A note on the generalized v_{1}-product

B. Imreh

A hierarchy of products was introduced in [1]. This hierarchy contains one kind of product, the v_{i}-product, for every positive integer i, and the work [1] deals with the isomorphic completeness with respect to the v_{i}-products. As regards another representations, the metric representation was studied in [6], [8]. The work [6] contains the characterization of the metrically complete systems with respect to the v_{i} products. In [8] it is shown that the v_{1}-product is metrically equivalent to the general product. The works [2], [3], [4], [5] are devoted to the investigation of the homomorphic representation. In [3] and [4] some special compositions of the α_{0}-product and v_{i}-products was studied and it is proved that these compositions are just as strong as the general product with respect to the homomorphic representation. The work [5] deals with the commutative automata. It is shown that there are finite homomorphically complete systems with respect to the ν_{1}-product for this class. In [2] the hierarchy of the v_{i}-products was investigated. It is proved that this hierarchy is proper as regards the homomorphic representations. Finally, the work [7] compares the isomorphic and homomorphic representation powers of α_{i}-products and v_{j}-products.

In this paper, connecting with the work [1], we give a süfficient condition for a system of automata to be isomorphically S-complete with respect to the generalized v_{1}-product. This condition is a special case of condition (2) of Theorem 2 in [1], but the construction of the automata from these systems is simpler than the general construction given in [1]. Since our work is closely related to [1], we shall use its notions and notations.

Our result is the following statement.
Theorem. A system Σ of automata is isomorphically S-complete with respect to the generalized v_{1}-product if Σ contains an automaton which has a state a and input word q such that the states $a, a q, \ldots, a q^{s-1}$ are pairwise different and $a q^{s}=a$ for some integer $s>1$.

Proof. Let us assume that Σ satisfies the condition. Then without loss of generality we may suppose that Σ contains an automaton \mathbf{A} which has a state a and input word q such that $a, a q, \ldots, a q^{p-1}$ are pairwise different, $a q^{p}=a$, and p is a prime number. Let us denote by $0,1, \ldots, p-1$ the states $a, a q, \ldots, a q^{p-1}$, respectively. Depending on p, we shall distinguish two cases.

Case 1. Let us suppose that $p=2$. By the proof of Theorem 2 in [1], it is enough to prove that for any $n \geqq 3$ the automaton T_{n}^{\prime} can be simulated isomorphically by a generalized v_{1}-product of automata from Σ, where $\mathrm{T}_{n}^{\prime}=\left(\left\{t_{1}, t_{2}, t_{3}\right\},\{0, \ldots, n-1\}, \delta_{n}^{\prime}\right)$ and

$$
\begin{gathered}
t_{1}(k)=k+1(\bmod n) \quad(k=0, \ldots, n-1) \\
t_{2}(0)=1, t_{2}(1)=0, t_{2}(k)=k(k=2, \ldots, n-1), \\
t_{3}(0)=t_{3}(1)=0, t_{3}(k)=k(k=2, \ldots, n-1)
\end{gathered}
$$

Now let $n \geqq 3$ be an arbitrary fixed integer. Let us take an integer k for which $2^{k}+1 \geqq n$ holds and denote by m the number $2^{k}+1$. Form the generalized v_{1}-product $\mathbf{A}^{m}(X, \varphi, \gamma)$ where

$$
X=\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{y_{t}: 0 \leqq t \leqq m-1\right\}
$$

and the mappings γ and φ are defined in the following way:

$$
\begin{gathered}
\gamma(t)=\{t-1(\bmod m)\} \quad(t=0, \ldots, m-1), \\
\varphi_{t}\left(0, x_{1}\right)=q, \varphi_{t}\left(1, x_{1}\right)=q^{2} \quad(t=0, \ldots, m-1), \\
\varphi_{t}\left(0, x_{2}\right)=\varphi_{t}\left(1, x_{2}\right)=q^{2} \quad \text { if } \quad 0 \leqq t \leqq m-3, \\
\varphi_{t}\left(0, x_{2}\right)=\varphi_{t}\left(1, x_{2}\right)=q \quad \text { if } \quad m-3<t \leqq m-1, \\
\varphi_{t}\left(0, x_{3}\right)=q^{2}, \varphi_{t}\left(1, x_{3}\right)=q \quad \text { if } \quad t \neq m-2, \\
\varphi_{m-2}\left(0, x_{3}\right)=q, \quad \varphi_{m-2}\left(1, x_{3}\right)=q^{2}, \\
\varphi_{t}\left(0, y_{j}\right)=q^{2}, \varphi_{t}\left(1, y_{j}\right)= \begin{cases}q & \text { if } t=j, \\
q^{2} & (j=0, \ldots, m-1 ; t=0, \ldots, m-1)\end{cases}
\end{gathered}
$$

Take the mappings:

$$
\begin{gathered}
0 \\
\mu:(0,0, \ldots, 1), \\
\vdots-1 \rightarrow(1,0, \ldots, 0), \\
t_{1} \rightarrow x_{1}^{m-2}, \\
\tau: \begin{array}{l}
t_{2} \rightarrow \\
t_{2} \rightarrow y_{1} \ldots y_{m-3} y_{m-1} y_{m-2} \ldots y_{1} y_{m-1}, \\
t_{0} y_{1} \ldots y_{m-3} x_{3} .
\end{array}
\end{gathered}
$$

Now we show that \mathbf{T}_{m}^{\prime} can be simulated isomorphically by $\mathbf{A}^{m}(X, \varphi, \gamma)$ under μ and τ. Indeed, the validity of the equations $\mu\left(\delta_{m}^{\prime}\left(j, t_{l}\right)\right)=\delta_{\mathrm{A}^{m}}\left(\mu(j), \tau\left(t_{l}\right)\right)$ ($l=2,3 ; j=0, \ldots, m-1$) follows from the definitions. To prove the validity of the equations $\mu\left(\delta_{m}^{\prime}\left(j, t_{1}\right)\right)=\delta_{\mathbf{A}^{m}}\left(\mu(j), \tau\left(t_{1}\right)\right)(j=0, \ldots, m-1)$. let us observe the following connection. If

$$
\begin{gathered}
\left(u_{0}, \ldots, u_{m-1}\right) \in\{0,1\}^{m} \text { and } \\
\delta_{\mathrm{A}^{m}}\left(\left(u_{0}, \ldots, u_{m-1}\right), x_{1}\right)=\left(v_{0}, \ldots, v_{m-1}\right)
\end{gathered}
$$

then

$$
\begin{gathered}
v_{t}=\delta_{A}\left(u_{t}, \varphi_{t}\left(u_{t-1(\bmod m)}, x_{1}\right)\right)= \\
=u_{t} q^{u_{t-1(\bmod m)}+1(\bmod 2)}=u_{t}+u_{t-1(\bmod m)}+1(\bmod 2)
\end{gathered}
$$

holds for any $0 \leqq t \leqq m-1$. Now let us denote by $\left(v_{0}^{(s)}, \ldots, v_{m-1}^{(s)}\right)$ the state $\delta_{\mathrm{A}^{m}}\left(\left(u_{0}, \ldots, u_{m-1}\right), x_{1}^{s}\right)$. Then using the above connection, by induction on s, it can be proved that

$$
v_{t}^{(s)}=1+\sum_{j=0}^{s}\binom{s}{j} u_{t-j(\bmod m)}(\bmod 2) \quad(t=0, \ldots, m-1)
$$

On the other hand, it is known that $\binom{p^{k}}{j} \equiv 0(\bmod p)\left(j=1, \ldots, p^{k}-1\right)$ holds for any prime $p>1$ and integer $k \geqq 1$. Using this, by induction on j, one can show that

$$
\binom{p^{k}-1}{j}(-1)^{j} \equiv 1(\bmod p) \quad\left(j=0, \ldots, p^{k}-1\right)
$$

From this, by $p=2$, we obtain

$$
\binom{2^{k}-1}{j} \equiv 1(\bmod 2) \quad\left(j=0, \ldots, 2^{k}-1\right)
$$

Now let $0 \leqq i \leqq m-1$ be an arbitrary integer and let us denote by (c_{0}, \ldots, c_{m-1}) the state $\dot{\mu}(i)$. Then

$$
c_{t}=\left\{\begin{array}{ll}
1 & \text { if } t=m-i-1, \\
0 & \text { otherwise },
\end{array} \quad(t=0, \ldots, m-1)\right.
$$

Let $\left(c_{0}^{\prime}, \ldots, c_{m-1}^{\prime}\right)$ denote the state $\delta_{\mathrm{A}^{m}}\left(\left(c_{0}, \ldots, c_{m-1}\right), x_{1}^{m-2}\right)$. Then, by the above equality for $v_{t}^{(s)}$, we obtain that

$$
c_{i}^{\prime}=1+\sum_{j=0}^{2^{k}-1}\binom{2^{k}-1}{j} c_{t-j(\bmod m)}(\bmod 2) \quad(t=0, \ldots, m-1)
$$

If $t=m-i-2(\bmod m)$ then from the definition of c_{t} it follows that $c_{t-J(\bmod m)}=0$ $\left(j=0, \ldots, 2^{k}-1\right)$, and so, $c_{m-i-2(\bmod m)}^{\prime}=1$. If $t \neq m-i-2(\bmod m)$ then among the elements $c_{t-j(\bmod m)}\left(j=0, \ldots, 2^{k}-1\right)$ one and only one is different from 0 , and so, $c_{t}^{\prime}=1+\binom{2^{k}-1}{j}(\bmod 2)$ for some $0 \leqq j \leqq 2^{k}-1$. Since $\binom{2^{k}-1}{j} \equiv 1(\bmod 2)$ this implies the equality $c_{t}^{\prime}=0$. Summarizing, we obtained that

$$
c_{t}^{\prime}=\left\{\begin{array}{ll}
1 & \text { if } t=m-i-2 \\
0 & \text { otherwise },
\end{array}(\bmod m), \quad(t=0, \ldots, m-1)\right.
$$

Now let us observe that $\left(c_{0}^{\prime}, \ldots, c_{m-1}^{\prime}\right)=\mu(i+1(\bmod m))$ and so,

$$
\begin{aligned}
\mu\left(\delta_{m}^{\prime}\left(i, t_{1}\right)\right)=\mu(i+1(\bmod m)) & =\left(c_{0}^{\prime}, \ldots, c_{m-1}^{\prime}\right)=\delta_{\mathrm{A}^{m}}\left(\left(c_{0}, \ldots, c_{m-1}\right), x_{1}^{m-2}\right)= \\
& =\delta_{\mathrm{A}^{m}}\left(\left(\mu(i), \tau\left(t_{1}\right)\right)\right.
\end{aligned}
$$

which completes the proof of the Case 1.

Case 2. Let us suppose that $p>2$ and let $n \geqq 3$ be an arbitrary fixed integer again. Let k be an integer such that $p^{k}+1 \geqq 2 n$ and, let $s=p^{k}+1$ and $m=s / 2$. Form the generalized v_{1}-product $\mathbf{A}^{s}(X, \varphi, \gamma)$ where

$$
X=\left\{x_{1}, \ldots, x_{s}\right\} \cup\left\{y_{r}: 0 \leqq r \leqq s-2\right\} \cup\left\{v_{r}, z_{r}: 0 \leqq r \leqq s-4\right\} \cup\left\{w_{r}: 0 \leqq r \leqq s-1\right\}
$$ and the mappings γ and φ are defined in the following way: for any $t \in\{0, \ldots, s-1\}$, $j \in\{0, \ldots, p-1\}, r \in\{0, \ldots, s-1\}$

$$
\begin{aligned}
& \gamma(t)=\{t-1(\bmod s)\}, \\
& \varphi_{t}\left(j, x_{1}\right)=q^{p-1-j} \quad \text { if } \quad 0 \leqq j<p-1, \quad \varphi_{t}\left(p-1, x_{1}\right)=q^{p}, \\
& \varphi_{t}\left(j, x_{2}\right)=q^{p-1} \quad \text { if } \quad t \in\{s-3, s-2, s-1\}, \varphi_{t}\left(j, x_{2}\right)=q^{p} \quad \text { if } \quad 0 \leqq t<s-3, \\
& \varphi_{s-3}\left(0, x_{3}\right)=q^{2}, \varphi_{t}\left(j, x_{3}\right)=q^{p} \quad \text { otherwise, } \\
& \varphi_{s-2}\left(0, x_{4}\right)=q, \quad \varphi_{t}\left(j, x_{4}\right)=q^{p} \quad \text { otherwise, } \\
& \varphi_{t}\left(p-1, x_{5}\right)=q \text { if } t \neq 0 \text { and } \varphi_{t}\left(j, x_{5}\right)=q^{p} \text { otherwise, } \\
& \varphi_{1}\left(p-1, x_{6}\right)=q \text { if } t \in\{s-2, s-1\} \text { and } \varphi_{t}\left(j, x_{6}\right)=q^{p} \text { otherwise, } \\
& \varphi_{t}\left(0, x_{7}\right)=q^{p-1} \text { if } t=s-3 \text { and } \varphi_{t}\left(j, x_{7}\right)=q^{p} \text { otherwise, } \\
& \varphi_{t}\left(p-2, x_{8}\right)=\left\{\begin{array}{ll}
q & \text { if } t=s-1, \\
q^{2} & \text { if } \quad t \neq s-1,
\end{array} \text { and } \quad \varphi_{t}\left(j, x_{8}\right)=q^{p} \quad\right. \text { otherwise, } \\
& \varphi_{1}\left(j, y_{r}\right)=\left\{\begin{array}{l}
q^{p-1} \text { if } t=r \\
q^{p} \text { otherwise, }
\end{array} \text { and } j=p-1, \quad(r=0, \ldots, s-2),\right. \\
& \varphi_{t}\left(j, v_{r}\right)=\left\{\begin{array}{ll}
q^{2} & \text { if } t=r \\
q^{p} & \text { otherwise },
\end{array} \text { and } j=p-2, \quad(r=0, \ldots, s-4),\right. \\
& \varphi_{t}\left(j, z_{r}\right)=\left\{\begin{array}{ll}
q & \text { if } t=r \\
q^{p} & \text { otherwise, }
\end{array} \text { and } j=p-1, \quad(r=0, \ldots, s-4),\right. \\
& \varphi_{t}\left(j, w_{r}\right)=\left\{\begin{array}{l}
q^{p-2} \text { if } t=r \quad \text { and } j=p-2, \quad(r=0, \ldots, s-1) . \\
q^{p} \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

Take the mappings:

$$
\begin{gathered}
0 \rightarrow(0,0,0, \ldots, 0,0, p-1), \\
\mu: \begin{array}{l}
0,0,0, \ldots, p-1,0,0), \\
1 \\
m-1
\end{array} \rightarrow(0, p-1,0, \ldots, 0,0,0), \\
t_{1} \rightarrow x_{1}^{2\left(p^{k}-1\right)}, \\
\tau: t_{2} \rightarrow x_{2} y_{2} \ldots y_{s-4} w_{0} \ldots w_{s-4} x_{3} x_{4} v_{s-4} \ldots v_{0} x_{5} y_{s-2} x_{6}, \\
t_{3} \rightarrow y_{0} \ldots y_{s-4} x_{7} w_{s-2} w_{s-1} w_{0} \ldots w_{s-4} z_{s-4} \ldots z_{0} x_{8} .
\end{gathered}
$$

Now we shall show that the automaton \mathbf{T}_{m}^{\prime} can be simulated isomorphically by $\mathbf{A}^{s}(X, \varphi, \gamma)$ under μ and τ.

The validity of $\mu\left(\delta_{m}^{\prime}\left(j, t_{l}\right)\right)=\delta_{\mathrm{A}^{s}}\left(\mu(j), \tau\left(t_{l}\right)\right)(l=2,3 ; j=0, \ldots, m-1)$ can be checked by a simple computation. To prove the validity of $\mu\left(\delta_{m}^{\prime}\left(j, t_{1}\right)\right)=$ $=\delta_{\mathrm{A}^{s}}\left(\mu(j), \tau\left(t_{1}\right)\right)$ let $\left(u_{0}, \ldots, u_{s-1}\right) \in\{0, \ldots, p-1\}^{s}$ be arbitrary and let us denote by $\left(u_{0}^{(r)}, \ldots, u_{s-1}^{(r)}\right)$ the state $\delta_{\mathrm{A}^{s}}\left(\left(u_{0}, \ldots, u_{s-1}\right), x_{1}^{r}\right)$ for arbitrary integer $r \geqq 1$. Then $u_{t}^{(1)}=\delta_{\mathrm{A}}\left(u_{t}, \varphi_{t}\left(u_{t-1(\bmod s)}, x_{1}\right)\right)=u_{t} q^{\left(p-1-u_{t-1(\bmod s)}\right)(\bmod p)}=u_{t}-u_{t-1(\bmod s)}-1(\bmod p)$.

Using this, by induction on r, it can be proved that

$$
u_{t}^{(r)}=-1+\sum_{j=0}^{r}\binom{r}{j}(-1)^{j} u_{t-j(\bmod s)}(\bmod p) \quad(t=0, \ldots, s-1)
$$

Now let $i \in\{0, \ldots, m-1\}$ be arbitrary and let us denote by $\left(c_{0}, \ldots, c_{s-1}\right),\left(c_{0}^{\prime}, \ldots, c_{s-1}^{\prime}\right)$, $\left(\bar{c}_{0}, \ldots, \bar{c}_{s-1}\right)$ the states $\mu(i), \delta_{\mathrm{A}^{s}}\left(\mu(i), x_{1}^{\left(p^{k}-1\right)}\right), \delta_{\mathrm{A}^{s}}\left(\mu(i), x_{1}^{2\left(p^{k}-1\right)}\right)$, respectively. Then from the definition of μ,

$$
c_{t}=\left\{\begin{array}{l}
p-1 \quad \text { if } t=s-2 i-1, \\
0 \text { otherwise }
\end{array} \quad(t=0, \ldots, s-1)\right.
$$

Consider the state $\left(c_{0}^{\prime}, \ldots, c_{s-1}^{\prime}\right)$. By the above equality for $u_{t}^{(r)}$, we obtain that

$$
c_{t}^{\prime}=-1+\sum_{j=0}^{p^{k}-1}\binom{p^{k}-1}{j}(-1)^{J} c_{t-j(\bmod s)}(\bmod p) \quad(t=0, \ldots, s-1)
$$

If $t=s-2 i-2(\bmod s)$ then from the definition of c_{t} it follows that $c_{t-j(\bmod s)}=0$ $\left(j=0, \ldots, p^{k}-1\right)$, and so, $c_{s-2 i-2(\bmod s)}^{\prime}=p-1$. If $t \neq s-2 i-2(\bmod s)$ then among the elements $c_{t-j(\bmod s)}\left(j=0, \ldots, p^{k}-1\right)$ exactly one element is different from 0 and this element is equal to $p-1$, and so, $c_{t}^{\prime}=-1+\binom{p^{k}-1}{j}(-1)^{J}(p-1)$ for some $0 \leqq j \leqq p^{k}-1$, From this, by $\binom{p^{k}-1}{j}(-1)^{j} \equiv 1(\bmod p)\left(j=0, \ldots, p^{k}-1\right)$, we obtain that $c_{t}^{\prime}=p-2$. Therefore

$$
c_{t}^{\prime}=\left\{\begin{array}{ll}
p-1 & \text { if } t=s-2 i-2, \\
p-2 & \text { otherwise },
\end{array} \quad(t=0, \ldots, s-1)\right.
$$

Now consider the state $\left(\bar{c}_{0}, \ldots, \bar{c}_{s-1}\right)$.

$$
\bar{c}_{t}=-1+\sum_{j=0}^{p^{k}-1}\binom{p^{k}-1}{j}(-1)^{j} c_{t-j(\bmod s)}^{\prime}(\bmod p)(t=0, \ldots, s-1)
$$

If $t=s-2(i+1)-1(\bmod s)$, then $c_{t-j(\bmod s)}^{\prime}=p-2\left(j=0, \ldots, p^{k}-1\right)$. On the other hand $\binom{p^{k}-1}{j}(-1)^{j} \equiv 1(\bmod p)$, and so, we obtain that $\bar{c}_{s-2(i+1)-1(\bmod s)}=p-1$. If $t \neq s-2(i+1)-1(\bmod s)$ then among the elements $c_{t-j(\bmod s)}^{\prime}\left(j=0, \ldots, p^{k}-1\right)$ exactly one element is different from $p-2$ and this element is equal to $p-1$. From
this, by $\binom{p^{k}-1}{j}(-1)^{j} \equiv 1(\bmod p)\left(j=0, \ldots, p^{k}-1\right)$, we get that $\bar{c}_{t}=0$. Therefore,

$$
\bar{c}_{\mathrm{r}}=\left\{\begin{array}{l}
p-1 \quad \text { if } t=s-2(i+1)-1 \quad(\bmod s), \quad(t=0, \ldots, s-1) \\
0 \text { otherwise }
\end{array}\right.
$$

Observe that $\left(\bar{c}_{0}, \ldots, \bar{c}_{s-1}\right)=\mu(i+1(\bmod m))$, and so,

$$
\begin{gathered}
\mu\left(\delta_{m}^{\prime}\left(i, t_{1}\right)\right)=\mu(i+1(\bmod m))=\left(\bar{c}_{0}, \ldots, \bar{c}_{s-1}\right)=\delta_{\mathrm{A}^{s}}\left(\mu(i), x_{1}^{2\left(p^{k}-1\right)}\right)= \\
=\delta_{\mathrm{A}^{s}}\left(\mu(i), \tau\left(t_{1}\right)\right)
\end{gathered}
$$

which completes the proof of Case 2. This ends the proof of our Theorem.

DEPT. OF COMPUTER SCIENCE
 A. JÓZSEF UNIVERSITY

ARADI VERTANUKK TERE 1.
SZEGED, HUNGARY
H-6720

References

[1] Dömöst, P. and Imreh, B., On v_{t}-products of automata, Acta Cybernet., 6 (1983), 149—162.
[2] Dömösi, P. and Ésik Z., On the hierarchy of v_{i}-products of automata, Acta Cybernet., 8 (1988), 253-258.
[3] Ésik, Z., Loop products and loop-free products, Acta Cybernet., 8 (1987), 45-48.
[4] Ésik, Z. and Gécseg, F., On α_{0}-products and α_{2}-products, Theoret. Comput. Sci., 48 (1986), $1-8$.
[5] Gécseg, F., On v_{i}-products of commutative automata, Acta Cyberner., 7 (1985), 55-59.
[6] Gécseg, F. Metric representations by v_{1}-products, Acta Cybernet., 7 (1985), 203-209.
[7] Gécseg, F. and Imreh, B., A comparison of α_{i}-products and v_{i}-products, Foundations of Control Engineering, 12 (1987), 3-9.
[8] Gécseg, F. and Imreh, B., On metric equivalence of v_{i}-products, Acta Cybernet., 8 (1987), 129-134.
(Received July 10, 1987)

