
On state grammars 

A . MEDUNA a n d GY. HORVATH 

In this paper we study some properties of state grammars. Among others, it is 
shown that for every recursively enumerable language there exists a state grammar 
with erasing rules that generates it. Some problems concerning the descriptive com-
plexity of state grammars are discussed. 

1. Introduction 

In the last years several types of grammars have been defined which have context-
free rules and an additional mechanism which regulates the derivation process (see 
e.g. [1]—[6]), since such grammars can describe such special aspects of programming 
languages that cannot be covered by context-free grammars. One of the typical gram-
mars of this kind is the state grammar (see [3]) — the subject under investigation in 
the present paper. 

Intuitively, a state grammar is a context-free grammar with an additional mech-
anism which consists of the following: at each derivation step the grammar is in 
a state which influences the choice of the next production to be applied, and the next 
state is determined by this production. Moreover, rewriting is done in a leftmost 
fashion. 

2. Preliminaries 

In this section we briefly review some of the basic notions and notations of formal 
language theory. Items not defined explicitly are standard in language theory, see 
e.g. [5]. 

For a finite set A we use \A\to denote its cardinality. If w is a word over an alphabet 
Z, then |w| denotes the length of w, alph(w) denotes the set of letters occuring in w 
and Ny(w) denotes the number of occurrences of letters from Y(QZ) in w. The 
empty word is denoted by X. For a grammar G, denotes its direct derivation 
relation and =g=>* denotes the derivation relation of G. We also write => and =>* 
rather than ==> and =>* if no confusion arises. A production (p, q) of a grammar 
G will also be called a rule and written as p-*q. For context-free grammars we use 



238 A. Meduna and Gy. Horvâth 

the following notation : G=(Z, A, x0, P), where I is the total alphabet of G, A QZ 
is the terminal alphabet of G, x0€ A is the initial letter and P is the set of produc-
tions of G. 

Now we recall the definition of a queue grammar defined in [4]. 
A queue grammar is a 7-tuple Q—(Z, A, S, F, x0, 50, P) where I and S are 

finite sets, the total alphabet and the state set of Q, respectively, AQZ is the terminal 
alphabet, FQS is the final state set, is the initial letter, sgÇS is the initial 
state and finally, PQZX(S\F)XZ*XS is a finite set, the production set of Q. 
A production (x, s, u, s') in Pis also written (x, s)—(«, j '). 

For any (m, S), (V,S')£Z*XS the direct derivation (w, j) s') holds iff 
U=XUI for some XÇZ and uX£Z*, and there is a production (x, J)—(vt, s') in P 
such that v=u1v1. The derivation relation ==>* is the reflexive transitive closure 
o f ^ . 

The language L(Q) generated by Q is defined by L(Q)= {vvÇJ*: (x0, Î0)=>*(H>, s) 
for some sÇ. F}. 

The central notion of this paper is that of a state grammar that we recall now. 
A state grammar is a construct G=(E,A, S, x0, i0 , P) where Z and S are finite 

sets, the total alphabet and the state set, respectively, A QZ is the terminal alphabet, 
is the initial letter, s0€S is the initial state and P is a finite set of produc-

tions of the form (x, j)—(u, s') where x £ r v 4 , s, S and uÇZ*. The direct 
derivation (u,s) ~>(v, s') holds for u,v£Z* and s, s'£ S iff there exist decompo-
siton u=u1xu2, v=u1v1u2 and a production (x, s)^(vL, s') in P such that for every 
nonterminal occuring in the word ux there is no production with left side 
(y, s) in P. 

The language L{G) generated by G is defined by L(G)= {w£A* : (x0, J0) ==>-*(w, i ) 
for some s£ S}, where is the reflexive transitive closure of ==>. 

A state grammar G is called propagating if for every production (x, s)— 
—(u, s') of G we have u^L 

We point out that the above definition differs from Kasai's original definition in 
[3] since Kasai considers only propagating state grammars. 

The family of languages generated by context-free, contex-sensitive, type 0, 
queue and state grammars is denoted by i?(CF), iP(CS), i ? (RE), ¿?(Q) and SB (S), 
respectively. 

3. On the generative power of state grammars with erasing productions 

In his original definition of state grammars, Kasai did not consider erasing 
productions. It is however a natural generalization (see e.g. [6]). But then, the first 
question we have to ask is: what is the generative power of such grammars? We are 
going to show in this section that Jëf (S) and J§?(RE) coincide. Although the equality 
i f (S)=JS? (RE) can be obtained as a direct consequence of a theorem in section 4, 
we prove it here in order to demonstrate the close connection between queue and 
state grammars, moreover, this connection will be used in a subsequent section. 

A state grammar G=(Z, A, S, # , J0> P) ¡ s called front-end state grammar if 
the nonterminal letter # is an endmarker, which means that every production con-
taining # is of the two forms ( # , s)—(h#, s') or ( # , s)—(«, s')> where # does 



On state grammars 239 

not occur in the word u, moreover, for every state s, if there is a production with left 
side (x, s) for some # , then for each nonterminal letter x V # there is a pro-
duction with left side (x', s). 

One can see that in any derivation step according to a front-end state grammar, 
the rewritten non-terminal letter is either the first nonterminal in the word or the 
endmarker. 

Lemma 1. For any queue grammar Q one may construct an equivalent front-end 
state grammar G. 

Proof. Let Q—(E, A, S, F, x0, s0, P) be an arbitrary queue grammar. We 
construct a state grammar G=(I', A, S, #, q0, P). For each terminal letter aÇA 
we introduce a new nonterminal letter xa. We set 

Z' = ZU{xa: a€<d}U{#} 

We define a homomorphism h of I into I' by h(x)=x for and h(a)—xa 
for a£A, The homomorphism g of ZUh(A) into X is defined by g(x)=x for xtl 
and g(xa)=a for aÇA. Clearly, g(h(x))=x for xÇZ and h(g(x))=x for x g l U 
\Jh(A). Now the production set P'= P^li P[U P^U P^li Pi is constructed in the 
following way : 

{ (# ,9o )^ (*o #,«<>)}» 
Pi = {(*, s) - (A, [x, s]) : s € 5 \ F , x£ h (I)}, 
K = { ( # , [*, s]) - (h(«)# , s'): (g(x), s) - (u, s%P}, 

= { ( # , s ) - ( A , q1): s6F}, 

Pi = {(*, qù - (g00, xih(Z)}. 
It is evident that the state grammar G constructed above satisfies the front-end require-
ment. We are going to prove that a derivation 

(x0, s0)=>* (w, s) holds iff 

( * o # , s 0 ) ^ * ( h ( w ) # , s) holds. 

Indeed, for any production (x, s)->-(u, s') in Q, the productions (h(x), s)— 
—(A, [h(x), •$•]) and ( # , [h(x), s])-*(h(u) #,.? ') are present in G, moreover, for every 
word v£h(X)* the derivation 

(h(x)v#,s)~*(v#,[h(x), s]) ==• (vh(u)#, s') 

holds. Conversely, a derivation (x0#, s) c a n only be carried out by 
using productions from P[ and from P'2. If a production (h (x), s) — (A, [h (x), i]), 
x£l, is used in a derivation step, then after it a suitable production ( # , [h(x), s])—-
--(h(u) # , 5') must be applied, where (x, s) —-(w, s') is in P. By the front-end prop-
erty of G we obtain that (x0, 5,

0)=>*(w, 5) holds. Assume that w£L(Q). Then 



240 A. Meduna and Gy. Horvâth 

(x0, s0) s) holds for some s£F, consequently we obtain the derivation 

( # , q0)=S>(x0v, s 0 ) { h ( w ) # , s) {h(w), q,). 

The iterated application of productions from Pi gives the derivation 

(#. (h(.w), ^>*{g(h(w)), = (w, qj. 

Therefore H>£L(G). 

To establish the converse inclusion L(G)QL(Q), assume that w£L(G). Thus 
( #» <7o) *(w> fa) must hold since every production of G not containing nonter-
minal letter on its right side is a member of P'3 or P'4. The nonterminal letter # can 
only be eliminated by a production from P'2, thus we obtain the derivation 

(#, q0)*£> {x0*,s0)~>* s )=* (v, fc)g=>-* (w, ft) 

for some s£F and v£h(iy. Furthermore, w=g(v) by virtue of definition of P't, 
thus h(w)=h(g(v))= v. We obtain the derivation (x 0 # , s0) =>*(/2(w), i), which 
implies (x0, j0)===>-+(w, j). Therefore w£L(Q). • 

Lemma 2. Every recursively enumerable language can be generated by a front-end 
state grammar. 

. Proof. From Theorem 2.1 Chapter 2 in [4] we know that S£ (Q)=„S?(RE), hence 
the lemma holds by Lemma 1. • 

The following theorem is now an immediate consequence of Lemma 2. 

Theorem 1. <£ (S)=JS? (RE). 

4. On the complexity of state grammars 

It is a natural question whether or not the representation of languages by gram-
mars of a certain type is "better" than by grammars of another type. In this section 
we study complexity measures of state grammars in terms of [2] as for example the 
number of nonterminals and the number of states sufficient to generate any language 
of a given type. 

First we investigate the complexity of state grammars with regard to the measure 
of states. 

It is an immediate consequence of the definition of the state grammar that any 
language L is context-free iff L can be generated by a state grammar with a single 
state. 

Theorem 2. Let L££f (RE). Then there exists a state grammar 
G=(I, A, S, x0,s0,P) such that L= L(G) and |S[ = 3. 

Proof. Every type-0 language L can be obtained in the form L=h(L1(~}L2) 
where h is a homomorphism and and L2 are context-free languages (Theorem 
11.1, Part one in [6]). Assume that the languages Lx and L2 are generated by the con-
text-free grammars G 1 =(I 1 , A', x], PJ and G2=(I2, A', x\, P2), such that 



On state grammars 241 

ZtC\Z2=0, A(1A'=0. Let h:A'-+A* be the required homomorphism where L is 
a language over the alphabet J . Assume that A'—{at, ..., a„} for some w ^ l and 
consider an auxiliarly alphabet A"—...,bn). We define a function 1,— 
—Z2\<d'LM" by <p(x)—x for x£Z2\zl and (p(a)-bi for a£A'. Furthermore, 
let ip:A"^A' be defined by ip(.bt)=ai for b£A". 
Now we construct the state grammar G in the following way: 

Z = {*0, # , ± } U r l U I 2 U J " U { a / , b{: 1 ^ i == «}UJ, 

S — {s0, Sj, s2}, 

P = P°UP 1UP 2UP 3UP 4 . 

P° = {(*0, *o) - (*o*o # > so)> ( # , So) - (I, Si)}, 

P1 - {(x, s0) - (p, s0): x - s„) - (<p(q), s0): y - ?6P2}, 

. P2 = {(«i, si) - (a], s2), (a/, sx) - (a/+1, s2): 1 j < i S «}, 

P» = {(bt, s2) - (b}, sj, (b{, s2) - (6/+1, s j ; 1 ^ j < i ^ «}, 

P4 = {(a|, Sl) - (&(«;), s0), (bj, s0) - (A, sx), (6{, s2) - ( ± , s2): 1 3= i S n}. 
We prove first that LQL(G). Let w=h(v) for some v^LyC\L2. Then there exist 
(leftmost) derivations xj=>*t> and XQ==>*U. By the construction of the production 
set P1 we obtain the derivation 

(*o, s0) ̂  (xlxl # , s0) (vxl # , s0) (v<p(v) # , s0) (v<p(v), sj. 

Using productions from P2, P 3 and P4 we have 

(x0, s0) * (v<p (v), s j => * (h (v), sx). 
Therefore w£L(G). 

To establish the converse inclusion L(G)QL consider a derivation (x0, s0)=>* 
==>*(w, s) for some w£A* and S. This derivation must start with the use of the 
production ( # , Jo)--(*o*o#> Jo), and the nonterminal letter # can be eliminated 
by the production ( # , j0)—(A,-?i) only if 

(*<Uo*, s0) * (v, <p (v2) # , s0) (Vl <p (v2), S!)=>*(w, s) 

holds for some words v1; v2(iA'* such that xl~>*v1 and xl~>*v2. Suppose that 
tfi=tfij• • A-fc, ah, ...,aik£A', and (p(v2)=bJl...bjl, bh, ..., bj£A". Considering 
the production sets P2 and P3 one can see that the nonterminal a t l can be derived to 
a terminal word in the derivation (t^(p(v2), ¿1) => * (vv, s) only if the subderivation 

(ah...aik bh...bh, Sl)~>* (a\[...aikbi
i\...bjl, Sl)~> 

=>(h(ail)ah...aikbJl...bh,s0) 

holds. Moreover, this subderivation can be continued only if i ^ j i and then the 
production (bl\, s0)—(/, must be used. Repeated application of the above proc-

\ 



242 A. Meduna and Gy. Horvâth 

ess yields the equalities k=l, i,=j, (t=l, ..., k), i.e. cp(vi)—(p(v2) and w=h(v1). 
Since v1—4'((p(v1))=^/((p(vz)=v2 we conclude that w£h(L1P\L2)= L. • 

Now we will study the complexity of state grammars with regard to the measure 
of nonterminals. First we shall give a uniform definition of the (uncontrolled) finite 
restriction for grammars. 

We say that a grammar G is of index k (for some positive integer k) if, for every 
word in the language L(G) there exists a derivation such that no word in this deriva-
tion contains more than k occurrences of nonterminal symbols. We say that G is of un-
controlled index k if every word in each derivation of a word in L(G) contains no more 
than k occurrences of nonterminal symbols. Finally, we say that G is of (uncont-
rolled) finite index if it is of (uncontrolled) index k for some positive integer k. 

Lemma 3. Let G=(Z, A, S, x0, s0, P) be a state grammar such that Z\A = 
= {x„}. Then there exists an equivalent context-free grammar G', moreover, if G is of 
uncontrolled index k then so is G'. 

Proof. We construct the context-free grammar G'=(Z", A, y0, P') 

I' = 0 > 0 } U S X S I M , 

{[s, s t + 1] - MITSJ, S 2 ]M 2 [S 2 , s3]...uk[sk, Sk+1]uk+1: k S i 

s, Si, ..., sk+i£S, Ui, ..., uk+1£A*, 

(x0, s) - (u1x0u2...ukxauk + 1, s1)€P}U 

{[s, s'] - u: (XQ, S) - (u, s')£P, u£A*}. 

We prove by induction on the length of derivation that for any s, S and 
(x„, J)=>*(W, I') holds iff [J, J']=>*VV holds. If (x0, J) =̂=> (w, s') is a direct derivation 
then [j, j']==>w holds by the definition of P'. Assume that for every derivation 
(x„, s)==>*(w, s') of length less than a given integer / (=2) the derivation [ j , s ' ]=>*w 
holds. Let 

(X0, S)=> (u1X0U2...UkX0Uk + 1, S1)==>*(UiV1U2..,UkVkUk + i, s') = (w, s') 

be a derivation of length/, where k^ 1 and v£A* (/=1, ...,A:-I-1). Since x0 is the 
only nonterminal letter in G there are derivations 

(*o, Si)=g>* ("l' S2), (*0> (Vk, sk+i) 

for some states J2, ..., sk£S and sk+l—s' such that the length of each derivation 
is less than /. By the induction hypothesis we obtain derivations [ j l s i j =>*v±, ..., 
..., S'] =>*vk. Furthermore, the rule [J, J']—z/Jsj, JJu2 . . .uk[sk , in P', 
thus [i, j '] holds. The reverse implication can be proved similarly. The second 
statement of the Lemma follows immediately. • 



On state grammars 243 

Theorem 3. Any language L can be generated by a context-free grammar of 
uncontrolled index k iff there exists a state grammar G of uncontrolled index k such 
that the number of nonterminals of G is one and L=L(G). 

Proof. Let 
G' = (E, A, x6, P') 

be a context-free grammar of uncontrolled index k for some k^l. Obviously, for 
any wÇL(G') there is a leftmost derivation such that no word in this derivation 
contains more than k occurrences of nonterminals. Consider a state grammar 

G = (J U {y0}, A,S,y0,s0, P) 

where y0 is a new nonterminal, 

5= {[a]: s k), 

s0
 = M . 

and the set of productions P is defined as follows : 

i) if A-»u0B1u1...un-.1Bnun£P' 

where A, Bit..., Bn£Z\A, u0, ult..., un£A* for some 

then (y0 , [Ax]) - .-#„«])£/> for every L4a]6S; 

ii) if A - u£P' where u£A* 

then ( j 0 j [Aa]) - (m, [a])€P for every |>4a]£S; 

iii) each element of P is obtained by i) or ii). 

It follows immediately that L(G')= L(G) and that G is of uncontrolled index k. 
The reverse implication is true by Lemma 3. • 

For the definition of metalinear languages we refer to [5]. 

Corollary 1. The family of metalinear languages is properly contained in the 
family of languages generated by state grammars of uncontrolled finite index with 
one nonterminal. 

Proof. The statement follows from Theorem 3 and Theorem 3.14 in [6]. • 

Now we recall the definition of forbidding context grammars. 
A forbidding context grammar is a construct G=(I, A, x0, P) which is very 

much like a context-free grammar except that each production p of P is of the form 
A—a, F where F is a subset of the nonterminal alphabet called the forbidding 
field of p. Such a production p can be used to derive a word w in context-free fashion 
only if Fflalph (w)=0. For detailed information we refer e.g. to Chapter 3 in [4]. 

Theorem 4. For any forbidding context grammar of uncontrolled index k one 
may construct an equivalent state grammar of uncontrolled index k with two nonter-
minals. 

2 Acta Cybernetics 8/3 



244 A. Meduna and Gy. Horvâth 

Proof. Let 
G'= (Z',A,x0,P) 

be an arbitrary forbidding context grammar of uncontrolled index k for some 1. 
We construct a state grammar 

G = (Z, A, S, jo, [> *„]. P) 

in the following way: 
£ = {y0,yo}UA, 

S = {[a > fl, [a < P]: a, PtQ^A)*, 0 ^ |a/J| k, 

> and < are new symbols}, 

i> = PiUPaUPaUPi, where 

Pi = {(JV [«i > — (.y!>> > a2]), 

0>o, [<M < a2]) - (j0, [«i < Acc2]): A£Z'\A, 

a l5a2£(Z"VI)* and Ko^l < fc}, 
= {(yo, [< «]) - (Jo, [> «]): « S i ^ r , l«l ^ k}, 

Pa = {Oo, [«i > Acc2]) - (u0y0u1...um.1y0um,[cc1 < ^ . . . ^ „ a j ) 

: m 1, ^ - M051w1 . . .Mm_i5mwm , F g P ' , 

..., w0, Mi,..., um£A*, 

a l 5 a2e(Z'\A)* and {a^^k, FHalph^AiXi) = 0), 

Pi = {Oo, [«i > Acc2]) - (u, [«! < <x2]): A ->- u, F£P', 

Fflalph (axAas) = 0, a l 5 l«ia2| < k}. 

It is easy to verify that L(G')—L(G) and that G is of uncontrolled index k. • 
Corollary 2. Let L be a language generated by a state grammar of finite index. 

Then L can be generated by a state grammar of finite index with (at most) two non-
terminals. 

Proof. Immediately follows from Theorem 4. and Theorem 3.22 in [6]. • 

Theorem 5. Any recursively enumerable language can be generated by a state 
grammar with at most three nonterminals. 

Proof. Let (RE). We may assume by Lemma 2 that L is generated by front-
end state grammar G=(Z, A, S, #, i0 , P)- Let us denote by X the set of nonter-
minals of G excluding # . .Assume that X= {xlt ..., xn} for some n&l. We define 
a coding function q>: X-* {0, 1 }* by 

<p(xi) = O'l for i = 1, ..., n. 

Extend (p to a homomorphism of Z* into {0,1, #}* by <p(y)=y for y€A U {# }. 



On state grammars 245 

From the front-end property of the state grammar G it follows that the state set 
S can be partitioned into subsets Sx and S2. Let S1 be the set of all states s£ S such 
that for every x£X there is a production in P with left side (x,.?). Now the state 
grammar 

G' = (Z', A,S', #,[A,s0],P') 

is constructed in the following way. 

r = {0, 1 , # } I U , 

ST = 

P = P-IVJ Pi U Pi, where 

Pi = {(0, [0l, s]) - (A, [0 i + \ s]): s£Slt 0 s i < n), 

Pi = {(1, [01, s]) - (<p(u), [X, /]): (x,-, s) - (u, s')eP}, 

Pi = {(#, [X, s]) - (</>(«), [X, j']): ( #, s) - («, /)6i>}. 
One can see that for every s£S and every m>£Z* a derivation ( # , j0)==>*(w, j) 
holds iff ( # , [X, J0]) = = > * ( < P ( W ) , [X, J]) holds. Since (p(w)=w if w€A*, we obtain the 
desired equality L(G)=L(G'). • 

To conclude this section let us remark that it remains an open question whether 
the number of nonterminals (three) in T heorem 5 is minimal. 

COMPUTING CENTRE 
TECHNICAL UNIVERSITY 
OBRÁNCÚ MIRU 21 
BRNO 
CZECHOSLOVAKIA 

A. JÓZSEF UNIVERSITY 
BOLYAI INSTITUTE 
ARADI VÉRTANÚK TERE 1. 
6720 SZEGED 
HUNGARY 

References 

[1] DASSOW, J., Comparison of some types of regulated rewriting. Technological University Magde-
burg, Department of Mathematics and Physics, Technical Report SMA 58/83 (1983). 

[2] DASSOW, J. and PAUN, G., Further remarks on the complexity of regulated rewriting. Technologi-
cal University Magdeburg, Department of Mathematics and Physics, Technical Report SMA 
70/83(1983). 

[3] KASAI, T., A hierarchy between context-free and context sensitive languages. Journal of Computer 
and System Sciences 4 (1970), 492—508. 

[4] KLEIJN, H. C. M., Selective substitution grammars based on context-free production. Ph. D. The-
sis, University Of Leiden (1983). 

[5] SALOMAA, A., Formal languages. Academic Press, New York 1973. 
[6] VERMIER, D., On structural restrictions of ET0L Systems. Ph. D. Thesis, University of Antwerpen 

(1978). 

(Received July 2,1987) 

2* 


