mathscr{B} as follows: for any $l, n(1 \leqq l, n \leqq s), l \pi n$ holds if and only if $\mathscr{A}_{t}=\mathscr{A}_{n}$ and $a_{t l}=a_{t n}$ for all $t=1, \ldots, k$.

It is easy to see that the partition corresponding to π has at most $|M| \cdot V^{k}$ blocks. Since $\mu(A)$ is a subalgebra of \mathscr{B}, if $a_{t l}=a_{t n}(t=1, \ldots, k)$ then the l-th and n-th components of $\mu\left(\sigma\left(a^{1}, \ldots, a^{m}\right)\right)$ are equal, where $m \in R, \sigma \in \Sigma_{m}, a^{J} \in A(j=1, \ldots, m)$. \vec{F}-om this it follows that \mathscr{A} can be embedded isomorphically into an α_{i}-product of tree automata from M with at most $|M| \cdot V^{k}$ factors.

References

[1] Ésik, Z., On identities preserved by general products of algebras, Acta Cybernet., v. 6, 1983, pp. 285-289.
[2] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, v. 14, pp. 351-363.
[3] Imreh, B., On α_{1}-products of automata, Acta Cybernet., v. 3, 1978, pp. 301-307.
[4] RICCI, G., Cascades of tree automata and computation in universal algebras, Mathematical System Theory, 7, 1973, pp. 201-218.
[5] Sternby, M., On the structure and realizations of tree automata, Second Coll. sur les Arbres en Algebre et en Programmation, Lille, 1977, pp. 235-248.
(Received Aug. 22, 1986)

