On the hierarchy of v_{i}-products of automata

P. Dömösi and Z. ÉsIK

In order to decrease the feedback complexity of the Gluškov-type product of automata, a hierarchy of products was introduced by F. Gécseg in [6]. This hierarchy, referred to as the α_{i}-hierarchy, contains one product concept for each nonnegative integer i. The α_{0}-product is also known as the loop-free product, the seriesparallel composition or the cascade composition [11, 1, 13]. Another hierarchy, the v_{i}-hierarchy appears in [2], where i is any positive integer. Using the main result of [3] it has been shown in [5] that for homomorphic realization the α_{i}-hierarchy collapses at $i=2$. One of the aims of the present paper is to show that the v_{i}-hierarchy is strict. For some classes of automata even the v_{1}-product has a surprising power. This has been demonstrated in [2] for the first time and then in [7, 4]. In fact there are classes of automata for which the v_{1}-product is much stronger than the α_{0}-product. In this paper we prove that the opposite can also be true for some classes.

An automaton is a system $\mathbf{A}=(A, X, \delta)$ with finite nonempty sets A and X, the state set and the input set, and transition $\delta: A \times X \rightarrow A$. The transition is also used in the extended sense, i.e, as a map $\delta: A \times X^{*} \rightarrow A$ where X^{*} is the free monoid of all words over X. Let $\mathbf{A}_{j}=\left(A_{j}, X_{j}, \delta_{j}\right)(j=1, \ldots, n, n \geqq 0)$ be automata, and take a family of feedback functions

$$
\varphi_{j}: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{j}
$$

$(j=1, \ldots, n)$, where X is a new finite nonempty set of input letters. The Gluškovtype product (cf. [10]) of the automata \mathbf{A}_{j} with respect to the feedback functions φ_{j} is defined to be the automaton

$$
\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)
$$

with state set $A=A_{1} \times \ldots \times A_{n}$, input set X and transition δ given by

$$
\operatorname{pr}_{j}(\delta(a, x))=\delta_{j}\left(\operatorname{pr}_{j}(a), \varphi_{j}(a, x)\right)
$$

for all $a \in A, x \in X$ and $1 \leqq j \leqq n$. The Gluškov-type product is also called the general product, or g-product, for short. Let $i \geqq 1$ be any integer. Following [2], the above defined g-product is called a v_{i}-product if for every integer $j=1, \ldots, n$ there is a set
$v(j) \subseteq\{1, \ldots, n\}$ with cardinality not exceeding i such that each feedback function

$$
\varphi_{j}\left(a_{1}, \ldots, a_{n}, x\right)
$$

is independent of any state variable a_{k} with $k \notin v(j)$. For the definition of the α_{i} products see $[6,8]$.

Let \mathscr{K} be a class of automata. We shall use the following notations:
$\mathbf{P}_{g}(\mathscr{K}):=$ all g-products of automata from \mathscr{K};
$\mathbf{P}_{a_{i}}(\mathscr{K}):=$ all α_{i}-products of automata from \mathscr{K};
$\mathbf{P}_{v_{i}}(\mathscr{K}):=$ all v_{i}-products of automata from \mathscr{K};
$\mathbf{S}(\mathscr{K}):=$ all subautomata of automata from \mathscr{K};
$\mathbf{H}(\mathscr{K}):=$ all homomorphic images of automata from \mathscr{K}.
In the sequel we shall also make use of a few simple facts.
Lemma 1. For every class $\mathscr{K}, \operatorname{HSP}_{\alpha_{0}}(\mathscr{K})$ is the smallest class containing \mathscr{K} and closed under the operators \mathbf{H}, \mathbf{S} and $\mathbf{P}_{\alpha_{0}}$.

The proof of Lemma 1 can be found in [8]. We note that a similar statement is true for the g-product.

Lemma 2. Let $\mathbf{A}=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)$ be a v_{i}-product of automata $\mathbf{A}_{j}=$ $=\left(A_{j}, X_{j}, \delta_{j}\right)$. Let π be a permutation of the set $\{1, \ldots, n\}$. There exists a v_{i}-product $\mathbf{A}^{\prime}=\mathbf{A}_{\pi(1)} \times \ldots \times \mathbf{A}_{\pi(n)}\left(X, \varphi^{\prime}\right)$ which is isomorphic to \mathbf{A}, an isomorphism $\mathbf{A} \rightarrow \mathbf{A}^{\prime}$ is the $\operatorname{map}\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right) \quad\left(\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}\right)$.

Lemma 3. Let $\mathbf{A}=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)$ be a v_{i}-product with $n \geqq 1$ and components $\mathbf{A}_{j}=\left(A_{j}, X_{j}, \delta_{j}\right)$. Let $\mathbf{B}=(B, X, \delta)$ be a subautomaton of $\mathbf{A}, j_{0} \in\{1, \ldots, n\}$ a fixed integer and $a \in A_{j_{0}}$. If $\mathrm{pr}_{j_{0}}(b)=a$ for all $b \in B$ then there is a v_{i}-product $\mathbf{A}^{\prime}=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{j_{0}-1} \times \mathbf{A}_{j_{0}+1} \times \ldots \times \mathbf{A}_{n}\left(X, \varphi^{\prime}\right)$ such that \mathbf{A}^{\prime} contains a subautomaton \mathbf{B}^{\prime} isomorphic to \mathbf{B}, an isomorphism $\mathbf{B} \rightarrow \mathbf{B}^{\prime}$ is the map $\left(a_{1}, \ldots, a_{j_{0}-1}, a, a_{j_{0}+1}, \ldots, a_{n}\right) \mapsto$ $\mapsto\left(a_{1}, \ldots, a_{j_{0}-1}, a_{j_{0}+1}, \ldots, a_{n}\right)$.

We are now ready to state our main result.
Theorem. There exists a class \mathscr{K} of automata such that $\mathbf{H S P}_{v_{i}}(\mathscr{K}) \subset$ $\subset \mathbf{H S P}_{v_{i+1}}(\mathscr{K}) \subset \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$ holds for all $i \geqq 1$.

Proof. Let p be a prime number. We define an automaton $\mathbf{D}_{p}=\left(D_{p},\{x, y\}, \delta\right)$ as follows:

$$
\begin{gathered}
D_{p}=\{0, \ldots, p\} \\
\delta(j, x)= \begin{cases}j+1 \bmod p & \text { if } j<p \\
p & \text { if } j=p\end{cases} \\
\delta(j, y)=p, \quad j \in D_{p} .
\end{gathered}
$$

Let $\mathscr{K}=\left\{D_{p} \mid p\right.$ is a prime $\}$. We set out to prove the following properties of \mathscr{K}.
(1) $\mathbf{H S P}_{g}(\mathscr{K}) \subseteq \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$,
(2) $\operatorname{HSP}_{v_{i}}(\mathscr{K}) \subset \operatorname{HSP}_{v_{i+1}}(\mathscr{K})$ for all $i \geqq 1$.

Supposing (1) and (2) have been shown, the proof is easily completed. Since $\mathbf{H S P}_{\mathrm{v}_{i+1}}(\mathscr{K}) \subseteq \mathbf{H S P}_{g}(\mathscr{K})$ holds obviously, from (1) we have $\mathbf{H S P}_{\mathrm{v}_{\mathrm{v}_{+1}}}(\mathscr{K}) \subseteq$ $\subseteq \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$, which in turn implies $\mathbf{H S P}_{v_{i}}(\mathscr{K}) \subset \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$ by (2). Thus $\mathbf{H S P}_{v_{i}}(\mathscr{K}) \subset \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$ for all $i \geqq 1$.

Proof of (1). For every prime number p, define $C_{p}=\left(C_{p},\{x\}, \delta\right)$ by

$$
\begin{gathered}
\mathrm{C}_{p}=\{0, \ldots, p-1\} \\
\delta(j, x)=j+1 \bmod p, j \in C_{p}
\end{gathered}
$$

Moreover, let $\mathbf{E}=(E,\{x, y\}, \delta)$ with $E=\{0,1\}, \quad \delta(0, x)=0, \quad \delta(0, y)=\delta(1, x)=$ $=\delta(1, y)=1$. Thus \mathbf{C}_{p} is the counter with length p and \mathbf{E} is the elevator. Set

$$
\mathscr{K}^{\prime}=\left\{\mathrm{C}_{p} \mid p \quad \text { is a prime }\right\} \cup\{\mathrm{E}\} .
$$

From the proof of the main result of [5] we have $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathrm{z}_{0}}\left(\mathscr{K}^{\prime}\right)$. To end the proof, by Lemma 1, it suffices to show that $\mathscr{K}^{\prime} \subseteq \mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$. 1 hat is however obvious for we have $\mathbf{C}_{p} \in S\left(\left\{\mathbf{D}_{p}\right\}\right)$ and $\mathbf{E} \in \mathbf{H}\left(\left\{\mathbf{D}_{p}\right\}\right)$, each prime number p.

Proof of (2). Let $i \geqq 1$ be any integer and $m=\Pi\left(p_{j} \mid j=1, \ldots, i+1\right)$, where p_{j} is the j-th prime. Define $\mathbf{M}=(M,\{x, y\}, \delta)$ to be the automaton with

$$
\begin{gathered}
M=\{0, \ldots, m\}, \\
\delta(j, x)= \begin{cases}j+1 \bmod m & \text { if } j<m, \\
m & \text { if } j=m,\end{cases} \\
\delta(j, y)= \begin{cases}j+1 \bmod m & \text { if } 0<j<m, \\
m & \text { if } j=0 \text { or } j=m,\end{cases}
\end{gathered}
$$

for all $j \in M$. We prove that $\mathbf{M} \notin \mathbf{H S P}_{v_{i}}(\mathscr{K})$ while $\mathbf{M} \in \mathbf{H S P}_{v_{i+1}}(\mathscr{K})$.
Assume that, on the contrary, $\mathbf{M} \in \mathbf{H S P}_{v_{t}}(\mathscr{K})$. Let

$$
\mathbf{D}_{q_{1}} \times \ldots \times \mathbf{D}_{q_{n}}(\{x, y\}, \varphi)
$$

be a v_{i}-product of automata from \mathscr{K} that contains a subautomaton $\mathbf{A}=(A,\{x, y\}, \delta)$ which is mapped onto \mathbf{M} under a suitable homomorphism h. We may choose n to be the least (positive) integer with the above property, i.e. if a v_{i}-product of automata from \mathscr{K} contains a subautomaton that can be mapped homomorphically onto \mathbf{M} then the number of factors of that product is at least n. Also, the subautomaton A can be chosen such that none of its proper subautomata is mapped homomorphically onto M.

Let us write A as the disjoint union $A=A_{0} \cup A_{1}$ where $A_{0}=h^{-1}(M-\{m\})$ and $A_{1}=h^{-1}(\{m\})$. Let $a \in A_{0}$ be a state. Since a is a generator of A, if $\operatorname{pr}_{j}(a)=q_{j}$ for an integer $j=1, \ldots, n$, then $\operatorname{pr}_{j}(b)=q_{j}$ for all $b \in A$. By Lemma 3, there exists a v_{i}-product

$$
\mathbf{D}_{q_{1}} \times \ldots \times \mathbf{D}_{q_{j-1}} \times \mathbf{D}_{q_{j+1}} \times \ldots \times \mathbf{D}_{q_{n}}\left(\{x, y\}, \varphi^{\prime}\right)
$$

that contains a subautomaton isomorphic to \mathbf{A}. This contradicts the minimality of n. Thus $\operatorname{pr}_{j}(a) \neq q_{j}$ for all $a \in A_{0}$ and $j=1, \ldots, n$. Suppose now that there is an $a \in A_{1}$ such that for all $j=1, \ldots, n$ we have $\operatorname{pr}_{j}(a) \neq q_{j}$. Let $b \in A_{0}$ be a state and $u \in\{x, y\}^{*}$
a word with $\delta(b, u)=a$. Let $v=x^{k}$ where k denotes the length of u. We have $c=$ $=\delta(b, v) \in A_{0}$, henceforth $\mathrm{pr}_{j}(c) \neq \mathrm{q}_{j}$ for all $j=1, \ldots, n$. The special structure of the automata \mathbf{D}_{q}, guarantees that $a=c$. This contradiction yields that for every $a \in A_{1}$ there is an integer $j(1 \leqq j \leqq n)$ with $\operatorname{pr}_{j}(a)=q_{j}$.

Let $a_{0}=\left(a_{0,1}, \ldots, a_{0, n}\right), \ldots, a_{q-1}=\left(a_{q-1,1}, \ldots, a_{q-1, n}\right)$ be all the states in A_{0}, so that $a_{t, j} \neq q_{j}, 0 \leqq t \leqq q-1,1 \leqq j \leqq n$. By the minimality of \mathbf{A} and the special structure of the automata D_{q}, it follows that the letter x induces a cyclic permutation of the states a_{t}, say $\delta\left(a_{t}, x\right)=a_{t+1 \text { mod } q}$. Also q is the l.c.m. of the primes q_{1}, \ldots, q_{n}. Since h is a homomorphism of \mathbf{A} onto \mathbf{M}, we have $q \equiv 0 \bmod m$. Without loss of generality we may suppose $\delta\left(a_{0}, y\right)=a \in A_{1}$. Thus $\operatorname{pr}_{j}(a)=q_{j}$ for some j. By Lemma 2, we may take $j=1$. Since $\operatorname{pr}_{1}(a)=q_{1}$ we must have $\varphi_{1}\left(a_{0}, y\right)=y$. Let $v(1)=$ $=\left\{j_{1}, \ldots, j_{k}\right\}$, so that $k \leqq i$. Define \bar{q} to be the l.c.m. of the primes on the list $q_{j_{1}}, \ldots, q_{j_{k}}$. Obviously then $q \equiv 0 \bmod \bar{q}$. Since m is the product of $i+1$ distinct primes and \bar{q} is the product of at most i distinct primes, from $q \equiv 0 \bmod m$ and $q \equiv 0$ $\bmod \bar{q}$ we obtain $\bar{q}<q$. Let us now consider the state $a_{\bar{q}}=\left(a_{\bar{q}, 1}, \ldots, a_{\bar{q}, n}\right)$. For every $l=1, \ldots, k$ we have $\delta\left(a_{0, j_{l}}, x^{\bar{q}}\right)=a_{\bar{q}, j_{1}} \neq q_{j_{l}}$. Since $\bar{q} \equiv 0 \bmod q_{j_{l}}$ we see that $a_{\bar{q}, j_{l}}=$ $=a_{0, j_{1}}$. Since we have a v_{i}-product it follows that $\varphi_{1}\left(a_{\bar{q}}, y\right)=\varphi_{1}\left(a_{0}, y\right)=y$. We conclude $\delta\left(a_{\bar{q}}, y\right) \in A_{1}$. Since h is a homomorphism of \mathbf{A} onto \mathbf{M} we see that $\bar{q} \equiv 0$ $\bmod m$. This is however clearly impossible for m is the product of $i+1$ distinct primes and \bar{q} is the product of at most i distinct primes.

We still have to show that $\mathbf{M} \in \mathbf{H S P}_{v_{i+1}}(\mathscr{K})$. For this define the g-product
by

$$
\mathbf{A}=(A, X, \delta)=\mathbf{D}_{p_{1}} \times \ldots \times \mathbf{D}_{p_{i+1}}(\{x, y\}, \varphi)
$$

$$
\begin{gathered}
\varphi_{j}\left(a_{1}, \ldots, a_{i+1}, x\right)=x \\
\varphi_{j}\left(a_{1}, \ldots, a_{i+1}, y\right)= \begin{cases}y & \text { if } a_{1}=\ldots \\
x & \text { otherwise }\end{cases}
\end{gathered}
$$

Since the number of factors is $i+1$, this g-product is also a v_{i+1}-product. Define

$$
\begin{gathered}
A_{0}=\left\{a \in A \mid \operatorname{pr}_{j}(a) \neq p_{j} \text { for all } j=1, \ldots, i+1\right\} \\
A_{1}=A-A_{0}
\end{gathered}
$$

For an $a=\left(a_{1}, \ldots, a_{i+1}\right) \in A_{0}$ let $h(a)=t$ be that integer $0 \leqq t<m$ with $t \equiv a_{j} \bmod p_{j}$, $j=1, \ldots, i+1$. If $a \in A_{1}$ put $h(a)=m$. The mapping h is easily seen to be a homomorphism of \mathbf{A} onto \mathbf{M}.

Remark. It is said that an automaton $\mathbf{A}=(A, X, \delta)$ satisfies the Letičevskiĭ criterion if there exist a state $a \in A$, input letters $x_{1}, x_{2} \in X$ and words $u_{1}, u_{2} \in X^{*}$ with $\delta\left(a, x_{1}\right) \neq \delta\left(a, x_{2}\right)$ and $\delta\left(a, x_{1} u_{1}\right)=\delta\left(a, x_{2} u_{2}\right)=a$. If only $\delta\left(a, x_{1}\right) \neq \delta\left(a, x_{2}\right)$ and $\delta\left(a, x_{1} u\right)=a$ hold for some $a \in A, x_{1}, x_{2} \in X$ and $u \in X_{1}^{*}$, we say that \mathbf{A} satisfies the semi-Letičevskiĭ criterion. The above definitions extend to classes of automata: a class \mathscr{K} satisfies the Letičevskiĭ criterion or the semi-Letičevskiĭ criterion if one of its members satisfies it. By a classical result in [12], $\mathbf{H S P}_{g}(\mathscr{K})$ is the class of all automata if and only if \mathscr{K} satisfies the Letičevskiĭ criterion. It has been shown in [3] that the same is true for the α_{2}-product. If \mathscr{K} does not satisfy the semi-Letičevskiĭ criterion then, by the proof of the main result in [5], $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\alpha_{0}}(\mathscr{K})$. Also $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{v_{1}}(\mathscr{K})$ in this case as shown in [9]. Suppose now that \mathscr{K}
satisfies the semi-Letičevskiĭ criterion but does not satisfy the Letičevskiĭ criterion. In [5] it is proved that for every such \mathscr{K} we have $\operatorname{HSP}_{g}(\mathscr{K})=\mathbf{H S P}_{\alpha_{1}}(\mathscr{K})$. The v_{i} products behave quite differently. The class \mathscr{K} given in the proof of our Theorem satisfies the semi-Letičevskiĭ criterion but does not satisfy the Letičevskiĭ criterion, moreover, there exists no integer $i \geqq 1$ with $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{v_{i}}(\mathscr{K})$.

Open problems. (1) Suppose that \mathscr{K} satisfies the Letičevskiĭ criterion. Does there exist an integer $i \geqq 1$ with $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{v_{i}}(\mathscr{K})$? (2) Does there exist an integer $i \geqq 1$ such that $\mathbf{H S P}_{g}(\mathscr{K})=\mathbf{H S P}_{\mathrm{v}_{i}}(\mathscr{K})$ whenever \mathscr{K} satisfies the Letičevskiĭ criterion? What is the least such i, if it exists?

INSTITUTE OF MATHEMATICS
L. KOSSUTH UNIVERSITY

EGYETEM TÉR 1
4010 DEBRECEN
HUNGARY
BOLYAI INSTITUTE
A. JÓZSEF UNIVERSITY

ARADI V. TERE 1
6720 SZEGED
HUNGARY

References

[1] Arbib, M. A. (ed), Machines, languages and semigroups, with a major contribution by K. Krohn and J. L. Rhodes, Academic Press, 1968.
[2] Dömösi, P. and Imreh, B., On v_{t}-products of autcmata, Acta Cybernetica, 6(1983), 149-162.
[3] Essk, Z., Homomorphically cemplete classes of autcmata with respect to the α_{2}-product, Acta Sci. Math., 48 (1985), 135-141.
[4] Ésik, Z., Loop products and loop-free products, Acta Cybernetica, 8 (1978), 45-48.
[5] Ésik, Z. and Horváth, Gy., The α_{2}-product is homomorphically general, Papers on Automata Theory, V (1983), 49-62.
[6] Gécseg, F., Composition of automata, 2nd Colloq. Automata, Languages and Programming, 1974, LNCS 14 (1974), 351-363.
[7]. Gécseg, F., On v_{1}-products of commutative automata, Acta Cybernetica, 7 (1984), 55-59.
[8] Gécseg, F., Products of automata, Spi inger Verlag, 1986.
[9] Gécseg, F. and Imreh, B., On metric equivalence of v_{i}-products, Acta Cybernetica, 8 (1987), 129-134.
[10] Glušкov, V. M. [Глушков, B. M.], Абстрактная теория автоматов, Успехи Матем. Наук, $16: 5$ (101), (1961), 3-62.
[1i] Hartmanis, J. and Stearns, R. E., Algebraic structure theory of sequential machines, PrenticeHall, 1966.
[12] Lettčevskiĭ, A. А. [Летичевский, А. A.] Условия полноты для конечных автоматов, Журнал Выч. Мат. и Мат. Физ., 1 (1961), 702-710.
[13] Zeiger, H. B., Cascade synthesis of finite state machines, Information and Control, 10 (1967), 419-433.

