On the hierarchy of v_i -products of automata

P. Dömösi and Z. Ésik

In order to decrease the feedback complexity of the Gluškov-type product of automata, a hierarchy of products was introduced by F. Gécseg in [6]. This hierarchy, referred to as the α_i -hierarchy, contains one product concept for each nonnegative integer *i*. The α_0 -product is also known as the loop-free product, the seriesparallel composition or the cascade composition [11, 1, 13]. Another hierarchy, the v_i -hierarchy appears in [2], where *i* is any positive integer. Using the main result of [3] it has been shown in [5] that for homomorphic realization the α_i -hierarchy collapses at i=2. One of the aims of the present paper is to show that the v_i -hierarchy is strict. For some classes of automata even the v_1 -product has a surprising power. This has been demonstrated in [2] for the first time and then in [7, 4]. In fact there are classes of automata for which the v_1 -product is much stronger than the α_0 -product. In this paper we prove that the opposite can also be true for some classes.

An automaton is a system $A = (A, X, \delta)$ with finite nonempty sets A and X, the state set and the input set, and transition $\delta: A \times X \to A$. The transition is also used in the extended sense, i.e. as a map $\delta: A \times X^* \to A$ where X^* is the free monoid of all words over X. Let $A_j = (A_j, X_j, \delta_j)$ $(j=1, ..., n, n \ge 0)$ be automata, and take a family of feedback functions

$$\varphi_i: A_1 \times \ldots \times A_n \times X \to X_i$$

(j=1, ..., n), where X is a new finite nonempty set of input letters. The Gluškovtype product (cf. [10]) of the automata A_j with respect to the feedback functions φ_j is defined to be the automaton

$$\mathbf{A}_1 \times \ldots \times \mathbf{A}_n(X, \varphi)$$

with state set $A = A_1 \times \ldots \times A_n$, input set X and transition δ given by

$$\mathrm{pr}_{i}(\delta(a, x)) = \delta_{i}(\mathrm{pr}_{i}(a), \varphi_{i}(a, x)),$$

for all $a \in A$, $x \in X$ and $1 \le j \le n$. The Gluškov-type product is also called the general product, or g-product, for short. Let $i \ge 1$ be any integer. Following [2], the above defined g-product is called a v_i -product if for every integer j=1, ..., n there is a set

 $v(j) \subseteq \{1, ..., n\}$ with cardinality not exceeding *i* such that each feedback function

$$\varphi_i(a_1, ..., a_n, x)$$

is independent of any state variable a_k with $k \notin v(j)$. For the definition of the α_i -products see [6, 8].

Let \mathscr{K} be a class of automata. We shall use the following notations:

$$\begin{split} \mathbf{P}_{g}(\mathcal{K}) &:= \text{all } g\text{-products of automata from } \mathcal{K}; \\ \mathbf{P}_{\alpha_{i}}(\mathcal{K}) &:= \text{all } \alpha_{i}\text{-products of automata from } \mathcal{K}; \\ \mathbf{P}_{\nu_{i}}(\mathcal{K}) &:= \text{all } \nu_{i}\text{-products of automata from } \mathcal{K}; \\ \mathbf{S}(\mathcal{K}) &:= \text{all subautomata of automata from } \mathcal{K}; \\ \mathbf{H}(\mathcal{K}) &:= \text{all homomorphic images of automata from } \mathcal{K}. \end{split}$$

In the sequel we shall also make use of a few simple facts.

Lemma 1. For every class \mathscr{K} , HSP_{ao} (\mathscr{K}) is the smallest class containing \mathscr{K} and closed under the operators H, S and P_{ao}.

The proof of Lemma 1 can be found in [8]. We note that a similar statement is true for the g-product.

Lemma 2. Let $A = A_1 \times ... \times A_n(X, \varphi)$ be a v_i -product of automata $A_j = (A_j, X_j, \delta_j)$. Let π be a permutation of the set $\{1, ..., n\}$. There exists a v_i -product $A' = A_{\pi(1)} \times ... \times A_{\pi(n)}(X, \varphi')$ which is isomorphic to A, an isomorphism $A \rightarrow A'$ is the map $(a_1, ..., a_n) \mapsto (a_{\pi(1)}, ..., a_{\pi(n)})$ $((a_1, ..., a_n) \in A_1 \times ... \times A_n)$.

Lemma 3. Let $\mathbf{A}=\mathbf{A}_1\times\ldots\times\mathbf{A}_n(X,\varphi)$ be a v_i -product with $n \ge 1$ and components $\mathbf{A}_j=(A_j, X_j, \delta_j)$. Let $\mathbf{B}=(B, X, \delta)$ be a subautomaton of $\mathbf{A}, j_0 \in \{1, \ldots, n\}$ a fixed integer and $a \in A_{j_0}$. If $\operatorname{pr}_{j_0}(b)=a$ for all $b \in B$ then there is a v_i -product $\mathbf{A}'=\mathbf{A}_1\times\ldots\times\mathbf{A}_{j_0-1}\times\mathbf{A}_{j_0+1}\times\ldots\times\mathbf{A}_n(X,\varphi')$ such that \mathbf{A}' contains a subautomaton \mathbf{B}' isomorphic to \mathbf{B} , an isomorphism $\mathbf{B} \to \mathbf{B}'$ is the map $(a_1, \ldots, a_{j_0-1}, a, a_{j_0+1}, \ldots, a_n) \mapsto (a_1, \ldots, a_{j_0-1}, a_{j_0+1}, \ldots, a_n)$.

We are now ready to state our main result.

Theorem. There exists a class \mathscr{K} of automata such that $\operatorname{HSP}_{\nu_i}(\mathscr{K}) \subset \operatorname{HSP}_{\nu_{i+1}}(\mathscr{K}) \subset \operatorname{HSP}_{\alpha_0}(\mathscr{K})$ holds for all $i \geq 1$.

Proof. Let p be a prime number. We define an automaton $\mathbf{D}_p = (D_p, \{x, y\}, \delta)$ as follows:

$$D_p = \{0, ..., p\},$$

$$\delta(j, x) = \begin{cases} j+1 \mod p & \text{if } j < p, \\ p & \text{if } j = p, \end{cases}$$
$$\delta(j, y) = p, \quad j \in D_p.$$

Let $\mathscr{K} = \{D_p | p \text{ is a prime}\}$. We set out to prove the following properties of \mathscr{K} .

- (1) $\operatorname{HSP}_{q}(\mathscr{K}) \subseteq \operatorname{HSP}_{q_0}(\mathscr{K}),$
- (2) $\operatorname{HSP}_{v_i}(\mathscr{K}) \subset \operatorname{HSP}_{v_{i+1}}(\mathscr{K})$ for all $i \ge 1$.

Supposing (1) and (2) have been shown, the proof is easily completed. Since $HSP_{v_{i+1}}(\mathscr{K}) \subseteq HSP_g(\mathscr{K})$ holds obviously, from (1) we have $HSP_{v_i+1}(\mathscr{K}) \subseteq HSP_{\alpha_0}(\mathscr{K})$, which in turn implies $HSP_{v_i}(\mathscr{K}) \subset HSP_{\alpha_0}(\mathscr{K})$ by (2). Thus $HSP_{v_i}(\mathscr{K}) \subset HSP_{\alpha_0}(\mathscr{K})$ for all $i \ge 1$.

Proof of (1). For every prime number p, define $C_p = (C_p, \{x\}, \delta)$ by

$$\mathbf{C}_p = \{0, \dots, p-1\},$$

$$\delta(j, x) = j+1 \mod p, j \in C_p$$

Moreover, let $\mathbf{E} = (E, \{x, y\}, \delta)$ with $E = \{0, 1\}, \delta(0, x) = 0, \delta(0, y) = \delta(1, x) = \delta(1, y) = 1$. Thus \mathbb{C}_p is the counter with length p and E is the elevator. Set

$$\mathscr{K}' = \{ \mathbb{C}_p | p \text{ is a prime} \} \cup \{ \mathbb{E} \}.$$

From the proof of the main result of [5] we have $\operatorname{HSP}_{g}(\mathscr{K}) = \operatorname{HSP}_{\alpha_{0}}(\mathscr{K}')$. To end the proof, by Lemma 1, it suffices to show that $\mathscr{K}' \subseteq \operatorname{HSP}_{\alpha_{0}}(\mathscr{K})$. That is however obvious for we have $C_{p} \in S(\{D_{p}\})$ and $E \in H(\{D_{p}\})$, each prime number p.

Proof of (2). Let $i \ge 1$ be any integer and $m = \prod (p_j | j = 1, ..., i+1)$, where p_j is the *j*-th prime. Define $\mathbf{M} = (M, \{x, y\}, \delta)$ to be the automaton with

$$M = \{0, \dots, m\},$$

$$\delta(j, x) = \begin{cases} j+1 \mod m & \text{if } j < m, \\ m & \text{if } j = m, \end{cases}$$

$$\delta(j, y) = \begin{cases} j+1 \mod m & \text{if } 0 < j < m, \\ m & \text{if } i = 0 \text{ or } i = n \end{cases}$$

for all $j \in M$. We prove that $\mathbf{M} \in \mathbf{HSP}_{v_i}(\mathscr{K})$ while $\mathbf{M} \in \mathbf{HSP}_{v_{i+1}}(\mathscr{K})$. Assume that, on the contrary, $\mathbf{M} \in \mathbf{HSP}_{v_i}(\mathscr{K})$. Let

$$\mathbf{D}_{q_1} \times \ldots \times \mathbf{D}_{q_n}(\{x, y\}, \varphi)$$

be a v_i -product of automata from \mathscr{K} that contains a subautomaton $\mathbf{A} = (A, \{x, y\}, \delta)$ which is mapped onto **M** under a suitable homomorphism *h*. We may choose *n* to be the least (positive) integer with the above property, i.e. if a v_i -product of automata from \mathscr{K} contains a subautomaton that can be mapped homomorphically onto **M** then the number of factors of that product is at least *n*. Also, the subautomaton **A** can be chosen such that none of its proper subautomata is mapped homomorphically onto **M**.

Let us write A as the disjoint union $A=A_0\cup A_1$ where $A_0=h^{-1}(M-\{m\})$ and $A_1=h^{-1}(\{m\})$. Let $a\in A_0$ be a state. Since a is a generator of A, if $\operatorname{pr}_j(a)=q_j$ for an integer $j=1, \ldots, n$, then $\operatorname{pr}_j(b)=q_j$ for all $b\in A$. By Lemma 3, there exists a v_i -product

$$\mathbf{D}_{q_1} \times \ldots \times \mathbf{D}_{q_{j-1}} \times \mathbf{D}_{q_{j+1}} \times \ldots \times \mathbf{D}_{q_n}(\{x, y\}, \varphi')$$

that contains a subautomaton isomorphic to A. This contradicts the minimality of n. Thus $pr_j(a) \neq q_j$ for all $a \in A_0$ and j=1, ..., n. Suppose now that there is an $a \in A_1$ such that for all j=1, ..., n we have $pr_j(a) \neq q_j$. Let $b \in A_0$ be a state and $u \in \{x, y\}^*$ a word with $\delta(b, u) = a$. Let $v = x^k$ where k denotes the length of u. We have $c = \delta(b, v) \in A_0$, henceforth $\operatorname{pr}_j(c) \neq q_j$ for all j = 1, ..., n. The special structure of the automata \mathbf{D}_{q_j} guarantees that a = c. This contradiction yields that for every $a \in A_1$ there is an integer $j(1 \leq j \leq n)$ with $\operatorname{pr}_j(a) = q_j$.

Let $a_0 = (a_{0,1}, \ldots, a_{0,n}), \ldots, a_{q-1} = (a_{q-1,1}, \ldots, a_{q-1,n})$ be all the states in A_0 , so that $a_{t,j} \neq q_j$, $0 \leq t \leq q-1$, $1 \leq j \leq n$. By the minimality of A and the special structure of the automata \mathbf{D}_{q_j} it follows that the letter x induces a cyclic permutation of the states a_i , say $\delta(a_i, x) = a_{i+1 \mod q}$. Also q is the l.c.m. of the primes q_1, \ldots, q_n . Since h is a homomorphism of A onto M, we have $q \equiv 0 \mod m$. Without loss of generality we may suppose $\delta(a_0, y) = a \in A_1$. Thus $\operatorname{pr}_j(a) = q_j$ for some j. By Lemma 2, we may take j=1. Since $\operatorname{pr}_1(a) = q_1$ we must have $\varphi_1(a_0, y) = y$. Let v(1) = $= \{j_1, \ldots, j_k\}$, so that $k \leq i$. Define \bar{q} to be the l.c.m. of the primes on the list q_{j_1}, \ldots, q_{j_k} . Obviously then $q \equiv 0 \mod \bar{q}$. Since m is the product of i+1 distinct primes and \bar{q} is the product of at most i distinct primes, from $q \equiv 0 \mod m$ and $q \equiv 0$ $\mod \bar{q}$ we obtain $\bar{q} < q$. Let us now consider the state $a_{\bar{q}} = (a_{\bar{q},1}, \ldots, a_{\bar{q},n})$. For every $l=1, \ldots, k$ we have $\delta(a_{0,j_1}, x^{\bar{q}}) = a_{\bar{q},j_1} \neq q_{j_1}$. Since $\bar{q} \equiv 0 \mod q_{j_1}$ we see that $a_{\bar{q},j_1} =$ $= a_{0,j_1}$. Since we have a v_i -product it follows that $\varphi_1(a_{\bar{q}}, y) = \varphi_1(a_0, y) = y$. We conclude $\delta(a_{\bar{q}}, y) \in A_1$. Since h is a homomorphism of A onto M we see that $\bar{q} \equiv 0$ mod m. This is however clearly impossible for m is the product of i+1 distinct primes and \bar{q} is the product of at most i distinct primes.

We still have to show that $M \in HSP_{v_{i+1}}(\mathscr{K})$. For this define the g-product

$$\mathbf{A} = (A, X, \delta) = \mathbf{D}_{p_1} \times \dots \times \mathbf{D}_{p_{i+1}}(\{x, y\}, \varphi)$$
$$\varphi_i(a_1, \dots, a_{i+1}, x) = x,$$

$$\varphi_j(a_1, ..., a_{i+1}, y) = \begin{cases} y & \text{if } a_1 = ... = a_{i+1} = 0, \\ x & \text{otherwise.} \end{cases}$$

Since the number of factors is i+1, this g-product is also a v_{i+1} -product. Define

$$A_0 = \{a \in A | \mathrm{pr}_j(a) \neq p_j \text{ for all } j = 1, ..., i+1\},\ A_1 = A - A_0.$$

For an $a=(a_1, ..., a_{i+1}) \in A_0$ let h(a)=t be that integer $0 \le t < m$ with $t \equiv a_j \mod p_j$, j=1, ..., i+1. If $a \in A_1$ put h(a)=m. The mapping h is easily seen to be a homomorphism of A onto M. \Box

Remark. It is said that an automaton $A = (A, X, \delta)$ satisfies the Letičevskii criterion if there exist a state $a \in A$, input letters $x_1, x_2 \in X$ and words $u_1, u_2 \in X^*$ with $\delta(a, x_1) \neq \delta(a, x_2)$ and $\delta(a, x_1u_1) = \delta(a, x_2u_2) = a$. If only $\delta(a, x_1) \neq \delta(a, x_2)$ and $\delta(a, x_1u) = a$ hold for some $a \in A$, $x_1, x_2 \in X$ and $u \in X_1^*$, we say that A satisfies the semi-Letičevskii criterion. The above definitions extend to classes of automata: a class \mathscr{K} satisfies the Letičevskii criterion or the semi-Letičevskii criterion if one of its members satisfies it. By a classical result in [12], $HSP_g(\mathscr{K})$ is the class of all automata if and only if \mathscr{K} satisfies the Letičevskii criterion. It has been shown in [3] that the same is true for the α_2 -product. If \mathscr{K} does not satisfy the semi-Letičevskii criterion then, by the proof of the main result in [5], $HSP_g(\mathscr{K}) = HSP_{\alpha_0}(\mathscr{K})$. Also $HSP_a(\mathscr{K}) = HSP_{v_1}(\mathscr{K})$ in this case as shown in [9]. Suppose now that \mathscr{K}

by

On the hierarchy of v_i -products of automata

satisfies the semi-Letičevskiĭ criterion but does not satisfy the Letičevskiĭ criterion. In [5] it is proved that for every such \mathscr{K} we have $\operatorname{HSP}_{g}(\mathscr{K}) = \operatorname{HSP}_{a_1}(\mathscr{K})$. The v_i -products behave quite differently. The class \mathscr{K} given in the proof of our Theorem satisfies the semi-Letičevskiĭ criterion but does not satisfy the Letičevskiĭ criterion, moreover, there exists no integer $i \ge 1$ with $\operatorname{HSP}_{a}(\mathscr{K}) = \operatorname{HSP}_{v_i}(\mathscr{K})$.

Open problems. (1) Suppose that \mathscr{K} satisfies the Letičevskii criterion. Does there exist an integer $i \ge 1$ with $\operatorname{HSP}_g(\mathscr{K}) = \operatorname{HSP}_{v_i}(\mathscr{K})$? (2) Does there exist an integer $i \ge 1$ such that $\operatorname{HSP}_g(\mathscr{K}) = \operatorname{HSP}_{v_i}(\mathscr{K})$ whenever \mathscr{K} satisfies the Letičevskii criterion? What is the least such *i*, if it exists?

INSTITUTE OF MATHEMATICS L. KOSSUTH UNIVERSITY EGYETEM TÊR I 4010 DEBRECEN HUNGARY

BOLYAI INSTITUTE A. JÓZSEF UNIVERSITY ARADI V. TERE 1 6720 SZEGED HUNGARY

References

- [1] ARBIB, M. A. (ed), Machines, languages and semigroups, with a major contribution by K. Krohn and J. L. Rhodes, Academic Press, 1968.
- [2] DÖMÖSI, P. and IMREH, B., On v_i -products of automata, Acta Cybernetica, 6 (1983), 149—162.
- [3] ESIK, Z., Homomorphically complete classes of automata with respect to the α_2 -product, Acta Sci. Math., 48 (1985), 135–141.
- [4] Ésik, Z., Loop products and loop-free products, Acta Cybernetica, 8 (1978), 45-48.
- [5] ÉSIK, Z. and HORVÁTH, GY., The α_2 -product is homomorphically general, Papers on Automata Theory, V (1983), 49–62.
- [6] GÉCSEG, F., Composition of automata, 2nd Colloq. Automata, Languages and Programming, 1974, LNCS 14 (1974), 351-363.
- [7] GÉCSEG, F., On v_1 -products of commutative automata, Acta Cybernetica, 7 (1984), 55–59.
- [8] Gécseg, F., Products of automata, Springer Verlag, 1986.
- [9] GÉCSEG, F. and IMREH, B., On metric equivalence of v_i -products, Acta Cybernetica, 8 (1987), 129–134.
- [10] GLUŠKOV, V. M. [Глушков, В. М.], Абстрактная теория автоматов, Успехи Матем. Наук, 16:5 (101), (1961), 3—62.
- HARTMANIS, J. and STEARNS, R. E., Algebraic structure theory of sequential machines, Prentice-Hall, 1966.
- [12] LETIČEVSKIĬ, А. А. [Летичевский, А. А.] Условия полноты для конечных автоматов, Журнал Выч. Мат. и Мат. Физ., 1 (1961), 702—710.
- [13] ZEIGER, H. B., Cascade synthesis of finite state machines, Information and Control, 10 (1967), 419-433.

(Received March 7, 1987)