
On arproduct of tree automata 
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In the theory of finite automata it is a central problem to represent a given 
automaton by composition of — possibly simpler — automata. The composition 
of tree automata has received little attention. Namely, the cascade product of tree 
automata was studied in [4] and the work [5] contains the investigation of the gen-
eral product of tree automata (see also [1]). In this paper generalizing the notion of 
a rproduct (cf. [2]), we introduce the af-product of tree automata, and using the 
idea in [3] give necessary and sufficient conditions for a system of tree automata 
to be isomorphically complete with respect to the arproduct. From the charac-
terizations of complete systems we obtain the a,-products constitute a proper hier-
archy. 

1. Definitions 

By a set of operational symbols we mean the nonempty union X = J 0 U i i U . . . 
of pairwise disjoint sets of symbols, and for any nonnegative integer m, Zm is called 
the set of m-ary operational symbols. It is said that the rank or arity of a symbol 
o£Z is m if <r€£m. Now let a set Z of operational symbols be given. A set R of 
nonnegative. integers is called the rank-type of Z if for any m, 2'mT£0 if and only 
if m^R. Next we shall work always under a fixed rank-type R. 

Let Z be a set of operational symbols with rank-type R. Then by a Z-algebra 
si we mean a pair consisting of a nonempty set A (of elements of si) and a mapping 
that assigns to every operational symbol o£Z an m-ary operation Am—A, 
where the arity of a is m. The operation a* is called the realization of a in si. The 
mapping <r-«-ffj/ will not be mentioned explicitly, but we write sf=(A, Z). The 
Z-algebra si is finite if A is finite, and it is of finite type if Z is finite. By a tree auto-
maton we mean a finite algebra of finite type. We say that the rank-type of a tree 
automaton si=(A, Z) is R if the rank-type of Z is R. Let us denote by the class 
of all tree automata with rank-type R. 

Now let i be a fixed nonnegative integer, and let 

= lR, sij = (Aj,Z%ZtR ( j = 1,..., fc). 

Moreover, take a family \j/ of mappings 

ijfmJ: (A1X...XAk)mXZm - Zi, m£R, 1 ^ j S k. 

2 Acta Cyberaetica Vm/2 



136 F. Gecseg and B. Imreh 

It is said that the tree automaton si is the a rproduct of (j= 1, ..., k) with 
respect to ф if the following conditions are satisfied: 

(1) A — П At, 
«=i 

(2) for any m£R, j£{l,...,k), 

((au, ...,au), ...,(aml, ..., amk))e(A1X...XAk)m 

the mapping ij/mJ is independent of elements o„ ( l S r S m , j+ i^s), 

(3) for any m£R, o£Im, ( (аи , ...,alk), ...,(aml,..., атк))е(А1Х...ХАк)т, 

ff*((an, ..., a u ) , ..., (aml,..., О ) = К Ч Й Ц , • О . <^кк(а1к, ..., атк)), 

where 
"J = Ymjiio 11, •••» fll*). •••> («ml. flj. ff) ( j = 1. ••-. к). 

к 
For the above product we shall use the notation ] J ф) and sometimes 

j=i 
we shall write only those variables of i¡/m, on which ф т ] depends. 

i _ i _ 
Finally, we shall denote by [yn ] the largest integer less than or equal to ^n . 

2. Completeness 

Let i be a fixed nonnegative integer and 93g9IK . S is called isomorphically 
complete for 9lK with respect- to the a rproduct if any tree automaton from 9IR 
can be embedded isomorphically into an a rproduct of tree automata from 83. 
Furthermore, SB is called minimal isomorphically complete system if 93 is isomor-
phically complete and for arbitrary 93, is not isomorphically complete. 

For any natural number n>0 let us denote by á?„=({0,..., n— 1}, 0") the 
tree automaton where for every m-ary operation q: {0,...,«—l}m—{0,...,«—1} 
there exists exactly one o£0"m with aprovided that m£R. 

The following statement is obvious. 

Lemma. If 9ÍR ( / = 1, 2, 3) and si} can be embedded isomorphically into 
and arproduct of with a single factor (j= 1, 2) then can be embedded 
isomorphically into an cerproduct of «s/3 with a single factor. 

First we consider the special case R= {0}. Then the following statement is 
obvious. 

Theorem 1. 93 Q 91* is isomorphically complete for 91* with respect to the 
a rproduct if and only if there exists an 33 such that 382 can be embedded iso-
morphically into an a¡-product of si with a single factor. 

Now let us suppose i? {0}. Then the results of completeness is based on 
the following Theorem. 

Theorem 2. If the tree automaton 38„ (n=>l) can be embedded isomorphically 
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k 
into an a rproduct ]J sij{d", t/0 of the tree automata s i j £ ( j = 1, ...,k) then 

7=1 

^[i»^-] 0311 be embedded isomorphically into an a rproduct of si} with a single factor 
for some {1, k), where i*—i if 0 and i * = l else. 

Proof. If k= 1 then the statement is obvious. Now let 1. Assume that 
k 

3§„ can be embedded isomorphically into the a,-procut si= J] sij(8n, \j/) and let 
j=i 

H denote a suitable isomorphism. Let n(t)=(atl, ..., atk) ( /=0, ..., n — 1). We may 
suppose that there exist natural numbers u ^ o (Osh, » s n - 1 ) such that 
since otherwise 38 n can be embedded isomorphically into an a rproduct of si, 
(j— 2, ..., k). Now assume that there exist natural numbers p^q (O^p, q^n—1) 
with aps—aqs 0 = 1 , ..., /*). For any t (O^t^n— 1) let us denote by of? the m-ary 
operation of 38 n for which a%"(0, .... 0,p)=t and opt"(0,..., 0, q)=q, for some 
m^R. Such operations exist since R^ {0}. Then for any {0, ..., n— 1} 

(aa, ..., a,k) = K') = *i(<#(0, 0,pj) = aft(n(0),..., „(0), n(p)) = 

= ( f f 1 («01. • • • > «01. aPi)> «rfs («02 > • • • > «02. ap2), • • •, ok
k (aok, ..., a0k, apk)) 

holds, and so an=afl(a01, ...,a01,apl) where 

= 'Ami((«01 ? •••> a0k)> •••> («01» •••> «0k)> («pi. •••> «P*)> <rPt) ~ 
= ^mifaoi» •••,aoi*,apl,..., api*, <rpt) if ¿ > 0 

and <Ti—ipmx(Cp() if i=0. In the same way we obtain the equality 

«,1 = fff'(«01> •••,«01>«9l) 
where 

= («019 •••> «oi*s «gi» •••» ««¡*> °pt) if » > 0 
and 

¿1 = <Ami(<v) if * = 0-
Since aps=ais (s= 1, ..., ¡*) we obtain that Ci=oi which implies the equality 
atl=aql for any i£{0,...,«— 1}. This contradicts our assumption aul^avl, there-
fore the elements (aa atl*) (OSi^n— 1) are pairwise different. Now we shall 
show that in this case 38„ can be embedded isomorphically into an a rproduct 

_ i* 
si— ¡J s/j(d", (p). Indeed, let us define the family cp of mappings as follows: for 

any m€2?,y€{l, «*}> ((«1, • af) , • K , .... <©)€ IJ A, <r€0n elements 

(1) if i > 0 then 
1> •••» « « , * ) . •••» («ttmi» • • • » aBmfc). tf) 

if there exist ultum£{0,..., n — 1} 
such that a j = aUtt(t = 1,..., i*, s = 1,..., m), 
arbitrary operational symbol from 
Pm otherwise, 

<Pm){(ai. •••> «D, •••, (aL • ••» «£)> <0 = < 

2* 
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(2) if / = 0 then <pmj(a)=4,m}(a). 
It is clear that <pmJ is well defined. On the other hand, it is easy to see that 

the mapping v(f)=(fla> •••> a(,-*) ( i=0, ..., n—1) is an isomorphism of 38 „ into s4. 
Using this isomorphism v we prove that ^[i*^] c a n be embedded isomorphically 
into an a.-product of with a single factor for some {1, ..., i*}. If i = 0 or 
J'= 1 then this statement obviously holds. Now assume that 1. Since the elements 
(a(J, ..., a„t) (t=0,..., n— 1) are pairwise different, there exists an {1,..., i*} 
such that the number of pairwise different elements among • • •, is 
greater than or equal to v= [ '*/«]. Without loos of generality we may assume that 
a0s, ..., av_ l s are pairwise different elements of sis. For any m£R, a(LQv

m let us denote 
by 5 an operational symbol from Qn

m for which ..., »-i}m}=oa"- Now let us 
define the a rproduct s/„(8v, <p) as follows: for any mk.R, (aUlS, ..., aUinS)£Am

s 

<Pm(?*ulS> •••> a s, a) — 
<Pms{(<iUl 1» aUii*), ..., (aUml, ..., aUmi*), a) if 
0 s U | s s - l ( / = l , . . . , m), 
arbitrary operational symbol from Is

m otherwise. 

It can be easily see that the correspondence v': t^»ats (t=0,..., v— 1) is an iso-
morphism of 88v into sis(Q", <p), which completes the proof of Theorem 2. 

Theorem 3. 23 Q 91* is isomorphically complete for 91* with respect to the 
a0-product if and only if for any natural number 1 there exists an SB such 
that 38„ can be embedded isomorphically into an a0-product of s4 with a single 
factor. 

Proof. The necessity follows from Theorem 2. To prove the sufficiency let us 
observe that any tree automaton .a/£91* with \A\=n can be embedded isomor-
phically into an a0-product of 38„ with a single factor. From this fact, by our Lemma, 
we obtain the completeness of SB. 

Now let i > 0 be a fixed nonnegative integer. Then in a similar way as above 
we obtain the following result. 

Theorem4. 91* is isomorphically complete for 91* with respect to the 
arproduct if and only if for any natural number 1 there exists an SB such 
that 38n can be embedded isomorphically into an a rproduct of si with a single 
factor. 

Since an af-product with a single factor is an ai-product with a single factor, 
by Theorem 4, we get the next corollary. 

Corollary 1. S Q 91* is isomorphically complete for 91* with respect to the 
a t-product if and only if SB is isomorphically complete for 91* with respect to the 
aj-product. 

Now let i be a nonnegative integer. Then we have the following result for the 
minimal isomorphically complete systems in the case R ^ {0}. 

Theorem 5. There exists no system SB Q 91* which is isomorphically complete 
for 91* with respect to the a rproduct and minimal. 
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Proof. Let 93g2lR be isomorphically complete for with respect to the 
a rproduct. Moreover, let si£ S with \A\—n. It is obvious that si can be embedded 
isomorphically into an a(-product of 28s with a single factor if s ^ n . Take a natural 
number j > n . By Theorem 3 and Theorem 4, there exists an si£f8 such that 
3Ss can be embedded isomorphically into an a,-product of si with a single factor. 
Therefore, by our Lemma, si can be embedded isomorphically into an ^¡-product 
of si with a single factor. From this it follows that is isomorphically 
complete for with respect to the a rproduct, showing that S is not minimal. 

3. The hierarchy of a,-products 

Let 0} be a fixed rank-type. Take a nonempty set MQ^LR, and let z 
be an arbitrary nonnegative integer. Let a ;(M) denote the class of all tree auto-
mata from which can be embedded isomorphically into an a rproduct of tree 
automata from M. It is said that the a rproduct is isomorphically more general 
than the a,--product if for any set M Q the relation aJ ( M ) ^ a i ( M ) holds 
and_there exists at least one set MQ such that a.j{M) is a proper subclass of 
otj(M). This notion was introduced in [2]. 

As far as the hierarchy of the a rproducts is concerned, we have the following 
Theorem. 

Theorem 6. For any i,j 0,1, . . .}) the arproduct is isomorphically more 
general than the olj product if i. 

Proof. We shall prove that the a2-product is isomorphically more general than 
the a0-product and the a i+i-product is isomorphically more general than the 
arproduct if i s 1. 

First let M= where si2=({ 1,2}, U {aml> cm2}) and the operations of 

si2 are defined as follows: for any 0?±m, mdR, (a1; ..., am)£{1, 2}m 

a i , „ J1 if am = 2, 

0*2 (ai, •••, am) = am, 

and <r£' = 1, = 2 if 06.R. 

Now let us denote by sis=({l, 2, 3}, T) the tree automaton where for any 
O^mtR aeZ'm, (au ..., a j £ { l , 2, 3}m 

-Mr1 i 
and 5s*3 = 1 if 0£R and d£Z'0. 

It is easy to see that si3^a0(M) and si^a^M) which yields the required 
inclusion a0(M)cax(M). 
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Now let te 1 and M= {88t}. Then, by the proof of Theorem 2, we obtain 
that 8S2<+i$ofj(M). On the other hand, we shall show that á?2<+>€ <xi+1(M) which 
yields the required inclusion cxi(M)<^ai+1(M): To prove the above statement it 
is enough to show that SS2^a,(M) if is-l . Indeed, let us take the a rproduct 

si= /7 where the family ^ of mappings is defined as follows: for any 

(Mm, 
((«ii, •», «1«). («mi, •••> O ) € ( { 0 , l}1)™ 

if 

s % i ( 2 •••> i «m.2'-') = w = i aw f2 i _ t and <r*»(a„, •••> amJ) = aw , 
1=1 «= i 1=1 

then 
^ m ; ( ( « 11, • • • , « 1 . ) , • • • , ( « m l , • • • , Ami), <0 = 

In the case a^Oo if a®'1 = ^ avt • 2'~! and gss-=üvJ then ~<l/mJ(a)= a. 
(=i 

It is easy to see that 88 n can be embedded isomorphically into si under 
r 

the isomorphism n defined as follows: if w= ^ a,2 i _ t then n(w)=(a1, ..., at) 

( w = 0 , ..., 2'— 1). 

4. A decidability result 

In this section we show that it is decidable if an algebra can be represented 
isomorphically by an «¡-product of algebras from a given finite set. 

Theorem 7. For any nonnegative integer i, and finite set lR 
it can be decided whether or not ¡(M). 

Proof. Let us suppose that si with A={a1, ...,ak} can be embedded iso-
5 

morphically into an a rproduct 8S— ]J sij(S, cp) of tree automata from M. Let 
j=i 

V=max{\A,\: si£M} and let (aul, ..., am) denote the image of au under a suitable 
isomorphism /i (u= 1, ..., k). We define an equivalence relation n on the set of 
indices of the af-product 88 as follows: for any I, n (1 Inn holds if and 
only if sit=sin and aa=a,„ for all t=l,...,k. 

It is easy to see that the partition corresponding to n has at most \M\ • Vk 

blocks. Since /¿(A) is a subalgebra of 88, if atl=atn (/=1, ..., k) then the /-th and 
n-th components of n(a(,ax, ..., am))are equal, where m£R, aJ£A ( j = 1, ..., m). 
F"om this it follows that si can be embedded isomorphically into an af-product 
Gi tree automata from M with at most \M\-Vk factors. 
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