On α_i -product of tree automata

F. Gécseg and B. IMREH

In the theory of finite automata it is a central problem to represent a given automaton by composition of — possibly simpler — automata. The composition of tree automata has received little attention. Namely, the cascade product of tree automata was studied in [4] and the work [5] contains the investigation of the general product of tree automata (see also [1]). In this paper generalizing the notion of α_r -product (cf. [2]), we introduce the α_r -product of tree automata, and using the idea in [3] give necessary and sufficient conditions for a system of tree automata to be isomorphically complete with respect to the α_r -product. From the characterizations of complete systems we obtain the α_r -products constitute a proper hierarchy.

1. Definitions

By a set of operational symbols we mean the nonempty union $\Sigma = \Sigma_0 \cup \Sigma_1 \cup ...$ of pairwise disjoint sets of symbols, and for any nonnegative integer m, Σ_m is called the set of m-ary operational symbols. It is said that the rank or arity of a symbol $\sigma \in \Sigma$ is m if $\sigma \in \Sigma_m$. Now let a set Σ of operational symbols be given. A set R of nonnegative integers is called the rank-type of Σ if for any m, $\Sigma_m \neq \emptyset$ if and only if $m \in R$. Next we shall work always under a fixed rank-type R.

Let Σ be a set of operational symbols with rank-type R. Then by a Σ -algebra \mathscr{A} we mean a pair consisting of a nonempty set A (of elements of \mathscr{A}) and a mapping that assigns to every operational symbol $\sigma \in \Sigma$ an *m*-ary operation $\sigma^{\mathscr{A}} : A^m \to A$, where the arity of σ is m. The operation $\sigma^{\mathscr{A}}$ is called the *realization of* σ in \mathscr{A} . The mapping $\sigma \to \sigma^{\mathscr{A}}$ will not be mentioned explicitly, but we write $\mathscr{A} = (A, \Sigma)$. The Σ -algebra \mathscr{A} is finite if A is finite, and it is of finite type if Σ is finite. By a tree automaton we mean a finite algebra of finite type. We say that the rank-type of a tree automaton $\mathscr{A} = (A, \Sigma)$ is R if the rank-type of Σ is R. Let us denote by \mathfrak{A}_R the class of all tree automata with rank-type R.

Now let i be a fixed nonnegative integer, and let

$$\mathscr{A} = (A, \Sigma) \in \mathfrak{A}_R, \quad \mathscr{A}_j = (A_j, \Sigma^j) \in \mathfrak{A}_R \quad (j \doteq 1, ..., k).$$

Moreover, take a family ψ of mappings

$$\psi_{mj}: (A_1 \times \ldots \times A_k)^m \times \Sigma_m \to \Sigma_m^j, \quad m \in \mathbb{R}, \ 1 \leq j \leq k.$$

2 Acta Cybernetica VIII/2

It is said that the tree automaton \mathscr{A} is the α_i -product of \mathscr{A}_j (j=1,...,k) with respect to ψ if the following conditions are satisfied:

(1) $A = \prod_{i=1}^{k} A_{i},$ (2) for any $m \in R, j \in \{1, ..., k\},$ $((a_{11}, ..., a_{1k}), ..., (a_{m1}, ..., a_{mk})) \in (A_{1} \times ... \times A_{k})^{m}$

the mapping ψ_{mi} is independent of elements a_{rs} $(1 \le r \le m, j+i \le s)$,

(3) for any
$$m \in R$$
, $\sigma \in \Sigma_m$, $((a_{11}, ..., a_{1k}), ..., (a_{m1}, ..., a_{mk})) \in (A_1 \times ... \times A_k)^m$,

$$\sigma^{\mathscr{A}}((a_{11}, ..., a_{1k}), ..., (a_{m1}, ..., a_{mk})) = (\sigma_1^{\mathscr{A}_1}(a_{11}, ..., a_{m1}), ..., \sigma_k^{\mathscr{A}_k}(a_{1k}, ..., a_{mk})),$$

where

$$\sigma_j = \psi_{mj}((a_{11}, ..., a_{1k}), ..., (a_{m1}, ..., a_{mk}), \sigma) \quad (j = 1, ..., k).$$

For the above product we shall use the notation $\prod_{j=1}^{k} \mathscr{A}_{j}(\Sigma, \psi)$ and sometimes we shall write only those variables of ψ_{mj} on which ψ_{mj} depends.

Finally, we shall denote by $\lfloor \sqrt{n} \rfloor$ the largest integer less than or equal to \sqrt{n} .

2. Completeness

Let *i* be a fixed nonnegative integer and $\mathfrak{B} \subseteq \mathfrak{A}_R$. \mathfrak{B} is called *isomorphically* complete for \mathfrak{A}_R with respect to the α_i -product if any tree automaton from \mathfrak{A}_R can be embedded isomorphically into an α_i -product of tree automata from \mathfrak{B} . Furthermore, \mathfrak{B} is called *minimal isomorphically complete* system if \mathfrak{B} is isomorphically complete and for arbitrary $\mathscr{A} \in \mathfrak{B}, \mathfrak{B} \setminus \{\mathscr{A}\}$ is not isomorphically complete.

For any natural number n>0 let us denote by $\mathscr{B}_n = (\{0, ..., n-1\}, \theta^n)$ the tree automaton where for every *m*-ary operation $\varrho: \{0, ..., n-1\}^m \rightarrow \{0, ..., n-1\}$ there exists exactly one $\sigma \in \theta_m^n$ with $\sigma^{\mathscr{B}_n} = \varrho$ provided that $m \in \mathbb{R}$.

The following statement is obvious.

Lemma. If $\mathscr{A}_j \in \mathfrak{A}_R$ (j=1, 2, 3) and \mathscr{A}_j can be embedded isomorphically into and α_i -product of \mathscr{A}_{j+1} with a single factor (j=1, 2) then \mathscr{A}_1 can be embedded isomorphically into an α_i -product of \mathscr{A}_3 with a single factor.

First we consider the special case $R = \{0\}$. Then the following statement is obvious.

Theorem 1. $\mathfrak{B} \subseteq \mathfrak{A}_R$ is isomorphically complete for \mathfrak{A}_R with respect to the α_r -product if and only if there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_2 can be embedded isomorphically into an α_r -product of \mathscr{A} with a single factor.

Now let us suppose $R \neq \{0\}$. Then the results of completeness is based on the following Theorem.

Theorem 2. If the tree automaton \mathcal{B}_n (n>1) can be embedded isomorphically

into an α_i -product $\prod_{j=1}^k \mathscr{A}_j(\theta^n, \psi)$ of the tree automata $\mathscr{A}_j \in \mathfrak{A}_R$ (j=1, ..., k) then $\mathscr{B}_{[i^*\gamma_n^-]}$ can be embedded isomorphically into an α_i -product of \mathscr{A}_j with a single factor for some $j \in \{1, ..., k\}$, where $i^*=i$ if i>0 and $i^*=1$ else.

Proof. If k=1 then the statement is obvious. Now let k>1. Assume that \mathscr{B}_n can be embedded isomorphically into the α_i -procut $\mathscr{A} = \prod_{j=1}^k \mathscr{A}_j(\theta^n, \psi)$ and let μ denote a suitable isomorphism. Let $\mu(t) = (a_{t1}, ..., a_{tk})$ (t=0, ..., n-1). We may suppose that there exist natural numbers $u \neq v$ $(0 \leq u, v \leq n-1)$ such that $a_{u1} \neq a_{v1}$ since otherwise \mathscr{B}_n can be embedded isomorphically into an α_i -product of \mathscr{A}_j (j=2,...,k). Now assume that there exist natural numbers $p \neq q$ $(0 \leq p, q \leq n-1)$ with $a_{ps} = a_{qs}$ $(s=1,...,i^*)$. For any t $(0 \leq t \leq n-1)$ let us denote by $\sigma_{pt}^{\mathscr{B}_n}$ the m-ary operation of \mathscr{B}_n for which $\sigma_{pt}^{\mathscr{B}_n}(0,...,0,p) = t$ and $\sigma_{pt}^{\mathscr{B}_n}(0,...,0,q) = q$, for some $m \in R$. Such operations exist since $R \neq \{0\}$. Then for any $t \in \{0,...,n-1\}$

$$(a_{t1}, ..., a_{tk}) = \mu(t) = \mu(\sigma_{pt}^{\mathscr{A}_{p}}(0, ..., 0, p)) = \sigma_{pt}^{\mathscr{A}}(\mu(0), ..., \mu(0), \mu(p)) = = (\sigma_{1}^{\mathscr{A}_{1}}(a_{01}, ..., a_{01}, a_{p1}), \sigma_{2}^{\mathscr{A}_{2}}(a_{02}, ..., a_{02}, a_{p2}), ..., \sigma_{k}^{\mathscr{A}_{k}}(a_{0k}, ..., a_{0k}, a_{pk}))$$

holds, and so $a_{t1} = \sigma_1^{\mathcal{A}_1}(a_{01}, ..., a_{01}, a_{p1})$ where

$$\sigma_1 = \psi_{m1}((a_{01}, ..., a_{0k}), ..., (a_{01}, ..., a_{0k}), (a_{p1}, ..., a_{pk}), \sigma_{pt}) =$$

= $\psi_{m1}(a_{01}, ..., a_{0i^*}, a_{p1}, ..., a_{pi^*}, \sigma_{pt})$ if $i > 0$

and $\sigma_1 = \psi_{m1}(\sigma_{pt})$ if i=0. In the same way we obtain the equality

$$a_{q1} = \bar{\sigma}_1^{\mathcal{A}_1}(a_{01}, ..., a_{01}, a_{q1})$$

where

 $\tilde{\sigma}_1 = \psi_{m1}(a_{01}, ..., a_{0i^*}, a_{q1}, ..., a_{qi^*}, \sigma_{pt})$ if i > 0

and

$$\bar{\sigma}_1 = \psi_{m1}(\sigma_{pt}) \quad \text{if} \quad i = 0.$$

Since $a_{ps} = a_{qs}$ $(s=1,...,i^*)$ we obtain that $\sigma_1 = \bar{\sigma}_1$ which implies the equality $a_{t1} = a_{q1}$ for any $t \in \{0,...,n-1\}$. This contradicts our assumption $a_{u1} \neq a_{v1}$, therefore the elements $(a_{t1},...,a_{ti^*})$ $(0 \le t \le n-1)$ are pairwise different. Now we shall show that in this case \mathscr{B}_n can be embedded isomorphically into an α_i -product $\overline{\mathscr{A}} = \prod_{j=1}^{i^*} \mathscr{A}_j(\theta^n,\varphi)$. Indeed, let us define the family φ of mappings as follows: for any $m \in \mathbb{R}, j \in \{1, ..., i^*\}, ((a_1^1, ..., a_1^{i^*}), ..., (a_m^1, ..., a_m^{i^*})) \in \prod_{j=1}^{i^*} A_j, \sigma \in \theta^n$ elements (1) if i > 0 then $\varphi_{mj}((a_1^1, ..., a_1^{i^*}), ..., (a_m^1, ..., a_m^{i^*}), \sigma) = \begin{cases} \psi_{mj}((a_{u_11}, ..., a_{u_1k}), ..., (a_{u_m1}, ..., a_{u_mk}), \sigma) \\ \text{if there exist } u_1, ..., u_m \in \{0, ..., n-1\} \\ \text{such that } a_s^t = a_{u_st}(t = 1, ..., i^*, s = 1, ..., m), \\ arbitrary operational symbol from <math>\Sigma_m^j$ otherwise,

(2) if i=0 then $\varphi_{mj}(\sigma)=\psi_{mj}(\sigma)$.

It is clear that φ_{mj} is well defined. On the other hand, it is easy to see that the mapping $v(t) = (a_{i1}, ..., a_{ii^*})$ (t=0, ..., n-1) is an isomorphism of \mathscr{B}_n into \mathscr{A} . Using this isomorphism v we prove that $\mathscr{B}_{[i^*\gamma n]}$ can be embedded isomorphically into an α_i -product of \mathscr{A}_j with a single factor for some $j \in \{1, ..., i^*\}$. If i=0 or i=1 then this statement obviously holds. Now assume that i>1. Since the elements $(a_{i1}, ..., a_{ii^*})$ (t=0, ..., n-1) are pairwise different, there exists an $s \in \{1, ..., i^*\}$ such that the number of pairwise different elements among $a_{0s}, a_{1s}, ..., a_{n-1s}$ is greater than or equal to $v = [i^* \sqrt{n}]$. Without loss of generality we may assume that $a_{0s}, ..., a_{v-1s}$ are pairwise different elements of \mathscr{A}_s . For any $m \in R, \sigma \in \theta_m^o$ let us denote by $\overline{\sigma}$ an operational symbol from θ_m^n for which $\sigma^{\mathscr{B}_n}|_{0, ..., v-1}m = \sigma^{\mathscr{B}_v}$. Now let us define the α_i -product $\mathscr{A}_s(\theta^v, \overline{\varphi})$ as follows: for any $m \in R, \sigma \in \theta_m^o, (a_{u_1s}, ..., a_{u_ms}) \in \mathcal{A}_m^s$

$$\bar{\varphi}_{m}(a_{u_{1}s},...,a_{u_{m}s},\sigma) = \begin{cases} \varphi_{ms}((a_{u_{1}1},...,a_{u_{1}i^{*}}),...,(a_{u_{m}1},...,a_{u_{m}i^{*}}),\bar{\sigma}) \text{ if } \\ 0 \leq u_{t} \leq v-1 \ (t=1,...,m), \\ \text{arbitrary operational symbol from } \Sigma_{m}^{s} \text{ otherwise.} \end{cases}$$

It can be easily see that the correspondence $v': t \rightarrow a_{ts}$ (t=0, ..., v-1) is an isomorphism of \mathcal{B}_v into $\mathcal{A}_s(\theta^v, \overline{\varphi})$, which completes the proof of Theorem 2.

Theorem 3. $\mathfrak{B} \subseteq \mathfrak{A}_R$ is isomorphically complete for \mathfrak{A}_R with respect to the α_0 -product if and only if for any natural number n>1 there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_n can be embedded isomorphically into an α_0 -product of \mathscr{A} with a single factor.

Proof. The necessity follows from Theorem 2. To prove the sufficiency let us observe that any tree automaton $\mathscr{A} \in \mathfrak{A}_R$ with $|\mathcal{A}| = n$ can be embedded isomorphically into an α_0 -product of \mathscr{B}_n with a single factor. From this fact, by our Lemma, we obtain the completeness of \mathfrak{B} .

Now let i > 0 be a fixed nonnegative integer. Then in a similar way as above we obtain the following result.

Theorem 4. $\mathfrak{B} \subseteq \mathfrak{A}_{\mathbb{R}}$ is isomorphically complete for $\mathfrak{A}_{\mathbb{R}}$ with respect to the α_{Γ} product if and only if for any natural number n > 1 there exists an $\mathscr{A} \in \mathfrak{B}$ such that \mathscr{B}_n can be embedded isomorphically into an α_i -product of \mathscr{A} with a single factor.

Since an α_i -product with a single factor is an α_i -product with a single factor, by Theorem 4, we get the next corollary.

Corollary 1. $\mathfrak{B} \subseteq \mathfrak{A}_R$ is isomorphically complete for \mathfrak{A}_R with respect to the α_1 -product if and only if \mathfrak{B} is isomorphically complete for \mathfrak{A}_R with respect to the α_i -product.

Now let *i* be a nonnegative integer. Then we have the following result for the minimal isomorphically complete systems in the case $R \neq \{0\}$.

Theorem 5. There exists no system $\mathfrak{B} \subseteq \mathfrak{A}_R$ which is isomorphically complete for \mathfrak{A}_R with respect to the α_i -product and minimal.

Proof. Let $\mathfrak{B} \subseteq \mathfrak{A}_R$ be isomorphically complete for \mathfrak{A}_R with respect to the α_i -product. Moreover, let $\mathscr{A} \in \mathfrak{B}$ with $|\mathcal{A}| = n$. It is obvious that \mathscr{A} can be embedded isomorphically into an α_i -product of \mathscr{B}_s with a single factor if $s \ge n$. Take a natural number s > n. By Theorem 3 and Theorem 4, there exists an $\widetilde{\mathscr{A}} \in \mathfrak{B}$ such that \mathscr{B}_s can be embedded isomorphically into an α_i -product of $\widetilde{\mathscr{A}}$ with a single factor. Therefore, by our Lemma, \mathscr{A} can be embedded isomorphically into an α_i -product of $\widetilde{\mathscr{A}}$ with a single factor. From this it follows that $\mathfrak{B} \setminus \{\mathscr{A}\}$ is isomorphically complete for \mathfrak{A}_R with respect to the α_i -product, showing that \mathfrak{B} is not minimal.

3. The hierarchy of α_i -products

Let $R \neq \{0\}$ be a fixed rank-type. Take a nonempty set $M \subseteq \mathfrak{A}_R$, and let *i* be an arbitrary nonnegative integer. Let $\alpha_i(M)$ denote the class of all tree automata from \mathfrak{A}_R which can be embedded isomorphically into an α_i -product of tree automata from *M*. It is said that the α_i -product is *isomorphically more general* than the α_j -product if for any set $M \subseteq \mathfrak{A}_R$ the relation $\alpha_j(M) \subseteq \alpha_i(M)$ holds and there exists at least one set $\overline{M} \subseteq \mathfrak{A}_R$ such that $\alpha_j(\overline{M})$ is a proper subclass of $\alpha_i(\overline{M})$. This notion was introduced in [2].

As far as the hierarchy of the α_i -products is concerned, we have the following Theorem.

Theorem 6. For any *i*, *j* (*i*, *j* \in {0, 1, ...}) the α_i -product is isomorphically more general than the α_j product if j < i.

Proof. We shall prove that the α_1 -product is isomorphically more general than the α_0 -product and the α_{i+1} -product is isomorphically more general than the α_i -product if $i \ge 1$.

First let $M = \{\mathscr{A}_2\}$, where $\mathscr{A}_2 = (\{1, 2\}, \bigcup_{\substack{m \in R \\ m \in R}} \{\sigma_{m1}, \sigma_{m2}\})$ and the operations of \mathscr{A}_2 are defined as follows: for any $0 \neq m, m \in R, (a_1, ..., a_m) \in \{1, 2\}^m$

$$\sigma_{m1}^{\mathcal{A}_{1}}(a_{1}, ..., a_{m}) = \begin{cases} 1 & \text{if } a_{m} = 2, \\ 2 & \text{if } a_{m} = 1, \end{cases}$$
$$\sigma_{m2}^{\mathcal{A}_{1}}(a_{1}, ..., a_{m}) = a_{m},$$

and $\sigma_{01}^{\mathscr{A}_2} = 1$, $\sigma_{02}^{\mathscr{A}_2} = 2$ if $0 \in \mathbb{R}$.

Now let us denote by $\mathscr{A}_3 = (\{1, 2, 3\}, \Sigma')$ the tree automaton where for any $0 \neq m \in \mathbb{R}$ $\sigma \in \Sigma'_m$, $(a_1, \ldots, a_m) \in \{1, 2, 3\}^m$

$$\sigma^{\mathscr{A}_{3}}(a_{1},...,a_{m}) = \begin{cases} a_{m}+1 & \text{if } a_{m}<3, \\ 3 & \text{if } a_{m}=3, \end{cases}$$

and $\bar{\sigma}^{\mathscr{A}_3} = 1$ if $0 \in \mathbb{R}$ and $\bar{\sigma} \in \Sigma'_0$.

It is easy to see that $\mathscr{A}_3 \notin \alpha_0(M)$ and $\mathscr{A}_3 \in \alpha_1(M)$ which yields the required inclusion $\alpha_0(M) \subset \alpha_1(M)$.

F. Gécseg and B. Imreh

Now let $i \ge 1$ and $M = \{\mathscr{B}_2\}$. Then, by the proof of Theorem 2, we obtain that $\mathscr{B}_{2^{i+1}} \notin \alpha_i(M)$. On the other hand, we shall show that $\mathscr{B}_{2^{i+1}} \notin \alpha_{i+1}(M)$ which yields the required inclusion $\alpha_i(M) \subset \alpha_{i+1}(M)$. To prove the above statement it is enough to show that $\mathscr{B}_{2^i} \in \alpha_i(M)$ if i > 1. Indeed, let us take the α_i -product $\mathscr{A} = \prod_{j=1}^{i} \mathscr{B}_{2}(\theta^{2^{i}}, \psi)$ where the family ψ of mappings is defined as follows: for any $0 \neq m, \sigma \in \theta_m^{2i}$

$$((a_{11}, ..., a_{1i}), ..., (a_{m1}, ..., a_{mi})) \in (\{0, 1\}^{i})^{m}$$

if

$$\sigma^{\mathscr{B}_{2}i}(\sum_{t=1}^{i} a_{1t}2^{i-t}, \dots, \sum_{t=1}^{i} a_{mt}2^{i-t}) = w = \sum_{t=1}^{i} a_{wt}2^{i-t} \text{ and } \bar{\sigma}^{\mathscr{B}_{2}}(a_{1j}, \dots, a_{mj}) = a_{wj}$$

then
$$\psi_{t-i}((a_{1i}, \dots, a_{mj})) = (a_{1i}, \dots, a_{mj}) = \bar{\sigma}$$

 $\Psi_{mj}((a_{11}, ..., a_{1i}), ..., (a_{m1}, ..., a_{mi}), \sigma) = \sigma.$

In the case $\sigma \in \theta_0^{2^i}$ if $\sigma^{\mathscr{B}_{2^i}} = \sum_{t=1}^i a_{vt} \cdot 2^{i-t}$ and $\bar{\sigma}^{\mathscr{B}_2} = a_{vj}$ then $\psi_{mj}(\sigma) = \bar{\sigma}$.

It is easy to see that \mathscr{B}_{2^t} can be embedded isomorphically into \mathscr{A} under the isomorphism μ defined as follows: if $w = \sum_{t=1}^{i} a_t 2^{i-t}$ then $\mu(w) = (a_1, ..., a_i)$ $(w=0, ..., 2^i-1).$

4. A decidability result

In this section we show that it is decidable if an algebra can be represented isomorphically by an α_i -product of algebras from a given finite set.

Theorem 7. For any nonnegative integer i, $\mathscr{A} \in \mathfrak{A}_R$ and finite set $M \subseteq \mathfrak{A}_R$ it can be decided whether or not $\mathscr{A} \in \alpha_i(M)$.

Proof. Let us suppose that \mathscr{A} with $A = \{a_1, ..., a_k\}$ can be embedded isomorphically into an α_i -product $\mathscr{B} = \prod_{j=1}^s \mathscr{A}_j(\Sigma, \varphi)$ of tree automata from *M*. Let $V = \max\{|A_t|: \mathcal{A}_t \in M\}$ and let (a_{u1}, \dots, a_{us}) denote the image of a_u under a suitable isomorphism μ (u=1, ..., k). We define an equivalence relation π on the set of indices of the α_i -product \mathscr{B} as follows: for any l, n $(1 \le l, n \le s), l = n$ holds if and only if $\mathcal{A}_l = \mathcal{A}_n$ and $a_{il} = a_{in}$ for all t = 1, ..., k.

It is easy to see that the partition corresponding to π has at most $|M| \cdot V^k$ blocks. Since $\mu(A)$ is a subalgebra of \mathcal{B} , if $a_{tl} = a_{tn}$ (t=1, ..., k) then the *l*-th and n-th components of $\mu(\sigma(a^1, ..., a^m))$ are equal, where $m \in R, \sigma \in \Sigma_m, a^j \in A$ (j=1, ..., m). \vec{F} om this it follows that \mathscr{A} can be embedded isomorphically into an α_i -product of tree automata from M with at most $|M| \cdot V^k$ factors.

DEPT. OF COMPUTER SCIENCE A. JÓZSEF UNIVERSITY ARADI VÉRTANÚK TERE 1 SZEGED, HUNGARY H-6720

References

- [1] ÉSIK, Z., On identities preserved by general products of algebras, Acta Cybernet., v. 6, 1983, pp. 285-289.
- [2] GÉCSEG, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, Saarbrücken, 1974, Springer Lecture Notes in Computer Science, v. 14, pp. 351-363.
- [3] IMREH, B., On α_t-products of automata, Acta Cybernet., v. 3, 1978, pp. 301-307.
 [4] RICCI, G., Cascades of tree automata and computation in universal algebras, Mathematical System Theory, 7, 1973, pp. 201-218.
- [5] STEINBY, M., On the structure and realizations of tree automata, Second Coll. sur les Arbres en Algebre et en Programmation, Lille, 1977, pp. 235-248.

(Received Aug. 22, 1986)