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1. Introduction 

An equational axiomatization of flowchart schemes and their behaviours, being 
the syntax and semantics of flowchart algorithms, was given by Bloom and Esik 
in [B—Es]. This paper is another approach toward the same goal, characterizing 
the algebra of schemes with a different set of operations. We use separated sum 
and a constant s instead of the pairing operation, and replace iteration by an opera-
tion called the feedback. The advantage of using this operation is that vector itera-
tion can be done simply by a repeated application of the feedback. This advantage 
comes out apparently in the form of the axioms that are much simpler than those 
listed in [B—Es]. 

Since the algebra of flowchart schemes is sorted by the infinite set NX N (N 
denotes the set of all nonnegative integers), to describe our system of axioms we 
use a scheme of axioms rather than a set of ordinary equational axioms where 
both sides of the equations are terms built up from constants and variable symbols 
of fixed sort with the given operations. In our sense such a scheme consists of equa-
tion patterns of the following form. The terms on the left and right side are built 
up from variables of variable sort and subterms denoting algebraic constants. These 
subterms, however, are allowed to depend on the sort of the variables so that they 
are uniquely determined by a fixed choice of the sorts of the variables occuring in 
the whole term. A scheme of axioms is called finite if the number of equation pat-
terns is finite. In this sense the scheme of axioms developed in [B—Es] is infinite. 
It turns out, however, that a more careful treatment of algebraic constants yields a 
finite scheme. 

As the scheme algebra operations of Bloom and Esik are easy to derive from 
our ones (and vice versa), it is possible to approve our scheme of axioms by proving 
the equivalence of the two axiom systems remaining strictly within the framework 
of equational logic. This, however, would require a tremendous amount of com-
putation. Instead, we follow the way of constructing suitable normal forms of 
terms (as it was done also in [B—Es]), which is easy to illustrate by schematic proof-
diagrams. 
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2. The axiomatization of flowchart schemes 

We shall consider three classes of (NX AO-sorted algebras, called P, M and 
S-algebras, respectively. If A is such an algebra, then A(p,q) denotes the under-
lying set of A corresponding to sort (p, q). The notation / : p-*q is introduced with 
the meaning f£A(p, q) if A is understood. 

A P-algebra is an (NX iV)-sorted algebra equipped with the following opera-
tions and constants. 

Composition: a binary operation which maps A(p, q)XA(q, r) into A(p,r) 
for each triple p, q, r£N. Composition is usually denoted by juxtaposition or • if 
it is intended to be emphasized. Composition is in fact a collection of binary opera-
tions • (p>i,r), but the subscript (p, q, r) is omitted for simplicity. 

Separated sum: also a binary operation mapping A(plf q^~><A(p2, q2) into 
A(p\P2, q i + q d for each choice pt, q±, p2, q2 of nonnegative integers. Separated 
sum is denoted by + . 

There are three constants: 16.4(1, 1), 06.4(0, 0) and x£A(2,2). 
Terms constructed from these constants with the above operations are called 

base P-terms. Clearly, every base P-term is of sort (p,p) for some p£N. For 
each n£N let t(n) denote the base jP-term defined recursively as follows. 

(i) if n = 0 or n = 1, then t(n) — n, 

(ii) t(n+\) = t(ri)+l if n fcl. 
However, we shall write n instead of t(n) if there is no danger of confusion. 

Definition 1. A permutation algebra is a P-algebra satisfying the following 
equational axioms: 

P l ; / - ( g - / i ) = ( / -g ) - / i for all f : p - q , g : ? - r , / j : r - s ; 

P 2 : f+(g+h) = (f+g)+h for all / : px - qx, g: p2 - q2, h:p3-*q3; 

P3: p-f=f and f-q=f for all / : p - q; 

P4: f+0 = f and 0 + / = / for all / : p - q; 

P5: (A • gi)+(/a• g2) = (A+/a) • (gi+g2) for all /¡: Pi-~ qit g;". q-, - rt, 
i = 1,2; 

P6*: x-x = 2; 

PI*: (1 +*)(*+1)(1 +x) = (x+1)(1 +Ar)(x+1).1 

For each pair (p,q)£NxN let Tl(p,q) denote the set of all p-ary permuta-
tions if p=q, else let II (p, q)— 0 . Define composition and separated sum over 
the sets II (p, q) in the usual way, and let 1 and 0 be the unique elements of 11(1, 1) 
and /7(0, 0), respectively. Interpreting jc as the transposition 2—2 we get a P-algebra 
II, which is clearly a permutation algebra. 

1 P6* and PI* will be replaced by a single axiom called the block permutation axiom. In fact 
P6* and PI* are the weakest special cases of this axiom that are enough to prove that the /"-algebra 
of all permutations is the initial permutation algebra. 
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A base P-term is called simple if it is equal to k for some k£N, or it is of the 
form (i— l )+x+(n— i) for some h S 1, «'€[«]={ 1,2, ...,«}. (In the latter case if 
(/—1) or (n—i) is 0, then it is omitted according to PA.) The term (i— l ) + x + ( n — i ) 
will be denoted by x„(i). Let P denote the collection of axioms PI , ..., Pi. The 
following remark can be easily proved using only the "magmoid identities" (cf. 
[AD]) PI , ..., P5. 

Remark. For every base P-term t there exists a base P-term t' which is the 
composite of a number of simple base P-terms (called the factors of t') and P\-t=t', 
i.e. the identity t=t' is provable from P. t' is said to be in split normal form (s.n.f. 
for short). 

Lemma 1. Let n ^ l and i£[n-1] ([O]=0). Then 

*„0)*,,(2)-... -x„(n)x„(i) = x„(i + l)x„(l)x„(2)-... -xn(n) 

is provable from P. 

Proof. (See also Fig. 1 for the case n=3, i=l.) 

x„(l)Xn(2)-...-xn(n)xn(i) = x„(l)-...-xn(i)xn(i + l)x„(i)xn(i+2)-...-xn(n) = 

= (by P7) = x„(l) . . . . - ( i - ( i + 1 ) x „ ( i ) ( i +1) • . . . •*„(«) = 

= x„( i+l)xB ( l ) - . . . -x n (n) . 

Fig. I. Proof of Lemma 1 on an example 

In two steps of the above derivation we used the obvious identity x„(k)xn(l)= 
=x„(l)x„(k), where l < n . 

For a base P-term t let \t\ denote the value of t in II. (In other words | | is the 
unique homomorphism of the initial P-algebra into II.) Since every permutation is 
expressible as a composite of permutations of the form |x„(z')|, the following prop-
osition says that the initial permutation algebra is II. 

Proposition 1. Let t and t' be base P-terms. If |i| = |i'|, then P\-t-t'. 

Proof. By the Remark we can assume that t and t' are both in s.n.f. Listing 
the factors of t in reverse order we get a term t - 1 such that P\-t~1t=n for appro-
priate n£N. If we can prove t't~1=n, then we get the required proof: t'= 
= t'{t~1t)—{t't~1)t—t. Hence it is enough to show that if |i | = |w| for some base 
P-term t in s.n.f., then P\-t=n. We follow an induction on n. If « s i , then the 
statement is trivial. Let If none of the factors of t is equal to xn_i(l), then 
t=\ + t', and the induction hypothesis works for t'. If x„_i(l) occurs in t, then 
assume indirectly that P\/-t=n, and the length of t (i.e. the number of the factors 
of t) is minimal. Split /=axn_!(l)/? so that ^ „ ^ ( l ) should not occur in a. By 
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Lemma 1 and the assumption that the length of t is minimal we get that 
PH-xB-i(l)i?=yxB-i(l)*„-i(2)-. . .-x ( I_10") for some j£[n-1], where ^ „ ^ ( l ) does 
not occur even in y. We conclude that P\-t=ayx„_1(l)...x„_1(j) which is a con-
tradiction, since in this case | i | ( l )=y '+1>1. 

Corollary 1. The initial permutation algebra is II. 
In the light of Proposition 1, when working in permutation algebras we identify 

a base P-term t with the permutation |/|. 
The following definition is adopted from [B—Es]. Let i be a finite sequence 

(«!, ...,nr) of nonnegative integers and suppose that a: /•—r is a permutation. 
Let n be the sum of the numbers nt. 

Definition 2. a # j : n^-n is the permutation which takes a number in [«] of 
the form 

where Jc[/i t+1], to the number y+j, where y is the sum of all numbers nt such that 
a (0<a( fe+ l ) . 

From now on we drop the axioms P6* and PI*, replacing them by the stronger 
block permutation axiom of [ES]: 

P6; f i +f2 = x # (A,p2) • (/a + / 0 # (q2, qx) for all 

fi '• Pi <7i> i = 1, 2. 

Assume that x # ( a , Pi) a n d x#(q2, qj are represented in P6 by base P-terms 
in a minimal length s.n.f. Then we see that P6* and PI* are indeed consequences 
of P6. (Take fi=f2= 1 in the case of P6, and f=x, f2= 1 for PI.) Since P6 is 
also valid in II, II remains initial. Now the following lemma is true in every permuta-
tion algebra. 

Lemma 2. Let a: r—r be a permutation and f : p^qi for each i€[r]. Then 

2f> = (a"1 #si) • ( 2 •/.(•)) • (« 
i=l ¡=1 

where ...,pr) and s2=(qail), ..., qair)). 

Proof. Easy induction on the length of a base P-term in s.n.f. representing a. 
An M-algebra is an (NX Assorted algebra having all the operations and con-

stants of P-algebras and two further constats: e of sort (2, 1) and Oj of sort (0, 1). 
As in the case of P-algebras, base M-terms are those built up from the constants 
using the given operations. Define base M-terms e„ and 0„ for each n^N as follows. 

(i) £0 = 015 £j = 1, £2 = 8, 0o = 0, 02 = Oi+Oj; 

(ii) if B £ 2 then e„+1 = (e„ + l)-e, 0 t + 1 = 0 . + ^ . 

Definition 3. A mapping algebra is an M-algebra satisfying the identities belong-
ing to P and the following ones. 
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M l : (e+1) • e = (1 +e) • e; 

M 2: x-s = e; 

M 3 : ( l + 0 i ) - 8 = 1. 

For (p, q)£NXN let 0(p, q) be the set of all mappings of [p] into [q]. Let 
0i and e be the unique elements of 0(0, 1) and 0(2, 1), respectively, and interpret 
the P-algebra operations and constants over the sets 9(p, q) as an obvious extension 
of their interpretation in II. In this way we get the M-algebra 0, which is clearly a 
mapping algebra as well. 

A base M-term is called simple if it is a simple base P-term, or it is one of the 
forms 

(i) (i —l)+01+(w —0, or 

(ii) ( i - l ) + £ + ( « - i ) 

for some 1, /£["]. Let M denote the collection of axioms M l , M2, M3. As in 
the case of base P-terms, for every base M-term t these exists a base M-term t' such 
that t' is the composite of simple base M-terms and P\-t=t'. Moreover, by P6 
it is possible to rearrange the factors of t' in such a way that P U M | - t'—ap, where 
a is a base P-term in s.n.f., but none of the factors of jS is a simple base P-term (exept 
when fi=k for some k£N). But then P U M f - / i = e i l + ... + eJm for some non-
negative integers m, j\, ...,jm. 

For a base M-term t let |f| denote the value of t in 0. The above reasoning 
together with Proposition 1 yields the following result. 

Proposition 2. Let t and t' be base M-terms. If |/ | = |/' |, then P(JM{-t=t'. 
Equivalently, the initial mapping algebra is 0. 

As in the case of permutation algebras, when working in mapping algebras 
we identify a base M-term t with the mapping \t\. 

Let a: p-*q be a mapping and B^.[q], We say that a is onto B if a""1(y')7i0 
for any /£B. If Pi~*q, i= 1,2 are mappings, then define their pairing 
<«!, <x2>: P i + P ^ q as 

i « i ( 0 if ¿€t/»i] 
^'"»W-ta, {i-pd if ii[Pl+P2\-[Pl]. 

An 5-algebra has one further unary operation beyond the M-algebra opera-
tions and constants. This operation will be called the feedback and denoted by |. 
In an 5-algebra the feedback maps A(\+p,\+q) into A(p,q) for each pair 
(p,'q)£NXN. 

Let I be a doubly ranked set. (Recall from [B—Es] that 

I = {!(/>, q)\(p, q)£NXN}, 
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where the sets I(j>, q) are pairwise disjoint.) A Z-flowchart scheme with p begins 
and q exist consists of: 

(i) A finite nonempty set V of labelled vertices, where the labels belong to the 
union of four, pairwise disjoint sets: 

( U D U i b . l i i b l J U i e x y l K M J U i x } . 

For each i£[p) and [q] there exists exactly one vertex labelled by bh called the 
i-th begin vertex, and exactly one vertex labelled by ex,-, they'-th exit vertex. More-
over, exactly one vertex, the loop vertex is labelled by _L. For each v£ V denote viD and 
t>om the following sets of so called "signed vertices". Leta be the label of v. If a €Z(r, s), 
then 

»in = {(«, OI»'€[r]} and ®out = {(v,j)\j€[s]}. 

If a = e x j or a = _L, then u in= {(i;, 1)} and t>out=0, else (i.e. if a=fcf) u i n=0 
and vout= {(y, 1)}. Signed vertices belonging to begin, exit and loop vertices will be 
identified with their label. 

(ii) A mapping E of Vout= U(uout|t>€K) into Vin= U(t>J»€F). E represents 
the edges of the scheme, and in this sense we consider 27-flowchart schemes as 
directed graphs. 

Define the S-algebra operations on ^-schemes as follows. 
— The composition of schemes F: p-»q and G: q-*r is constructed in 

three steps. 
1) Take the disjoint union of the graphs of F and G. 
2) Direct each edge of F ending in any exit vertex of F, say cxj to the signed 

vertex pointed by E(bj) in G. 
3) Identify the lopp vertices of F and G, and delete the exists of F as well as 

the begins of G (together with all the incoming and outgoing edges, of course). 
— The sum of schemes Fx: p^qi and F2: p2-*q2 is taken as follows. 
1) Take the disjoint union of Fx and F2. 
2) Relabel each begin vertex of F2 from bL to bPl+i and each exit vertex of F2 

from exj to ex„1+> ( ^ [ p j , 
3) Identify their loop vertices. 
— If F is a scheme l + ^ - ^ l + f̂, then \F is constructed as follows. 
1) Direct each edge of F ending in exx to E(bi) if ¿^(¿J^ex!, else to J_. 
2) Delete vertices bx and exx, and relabel b,+1 and ex J + 1 as bt (resp. exj) for 

KM, M<tl 
— The interpretation of the constants is shown by Fig. 2. 

Fig. 2. Interpretation of the constants as schemes 
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The loop vertex is omitted 011 the figure (exept for 0). 

Definition 4. A scheme algebra is an S-algebra satisfying the identities P\JM 
and the following ones (the collection of these identities will be denoted by, PMS). 

S I : t ( / i+/ 2 ) = t / i+ / 2 for A: l + > i - l + ?i, / , : / > , - f t ; 

S2: it((x+p)f) = tt ( / (*+?) ) for f : 2+p-2 + q\ .. 

S3: t ( f l l + g)) = (tf)g for / : l+p^l + q, g: 

S4: t((l + g)/) = g - t / for / : .l + i -*-. 1+r , g: p q \ 

S 5 ' : t l = 0 and e - _ L = ± + J _ , where ± = 

S6:\x=\. ' ' .. 

It is easy to see that T-schemes together with the operations and constants 
defined above form a scheme algebra, which will be denoted by Sch (I). 

Lemma 3. If a : l +p-*l+q is a mapping with a(1)^1, then there exists 
a mapping /?: p-*q such that PMS\-ia=¡¡. 

Proof. Split a into the form 

(1+&)(* + r ) ( l + f t ) , 

where px: p-^l + r and p2: 1 + r--q are appropriate mappings. Then 

ioc = (by S3 and S4) = &• \(x+r)p2 = (by SI and S6) = pij32. 

Claim. The following identities are valid in every scheme algebra. 

SI*: t ' ( / i+ / 2 ) = t ' /1+/2 for f1:l+Pl^l+q1, /2: Pi~- #2-

(t' denotes the Z-fold application of t.) 

S3*: t ' ( / 0 + g)) - (t ' /)- g for / : l+p - l + q, g: q - r. 

S4*: t,((I + g ) / ) = g - t ' / for f:l+q^l + r, g \ p q . 

Proof. Trivial. 

XI: \l((a+p)f(a-1 + q)) = \'f for / : l+p - l+q and permutation a. 

Proof Put a into s.n.f., and apply S2 with S3* and S4* repeatedly. 

X2: t'«+'»((/i+* *(k,Pi)+P2)(fi+f2)(li+x h)+q2)) = 

= t'*A+tV. for /«: Ji+7»i-Ji + ?i,i = 1,2. 
Proo/. A schematic derivation is shown by Fig. 3. 
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lL h Pi Pt 

Fig. 3- Schematic proof of X2 

The same proof formally: 

t'i+,»((/i+x *(k,Pi)+P2)(fi+A)(h+x #(<?x, h) + q2)) = 

= H\^((h + x Hh,Pi)+Pz)((fi+A)(h+x #(<?!, h)+q2)))) = (S4*) 

= *«•((* #(/„/>1)+/»,) • W i f i + f j i h + x #(<?i, IJ + q*))) = (S3*) 

= t'<(* #(h,Pi)+P2)-t'>(/i+/2)(x h) + q2.)) = (S I * ) 

= t'«((x # ( / 2 , p 1 ) + p 2 ) ( ^ f 1 + f 2 ) ( x #(9l, h) + q2j) = (P6) 

= i'.((/2+x HPx,P2))(f2+Wi)(h+x #(? 2, q i ) ) ) = (S4*, 53*, S I * ) 

= (* #(A, J P2)) ( t , ' /2 + l , ' / i ) ( ^ #(<72, ft)) = (P6) = t'-A + t ' / a . 

In the sequel we shall omit the tedious formal proofs restricting ourselves to the 
corresponding schematic ones. 

X3a: \q(x#(p,q)+l)(f+g)) = (f+l)g for 

/: P- 9, g : 9+1 - r, 

X3b: \q((g+f)(.xMr,q) + l))=f(g+l) for 

f:p-*q+l, g:q-*r. 

Proof. Both cases a and b can be proved in a similar way, so we only prove 
Z3a. (Dotted lines indicate composition in Fig. 4.) 

X4: t ( f ( e + q)) = \%e+p)f): for f i l+p-»2 + q. 

Proof. See Fig. 5. 
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9 P 1 

' 1 
if r 

S3* 

t« 

Si* 
Lemma 3 

Ffc. Proof of X3a 

r»--(V m)« ••( a 7l) = * / X3u 

F&. 5. Proof of X4 
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Lemma 4. Let a: r—l+p and /?: 1 + i be mappings, f : p—q. In every 
scheme algebra we have 

a) if a ( l ) = l and then 

t (a( l+/) j?) = «'(!+/>/?'; 

b) if j?( l )=l and «(1)^1, then 

\{*(\+f)P) = t(a"/n; 

c) if <x(l)=0(l)=l, then 

t ( « ( ! + / ) / ? ) = \(<x'"(±. +f)Pm) 

for appropriate mappings a', a", a'", /?', /?", /?"'; moreover a"'(l)=l. 

Proof. 
Case a: By assumption a can be written in the form a=(\ + (x')(e+p). Then 

«(!+/)/? = (l+a')(s+p)(l+f)P = ( l+a ' ) (2+ / ) (£ + ?)/? = 
, -(l+a'O +f))(s + q)P. 

Hence by 54 : 
t(<x(l+/)/?) = *'(l+f)-t((e+?)/0. 

Since f}(l)?±l, Lemma 3 says that +q)0)=P' for some mapping /}'. 

Case b: In this case /? can be written in the form 
/? = (1+/}")(£ + S - 1 ) , 

so 
t(a(l +f)fS) = t ( ( a ( l+ /»S" (e+ S - l ) ) = (by X4) 

= t 2 ( ( e + r - l ) a ( l + / } ( l + n ) = t ( t ( ( £ + r - l ) a ( l . + / 0 ) = (by 53) 
= t (t ((e+r — 1)a)//T) = (by Lemma3) = t(a"/^")-

Case c: As in the previous case we have 
t ( a O + / ) / 0 — t( t ( (e + r — l)a)/]S") 

but now 
(e + r—l)a = (e + r - l ) ( l + a')(£-hp) = (l + r)(2 + a')(e3+/>); 

t ( (e+r —l)a) = (by 54) = (1 +a')Ke3+/>) = ( l+a ' ) (e- J. +/>) = 
= ( l + o O ( 6 + / » ) ( ± + / » ) . 

Putting am=(l + a')(e+p) and we get: 

H ;• t ( « ( l + m t(a'"( _L +PW") = t(«"'( L +/)/?"')• • , -

We call r-terms those 5-terms that are built up from the elements of I con-
sidered as atomic terms (recall that I is a doubly ranked alphabet) and from the 
constants, using the given operations. Since the 5-algebra of T-terms is freely ..gen-
erated by I , each homomorphism of it into the algebra Sch(i) is uniquely deter-
mined by its restristion to I . Let | | be the homomorphism determined by thé mapping 
shown by Fig. 6. 
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Fig. 6. <T£Z(P, q) as an atomic scheme 

A r-term t is said to be in weak normal form (w.n.f.) if 
t = \l(a(ai+...+an)P), 

where 
(i) a^I or a~ 1 or at= J. for each i'£[n], 

and there exists at least one [«] such that a}= J_. 
(ii) a and P are mappings of appropriate sort. 
Lemma 5. For each T-term t there exists a Z-term t' in w.n.f. such that t=t' 

is provable from PMS. 

Proof. Induction on the structure of t. If t is a constant, then its simplest w.n.f. 
is one of the following: 1 = (1 + 0!)(1+ ±) , O^O^ x=(x+0 1 ) (2+ J_), 0X= 
= 0j • J_ • Oj, E=(E+01)(1 + J_). These identities are easy to prove. If t=a£I(p, q), 
then its w.n.f. is (p+01)(o-+ ±) . Let tx opi 2 , where op= + or •, and let ii 
and t'2 be some w.n.f.-s of /i and t2, respectively. If o p = + , then we get a w.n.f. 
of t by applying X2 for f—and f2=t2. If op= •, then apply X3 with / = 0 
(both cases a and b are appropriate), and then X2 together with S3* or S4* to get 
the required w.n.f. of t. For t—\t' the induction step is trivial. 

Definition 5. A T-term t: p^-q is said to be in normal form (n.f.) if 

t = t ' « a i + 0 f c + 1 , a 2 > - ( J ± +k)-(p2,0l+Pi)), 
i-1 

where 

(i) «^0 , (7^1 (^ ,5 ; ) for each i€[n], 
ft tl 

2rt = r, 2st — s> 
¡=i ¡=i 

(ii) ax, a2, Pi and P2 are mappings such that 
ax: l—r+l and px: k -*• q are injective and monotonic, 

a2: P — r+l + k is onto [ r + l + fc]—[r+1]; 
p2: s — l+q is onto [/]. 

Lemma 6. For each T-term /: p--q there exists a Z-term t' in n.f. such that 
t=t' is provable from PMS. 
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Proof. By Lemma 5 we can assume that t is in w.n.f., i.e. t=\l(ct(a1+ ...+am)ft). 
Moreover, by P6 and S5 we can assume that for some n<m we have: a^I if 
»€["], on+1— _L and aj= 1 for each n+l^j^m. Let k=m—n—\. We prove by 
induction on the number k+l. If k+l= 0, then we have nothing to prove. For 
£ + / > 0 we distinguish two cases. By assumption, a: l+p^r+l+k and fi:s + k — 
-*l+q for some r,s£N. 

Case a: / > 0 and one of conditions (*), ( * * ) or (* * *) below is satisfied. 
Suppose that for some [&] 

( a - H r + l + ;)Uj?Cy+j))n[Z]7i0. ( * ) 
By P6 and XI 

/ = \,(<x'(l+a1+...+aj-1+aJ+1 + ...+am)p') 

is provable for some a ' and P' such that a ' ( l )= 1 or P'(l)= 1. Using Lemma 4 
we obtain a simpler w.n.f. of t by decreasing the number k or /, which makes the 
induction hypothesis applicable. If this type of reduction cannot be applied, i.e. 
condition (*) does not holds for any n + l ^ j ^ m , then a and P can be written in 
the form 

« = <ai+0*+i,«2> and P = </?2, <),+&>, 
where ct^. l—r+1, a2: p—r+ 1+A;, j8x: k—q and /?2: J—1+q are appropriate 
mappings. Now suppose that there are distinct integers 

1 ^ I'i < /2 ^ I such that ^ ( i j ) = a1(/2). ( * *) 

By XI we can assume that ^ = 1 and i2=2. Using X4 we can decrease / making 
the induction hypothesis applicable. In this way ax can be made injective. It is also 
easy to see that if 

Pz is not onto [Z], ( * * *) 
then the feedback counter / can be decreased again. 

Case b: 1=0 or none of (*), (* *) and (* * *) is satisfied. 
In this case if a2 were not onto [ r + l + fcj—[i—h 1], then k could be decreased 

trivially, moreover any duplication of P± could be "lifted" to a2 causing again the 
number k to be decreased. 

Thus, we have seen that in any case when the induction hypothesis cannot be 
applied we have all the conditions of the n.f. satisfied, except monotonicity of a2 
and ft. However, this can also be adjusted by the application of XI and P6, so the 
proof is complete. 

Theorem 1. Let t and t' be Z-terms. If |i | = |<'|, then t— t' is provable from 
PMS. 

Proof. By Lemma 6 we can assume that t and t' are in n.f. Normal form of 
Z-terms was defined in such a way that if t and t' were not identical, then the only 
difference between them should appear in the order of the atomic terms occuring 

n 
in the sum 2 this case, however, an application of Lemma 2 with an appro-

i = 1 
priate permutation a will make them identical. 
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This theorem and the following corollary are the main results of the paper. 

Corollary 2. Sch(I) is the free scheme algebra generated by I . 

3. Connections to the same result of [B—Es] 

In [B—Es] schemes are axiomatized as algebras equipped with the following 
operations and constants. 

Composition, • : A(n,p)xA(p, q) A(n, q); 

Pairing, (, >: A(n, q)XA(p, q)-A(n+p, q); 

Iteration, t: A (n, n+p) -+• A («, p); 

7tj,£yi(l,/0 for each p£N, i£[p]; 

0p£A(0,p) for each p£N. 

Let us call algebras of hist type 55-algebras, and to make a temporary distinction call 
the BS-type scheme algebras of [B—Es] 2?-scheme algebras. 

In an arbitrary scheme algebra A we can introduce the ¿?S-algebra operations 
as derived ones in the following way. 

Composition: adopted as a basic operation; 
Pairing: for / : n->-q and g: p^-q let 

</> g> = ( / + g) • w2(q), 
where wk(q): kq—q is the mapping which takes (_/— l)q+i to i for each y'Cffc], 
iiiq]; 

Iteration: for / : n^-n+p let 
f t = t"(w2 («)/); 

jcj, = Oj- i+l+Op-; and 0P is adopted. 

It is straightforward to check that if A is a free scheme algebra, then the above 
derived interpretation of the BS-algebra operations coincides with their original 
interpretation considering A as a free fi-scheme algebra. From well-known results 
of universal algebra it follows that every scheme algebra equipped with these BS-
algebra operations becomes a jB-scheme algebra. 

Now let A be a 5-scheme algebra. We can derive the S-algebra operations in 
A as follows. 

1 = n{; x — {n\, 7i|); E—(nl,nl); ( ^ a d o p t e d ; 
Composition: adopted; 
Sum: for f : p^q^, / 2 : p2-~q2 let 

fi+A = </i«+4i, -,*£+„>,/.<«£:&, 
Feedback: for / : \+p-*\ + q let 

t/"=(Qi+P)C/Kl+0,+?))t. 

7 Acta Cybernetica VUI/2 
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Repeating the previous argument for free algebras we can see that A equipped 
with the above defined S-algebra operations becomes a scheme algebra. Thus, we 
can state 

Theorem 2. The equational class of all scheme algebras is equivalent to that 
of all 5-scheme algebras. 

4. Algebraic and iteration theories 

Roughly speaking an algebraic theory (theory for short) is a PS-algebra without 
iteration satisfying the following equational axioms. 

THl: f-(g-h) = (f-g)-h for all / : n + p, g: p - q, h: q - r, 

TH2: p-f - f = f • a for all / : p — q (p denotes the term (rcj,, n f j ) , 

TH3: « / , g), h) = </, <g, ft» for all / : m - q, g:n^q, h: p - q, 

TH4: (/ , 09) = / = <09,/> for all f : p ^ q, 

TH5: ...,/p> =ft for all / l 5 . . . , /p : 1 - q, i€[p], 

TH6: (n\f,..., n"pf) = / for all f: p ^ q. 

We would like to extend our system of axioms PMS in such a way that in the cor-
responding smaller equational class each algebra should derive a ¿-scheme algebra 
which is a theory. We claim that the following two axioms are sufficient. 

Thl: 01-f=0q for all / : 1 - q, 

Thl: wp(p) •/ = ( ¿ / ) • wp(q) for all f : p + q 
¡=i 

(recall that wp(q): pq^-q takes (j—\)q+i to i for each j£[p], if,[(/]). Indeed, 
the derived correspondents of THl—77/4 follows already from P(jM, so we 
only have to prove TH5 and TH6. The derived form of 77/5 in S-algebras in the 
following: 

(0;-i+1 +0p-;)(/i+ ••• +/p) wp(q) = fit. 

By Thl the left-hand side reduces to 
(0(i -1)9 +fi+0(p - i)g) wp (q), 

which is clearly equal to /¡. 
Concerning TH6 we have to prove that 

( ( 1 + 0 p - ! ) / + . . . + ( 0 P _ 1 + l ) / )wp(<7) = / . 
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Manipulating the left-hand side using Th2 we obtain: 

( 2 ( ( O 1 - 1 + : 1 + o P - i ) f ) ) w „ ( q ) = (2(0,-1+i+oP-iM 2 / > p ( < 7 ) = 
¡=1 ¡ = 1 ¡=1 

~ ( 2 1+0p-i))wp(/7)/=/. 
i = l 

Unfortunately I did not succeed in an essential simplification of Ésik's "com-
mutativity" axioms (cf. [Es]) for iteration theories: 

IT: (NLQF(EI+P),..., Kef(eN+P))f - e(f(e+p))\ 

where / : n-*m+p, Q: m-»n is a surjective mapping and m—m are also 
mappings satisfying QIQ—Q. In our sense IT is an infinite scheme of axioms, more-
over, Ésik has proved that it cannot be replaced by any finite scheme, see [Esl]. 
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