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Abstract 

The paper presents a noninterleaving semantics for Communicating Sequential Processes 
introduced by Hoare and studied in many works. Concurrency is expressed explicity in the intro-
duced model. Furthermore, semantics of CSP-programs can be obtained by equations in the model. 
By relating the model to labelled event structures and Petri nets the relationship between CPS and 
the mentioned models is pointed out. 
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1. Introduction 

In 1978 C. A. R. Hoare introduced in [6] a language for distributed programming 
called Communicating Sequential Processes — in short CSP. Subsequently, this 
language has received a great deal of attention. As mentioned in [4], both ADA and 
OCCAM are based upon CSP. 

Many models of semantics for CSP have been proposed. Among them we should 
mention Hoare's interleaving of strings [7, 8], Gostz's and Reisig's Petri nets with 
individual tokens [4], Janicki's semitraces [11], Hennessy's (et al.) operational model 
[5]. In the model of interleaving semantics concurrency is represented by the possi-
bility of shuffling sequences of operations, and thus is not expressed in an explicit 
form. Furthermore, concurrency is not distinguishable from nondeterminism in this 
model. Janicki [11] has used Mazuskiewicz's traces to give semantics for CSP, in 
which concurrency can be distinguished from nondeterminism. The possibility of 
handling with traces as words makes analyzing properties of CSP-programs in 
Janicki's model as easy as in Hoare's model. However, as shown by him, traces can-
not be used to give semantics for all CPS-programs. The notion of so-called semi-
traces was introduced by Janicki in order to describe the behaviour of all CPS-
programs. Although his semitraces are powerful enough to describe the behaviour 
of CSP, they have a disadvantage that they cannot be represented by single words. 

In our paper [8] we have developed the notion of Mazurkiewicz's traces to a 
new one based upon the notion of Starke's semiwords. This is the notion of labelled 
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traces. As pointed out in [8], labelled traces have the same advantage as and are more 
powerful than traces. T hey can describe the behaviour of concurrent systems modelled 
by bounded Petri nets, e.g. producer-consumer systems, while traces cannot. 

In the present paper, with the same point of view as in Gorts and Reisig's, Janik-
ki's papers [4], [11], we construct a model of semantics for concurrent systems, more 
specifically, CSP by using labelled traces. The advantage of Mazurkiewicz's model 
[14] is taken to this model. By relating the model to Starke's one the relationship 
between CSP and finite event structures is pointed out. Combining with the results 
presented in [8], CSP are related to Petri nets as well. 

In this paper the basic notion of Mazurkiewicz's traces is used and understood as 
follows. 

For a finite alphabet X, X* denotes the set of all finite strings over X, e denotes 
the empty word, a subset of X* is called a language over X; a reflexive and symmetric 
relation on X is called a dependency on X. For a given dependency D on X, let = D be 
the least congruence on X* w.r.t. the concatenation of strings such that ab=Dba 
for all a,b£X with [a, D. Each equivalence class of = D is called a trace over D, 
and a set of traces over D is called a trace language over D. 

The paper is organized as follows. 
The second section presents a model of semantics for concurrent systems by 

introducing the notion of labelled traces. The third section is devoted to a study on 
labelled trace languages. The introduced model is related to other models in the 
fourth section. A noninterleaving semantics for CSP based upon labelled traces is 
presented in the fifth one. 

2. Labelled trace languages 

Let us consider the following problem (bounded buffer [6]): 
Construct a buffering process X to smooth variations in the speed of output of 

portions by a producer process and input by a consumer process. T he buffer should 
contain up to two portions. 

A solution of the problem is represented by a 2-bounded Petri net as follows. 

ff • 

« ' 

out in 

consumer buffer producer 

Suppose that, at the begining, the buffer is empty so that only the action "in" of 
the producer can be executed for the first time. After that, the action "out" can occur 
the first time and the action "in" can occur the second time" concurrently. However 
the first occurrence of "out" depends causally on the first occurrence of "in". Thus, 
actions "in" and "out" have different cases, and we should take them for atomic acti-
ons. For the sake of simplicity sets of atomic actions is assumed to be finite. From the 
2-boundedness of the buffer process, every occurrence of one action is concurrent 

5* 
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with not more than one occurrence of the other. Hence, we can use a dependency on 
a set of four elements to construct a set of labelled partial orderings for describing 
the behaviour of the above solution. 

Basing on the above notice and the theory of Mazurkiewicz's traces we intro-
duce a new description of concurrent systems presented bellow. 

All the notions introduced in this section have been presented in our paper [8] 
in detail. Here, for the aim of the paper we present them in a different form for the 
sake of convenience. 

Let X be a finite alphabet. A finite symmetric relation DQ(Xx {1, 2, ...})X 
X(XX {1, 2, ...}) such that 

a)(a, z')€dom (D)=>(a,/)£dom (D) for all y « i , and 
b) {{a J ) , (a, for all (a, i), (a , / )£dom (£>) will be called a labelled 

dependency over X. 

Let D be a labelled dependency over X. Define =D as the least congruence over 
(dom (.D))* (w.r.t. the concatenation) such that (a,j)(b, i)=D(b, i)(a,j) for all 
(a,j), (b, z')€dom (D) and ((a,j) , (b, i))$D. Each equivalence class of =D will be 
called a labelled trace over the labelled dependency D, and a set of labelled traces over 
D will be called a labelled trace language over D. Like in the case of traces [w]D will 
denote the labelled trace generated by a string w£(dom (D))*, and [L]D will denote 
the labelled trace language generated by a language L^(dom (£>))*, i.e. 

[w]D:= {u: u€(dom(£>))*&u=Bw}, 

[L]d:= viL}. 

For (a, z')£dom (D), (a, i) will be called a case of a in D and we denote by 
#(a, D) the number max {i: (a, i) is a case of a in D). Throughout this paper / 
always denotes the projection from cases to their first component. 

Remark 1. If we identify X with XX {1}, each dependency over X (defined by 
Mazurkiewicz) is a labelled dependency over X. On the other hand each labelled 
dependency is a special dependency on XX {1, 2, ...}. Thus, all the notions and 
results obtained in the theory of traces [1], [13], [14] can be applied to labelled traces 
and labelled trace languages. This means that we can handle with labelled traces as 
traces, and the advantage of traces and trace languages is taken to labelled traces 
and labelled trace languages. The only difference between traces and labelled traces is 
how the atomic actions are considered. 

To show the difference between our notion and Mazurkiewicz's one we consider 
the dependency graphs of labelled traces. 

Definition 1. Let D be a labelled dependency over X, vvd(dom CD))*- A depend-
ency graph of w (over D) abbreviated a dep-graph of w (over D) and denoted by 
D(w), is a graph isomorphic to the node-labelled graph (V, E, X, ¡3), defined by: 

V= {1, 2, ..., n} if w = x 1x2...x„, P(i) = l(xt), and 

EQVxV is such that, for all 1 =S i, j sa n, (i, j)£E 

i fandonlyi f icj and (x i ; Xj)£D. 
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For the sake of convenience by syre (R) we denote the symmetrical and reflexive 
closure of a binary relation R on dom (/?) throughout the paper. 

Example 1. Let X= {a, b, c, d}, 

D = syre ({((a, 1), (b, 1)), ((b, 1), (b, 2))((&, 1), (c, 1)), ((b, 2), (d, 1)), ((c, 1), (d, 1))}), 

D(w) has the following form: 

c c 

Notice that this node-labelled graph can not be a dep-graph of any trace over any 
dependency on X. The reason is that the occurrences of c depend on the first occur-
rence of b, but are concurrent with the second occurrence of b. 

It can be seen from the theory of traces that 

w =Dv =>D{w) = D(v). 

(Unlike in the case of dep-graphs of traces, the converse direction is not true!) 
Hence, it is reasonable to define a dep-graph of a labelled trace t over D as D(w) 

for any M>£ t. Not distinguishing labelled traces, dep-graphs of which are isomorphic, 
we define that labelled traces t and t' over D are isomorphic iff D(t)^D(t'), where 
D(u) denotes a dep-graph of a labelled trace u over £>. 

Clearly, each dep-graph of a labelled trace is acyclic, and its transitive closure 
is a labelled partial ordering over X, which will be called a labelled partial ordering 
generated or induced by a labelled trace, and in which any pair of nodes with the same 
label is ordered. Hence, our notion is related to Starke's one of semiwords (see the 
section 4). 

As mentioned in Remark 1, all the notions of traces are applied to labelled 
traces. Here we remention some of them, which are needed in the sequel. 

Let D be a labelled dependency over X. The trace concatenation and trace itera-
tion of labelled traces and labelled trace languages are defined by 

W b M d : = W d for *,>>€(dom (£))*, 
UV: = {uv\u£U v£V} for iabelled trace languages U and V over D. 

U*:= (J U\ i/°=[e]D, Ui+1= U'U, i s 0 , for a labelled trace language U 
i=0 

over D. 
The following lemma is needed for a purpose of constructing operations on 

labelled trace languages. 
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Lemma 1. Let D and D' be labelled dependencies on X, h: (dom CD'))*— 
-^(dom (Z>))* be a homomorphism satisfying: 

a) VxfEdom CD'): h(x)£dom (D)U{s}, 
b) V x, y€ dom CD'): ((x, y)$D'b.h (x) (y) * e) =>(h (x), h (;>))<£ D. 
Then, for any labelled trace u over D', w£u we have 

h(u) Q [h(w)]D. 

Proof. Let u be a labelled trace over D' and wdu. Since A is a homomorphism, 
we have only to prove that if w=w1xyw2, w'—w1yxw2, (x,y)$D\ then h(w) =Dh(w'). 
But this is obvious from the specified property of h. 

Hence, each mapping h: (dom (£>'))*—(dom CD))* satisfying the condition of 
Lemma 1 can be considered as a homomorphism from a labelled trace language over 
D' to a labelled trace language over D as well. 

We shall adopt Mazurkiewicz's denotation. Let D be a labelled dependency 
over X. 

AD):= {[a]D: addom(D)}, 

T(D):= {[w]D: w£(dom CD))*}, and 

P(D):= 2T ( D ) . 
Having in mind our intended interpretation, elements of A(D) will be called 

actioncases over D, those of T(D) processes over D and those of P(D) activities over 
D. Actioncases a and b occur concurrently in a process t if t= t'[ab]t" where (a, b)$D. 

From Remark 1 and the definition of dep-graphs, if we identify X with XX {1}, 
and a word over X with a trace over the dependency D= (XX {1})X (XX {1}) in the 
obvious way, we have that each word, each trace, and each labelled trace induce a la-
belled partial ordering over X. Let W{X), T(X) and LT(X) denote classes of label-
led partial orderings induced by words, traces, and labelled traces, respectively, on X. 
Clearly, 

W(X)^T(X)^LT(X). 

We have introduced cases of actions in order to expand the power of our model 
comparing to Mazurkiewicz's model of traces. Thus, from the intended meaning, we 
should not distinguish cases having the same effect in a labelled dependency. 1 herefore, 
only reduced labelled dependencies are considered. Formally, we introduce the fol-
lowing notions. 

Definition 2. Let D and D' be labelled dependencies on X, T and T' labelled 
trace languages over D and D', resp. 

(i) D and D' are said to be isomorphic, denoted by D=D', if there exists a 
mapping <p from dom CD) onto dom (D') satisfying: 

(i) (p preserves cases of actions, i.e. if x is a case of an action a, so is (p (x), 
(ii) cp preserves the dependence, i.e. (x, y)£D iff (cp(x), (p(y))dD'. 

(ii) T and T' are said to be isomorphic, denoted by T^T', iff Mt^T, 3t'£T' 
such that D(t)^D(t') and vice versa. 

Definition 3. Let D be a labelled dependency on X. 
(i) Cases (a,i) and ( a , j ) are said to be equivalent iff V (b, /c)€dom (D): 

((b, k), (a, i))iD~((b, k), (a,j))eD. 
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(ii) A labelled dependency D' on X is said to be a reduced version of D iff D and 
D' are isomorphic and D' is reduced, i.e. for (a, /'), (a,y)6dom (D') with i ^ j 
(a,i) and (a,j) are not equivalent. 

Proposition 1. Every labelled dependency on A'has its reduced version. 

Proposition 2. Let D be a labelled dependency on X and T a labelled trace lan-
guage over D. Assume that D is isomorphic to D' by an isomorphism (p. T hen T and 
<p(T) are isomorphic. 

The above propositions follow immediately from the definitions 2 and 3. 

3. Operations on labelled trace languages (on activities) 

In the previous section we have defined some operations on labelled trace lan-
guages over a given labelled dependency. Those operations have restricted applica-
tions, as pointed out by Janicki [11], since concurrency relations are fixed. T o improve 
upon this shortcomings we define our operations corresponding to ones on concurrent 
processes from Milner's and Hoare's works [7], [15]. 

In the sequel, let X be an alphabet, D{ a labelled dependency over X, and let ti 
and Ui, respectively, be labelled traces and labelled trace languages over Du /= 1, 2. 

a) Sequential concatenation and concurrent composition. 
We intend to use the sequential concatenation to represent the fact that a proc-

ess in U2 starts only when a process in Ux has terminated. By the concurrent compo-
sition, we shall represent a synchronization of processes corresponding to the syn-
chronization mechanism introduced by Hoare [2], [7], Mazurkiewicz [14], and in our 
papers [8], [9], [10]. By this operation we want to construct a process t from tx and t2, 
which behaves like tx and t2, progressing in parallel and simultaneously participating 
in actions having cases in Dx and D2. 

Having in mind our attention, we define some operations on labelled depend-
encies as follows. 

Sequential composition of Dx and D2, denoted by S(Dlt D2), is the labelled 
dependency : 

S (A,02) := -DiU{(((a, i + # (a, A)), (b,j+ # (b, A)) ) | ((a, i), (b,j))£D2)U 

U syre ({((a, i), (b, j + # (b, £>,))) | (a, /)€dom (DJ, (b, j)€dom (Z)2)}). 

Togetherwith S(DX, D2) a mapping^from T(D2)to T(S{DX, D2)) isdefinedby 

s((a,i)) = (a,i#(a,Dù). 

The definition of J is reasonable by Lemma 1, 
Concurrent composition of Dx and D2, denoted by C(D1, D2)is a labelled depend-

ency defined as follows. Let 7=/(dom (Dj^n^dom (D2)) be the set of actions 
having cases in both Dx and D2. Then, 

dom(C(Dj, D2)) := {x\x£dom (D,)Udom(DJ & I(x) $ 7}U 

U {(a, i)| i #(a , • # (a, Z)^}. 
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For two positive integers m, n let en (n, m) and rem (и, m) stand for the quotient 
and remainder of dividing n by m. For i= 1, 2, define mappings 

ht: dom(C(Di,D2)) - dom(A)U{e} as follows. 

For Y, i— 1, 2, 

M ( < w ) ) = i ( a , V f . ( a J ) € d o m ( A ) ' 
'v J " U otherwise; 

for a£Y 
h((a,j)) = (a, rem 0 ' - 1 , # (a, ЗД) + 1), 
Л«((я, Jl) = (a. e n 0 - 1 , # (a, DJ) +1). 

Now, C(DX, D2) is defined by 
C(D1, D2)={(x, y)\ there exists an i in {1, 2} such that (h^x), / i ;( j ))eA}. 
Since hj^ and h2 satisfy the condition of Lemma 1, hL and h2 can be extended to 

homomorphisms from T(C(Dt, D2)) to T(DL) and T(D2) respectively. hx and h2 will 
be called the projections associated with C(Dy, D2). 

Now, we are ready to define our operations on labelled trace languages. 

Definition 4. 
(i) The sequential concatenation XJ1oU2 of U1 and U2 is a labelled trace over 

S(Dlt D2) defined by U±o U2= U1s(U2), where Uj is considered as a labelled trace 
language over S(-Dl5 D2) and the trace concatenation in the right side is for labelled 
trace languages over S(Z^, Z)2). 

(ii) 1 he concurrent composition ¿/J U2 of U± and U2 is a labelled trace language 
over С(D x ,Di) defined by: 

U1\\U2 = {tiT(C(D1,DJ)\h1(t)iU1,h2№U2}. 

(iii) Sequential iteration (iteration for short) of Uu denoted by £/®, is defined by 

U? = ((U, - { M d J M ^ I - {MDl}))*( C^ и {[e]s(Dl, Dl)}), 

where Ux U {[e]S(D„ d2)} is considered as a labelled trace language over S(D1, Z)J, and 
the trace iteration and trace concatenation are for labelled trace languages over 
S ( A , A ) . 

When Ui and U2 contain a single element, say их = j^}, U2— {/2}, we write 
h°t2> 'ill h instead of {fj}o {t2}, {/x}|| {/2} resp. 

Example 2. 

(i) Let A=syre({( (a , l ) , (6 , 1))}), 

U, = [pref ((b, l)(a, l))*]Dl, 

D2 = syre({((b, 1), (с, 1)), ((b, 2), (c, 2)), ((b, 1), (b, 2)), ((с, 1), (c, 2))}) 

U2 = [pref((c, 1 )(b, l )+(c, 2)(b, 2))*]Dj. 
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Then, 
C(DltDj = syre({((a, 1), (b, 1)), ((a, 1), (b, 2))})U£>2, 

1)) = («, 1), K{(b, 1)) = h&b, 2)) = (6, 1), 

hi((c, 1)) = fti((c, 2)) = £ 

h2(a, 1) = £, h2((i>, 1)) = (b, 1), /»2((b, 2)) = (b, 2), fc2((c, 1)) = (c, 1), 

ha((c, 2)) = (c, 2). 

Let /,=[(&, l)(a, 1)0, 1 ) ] ^ ! , 

h=[(c, 1 )(*>, l)(c, 2)(b, 2)(c, 1)]d8€ C/2-
Reduced versions of dep-graphs of ty and i2, resp., are of the form (i.e. transitive 

arcs are omitted) : • 

m 
T a 

By the definition of the concurrent composition, /̂K is a labelled trace over 
C ( A , A ) 

h\\k = [(c, 1 ) ( i , l)(a, l)(c, 2)(fr, 2)(c, l)]c(Dl.Dl) 

A reduced version of a dep-graph of f j t2 is of the form : 

It can be seen that 
UX\\U2 = [pref((c, 1 )(b, 1 )(a, l )+(c, 2)(b, 2)(«, 1))*]C(d,Di). 
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We propose in the example that Ux is the activity of the single portion-buffer, 
and t/2 is the activity of the two-portion buffer with a and b corresponding to "out" 
and "in" repectively, in the former, b and c corresponding to "out" and "in" in the 
latter. Then i /Ji /a corresponds to a composition of the two buffers: the two-portion 
buffer inputs from its producer, then outputs to the single-portion buffer, and in 
turn, the single-portion buffer outputs to its consumer. 

(ii) Let D=syre({((a, 1), (e, 1)), ({b, 1), (e, 1)), ((<?, 1), (c, 1))}), 

U = {[(a, l)(b, l)(e, l)(a, l)(c, 1)]D}. 
Then 

S(D, D) =D\J{((x, 2), (y, 2))|((x,l), (y, 1»€Z>}U 

U syre ({((x, 1), 0 , 2)) J x, yO (dom (£))}). 

By the definition of the iteration 

t/® = [((a, 1)(!>, l)(e, l)(a, 1)(:, 1 )(a, 2)(b, 2)(e, 2)(a, 2)(c, 2))* 

(£ + ( a , l)(e, 1 )(a, 1 ) ( c , 1))]S(D,D). 

A reduced version of a dep-graph of t£ U has the form: 

and reduced versions of dep-graphs of elements of U® are of the form: 

In the sequel, for u(iX*, YQX, by u\Y we denote the projection of u on Y, i.e. 
the image of u by the erasing homomorphism from X* to Y*. For u, vdX* we also 
write u\v instead of w|alph(„) without fear of confusion, where alph (v) denotes the set 
of symbols forming v. 

Proposition 3. f j i g contains not more than one element. 

Proof. By trivial induction on the length of elements of T(C{Dl, D2)) we can 
show that if for t, t'^TiCiD^ D2)) h^t^h^t') and h2(t)=h2(t'), then t=t'. 



302 D. V. Hung and E. Knuth 

Proposition 4. 
/J/2 5*0 if and only if 

'(/l)ll(dom(D!))n/(/2)li(dcjm(D1)) ^ 0. 
Proof. The "only if" part is obvious and we prove the "if" part. Suppose that 

there exists we/(Oli<dom(D,))n/(/2)|1(dom(D0)iX*. 1 hen there exist u^tl5 

h '• '(Wl)li(dom (D.))= '(w2)li(dom (Oi))~ Let 

»X = tfifl2...fl„€(dom (-Di))*. 

M2 = ^ . . . ^ ( d o m (Z)2))*, 

w = Clc2...ck£Y* = (/ (dom (Z)x)) f l / (dom (£>2)))*. 
Then, there exist monotonic functions yi: {1, 2, ..., &}—{l, 2, . . . ,«} and 
f2: {1, 2, ..., A:}—{1, 2, ..., m} satisfying: 

Qj is a case of an element in Y if and only if j=f ( i ) for some k, rt, and bj 
is a case of an element in Y if and only if j=f2(i) for some i^k, j=m. 

Let g: {ct, c2, ..., cfc}—dom (CX-Dj, D2)) be defined as follows. 
Let afl(i)=(Ci, p), bf^i)—(ci, q). Then g(c,)=(c i , s), where J is determined 

from the equation system: 

p = rem (s — 1, # ( c i , D 1 ) ) + l . 

•q = en (s — 1, # ( c „ D 1 ) ) + l . 

Let u[=a[a'2..,a'n, u'2—b'1b'2...b'm be defined by 

a , = (aj if J M ( { l , 2 , . . . , k } ) , 
J lg(Cj) if j =fl(i), for j ^ n, 

b . = \ b j i f J i / . ( { 1 . 2 fc}), 
J U f o ) if j — f i i f ) for j = m. 

Clearly, = ck). 
Hence, by Theorem «2 ([12], pp. 205) there exists w'€(dom (C(DL, D2))* such that 
w'\u' = u[, w'\u't—u'z. It is obvious from the definition of g that 

I V l c ^ D , ) = hlh-

Proposition 5. Let D3, Dlt D2 be labelled dependencies on X, U, Ult U2£ 
V,.Vlt V^P(D2), Z£P(D3), W£P(C(D1, D2)), /€T(C(D1, Z>2)), and hu h2 the 
homomorphisms associated with C(D1, D2). Then 

a) C{DuDJ*iC(Dt,DJ a n d U\\V^V\\U', 
b ) C / ) l . C ( P i , i y ) a C ( C ( A , ^ , f l , ) and {U\\V)\\Z=U\\(V\\Z)-, 
c) U\\0=0; 
d) [8]Dlll[e]D,=[fi]c(D„Dt); 
e) (C/1UC/2)||F=(C/JF)U(C/2 | |F); 
f ) U W ^ V ^ M W ^ M V , ) - , 
g) {h{t )U) \ \ (K( ty)=t{UAU& 
h) IVQh^Wnh^W) . 
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Proof. 
a) For a£X, 0 < # (a, D J • # (a, D2) the numbers /= 

= rem(y—1, #(a , !>!))+1) fc=en (j— 1, Dj))+ 1 are defined uniquely, and 
for a pair (/, k) with / « # (a, Dx) and k^ #(a , Z>2) the integer ./"= # (a, Z)2) x 
X(/— Y)-\~k is determined uniquely. Thus the correspondence fa(j)=j' is an 
one-to-one mapping from {1, .'.., # (a, DJ • (a, Z>2)} to {1, ..., # (a, Dj • # (a, D2)}. 

By the definitions of C{DX, D2), C(D2, Dx) and hu h2, the mapping h: dom 
(C(£>i, D2))—dom C(D2, DJ) defined by 

h Un iW = i ( a ' j ) if * (a> Dl)' = 
I (a, fad)) if # (a, A ) • # (a, D2) > 0 

is an one-to-one isomorphism. Furthermore, let h[ and h2 be the projections associated 
with C(Z>2, Dx), we have: 

h{(a,j)) = h2(h(a,j)), h2((a,j)) = h[(h(a,j)). 

Consequently, it follows a). 
b) For a£X with C(Dlt C(D2, D3)))>0 and for / = 1 , 2 , 3 let the 

mappingsg iaandg' iafrom {1,2, . . . , C(Dlt C(D2, A)))} to {1,2,. . . , #(a,A)} 
be defined as follows (gia and g'ia are undefined if # (a, Di)=0). 

If # (a, D) • #(a, D2) • #(a, D3) >0 , for (a, DJ • *{a, D2)- # (a, D3), let 

giati) = rem 0 - 1 , * (a, A)) + 1, 

g2a(j) = rem (en ( j - 1 , # (a, DJ), # (a, Z)2))+1, 

ga.0) = en (en ( J - I , # ( a ,DJ ) , #(a,K2))+1, 

gia 0) = rem (rem 0 —1> #(a, AD), #(a, A))+l. 
g'2a(j) = en (rem ( / - 1 , #(« , A ) • # (a, A)), ' # (a, A ) ) + 1 

g»(S) = e n ( / - l , # (a , A ) • #(a , A ) ) + l -

If # (a, A ) • # (a, D2) • # (a, £>3)=0, for #(a , C(DU C(A> Z)3))), then let 

. (undefined if # (a, A ) = 0, giaW ~ guW ~ | r e m q # j D i ) ) + 1 if # ( a > ^ > o, 

g2a0) = §2a(j) = 
undefined if # (a, D2) = 0, 
en (j - 1 , # (a, £>0) + 1 if # (a, A ) • # (a, A ) > 0, 
rem (.j - 1 , # (a, A ) ) + 1 if # (a, A ) = 0 & # (a, Z>2) > 0, 

/ _ ' r \ - / u n d e f i n e d i f # («> A ) = 0, g3aO) - gza(J) - |en # (a> + # (fl> ^^^ jf # Da) > 0> 

Let faU)=f ^ for / = 1 , 2 , 3 gu,U)=gia(j")-
• It can be seen easily that ((a, j), {b,j'))aC{Di, C(D2, D3j) (<C(C(DU D2), D3), 

resp.) if and only if there exists i in {1, 2, 3} such that ((<i,gia(j)), (b, gib(j'))£ 
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€Dl((a,g'la(j)), (B,G' IB(F)))IDH resp.). Hence, the mapping / : dom (C(A> C(D2, 
A)))~~dom (C(C(A> D2), A ) ) defined by 

f{(a,j)) = 07,/M) 

is an isomorphism between C(A> C(D2, A ) ) and C(C(DL, D2), A ) -
For / = 1 , 2 , 3 mappings G,-,Gi from T(C{Dlt C ( A , D3j), T(C(C(A, A>),A)) 

resp., to T(Di) defined by 

are homomorphisms by Lemma 1. Furthermore, for T(C(DL, C(D2, D3))) 
( r ( C ( C ( A , D2), DS)), resp.) tdUWWZ) {{U\\V)\\Z, resp.) if and only if G ^ U , 
G2(t)£V, G3(t)£Z (G[(t)£U, G'2(t)£V, G'3(t)£Z, resp.). Hence, by Lemma 1 / c a n 
be extended to an isomorphism from T(C(D1,C(D2, D3))) to T(C(C(D1,D2), 
A ) ) and f(m<v\\Z))=(U\\V)\\Z. Thus, by Proposition 2, U\\(V^Z)^(JJW)\\Z. 

The properties (c)—(h) are obvious. 

The following theorem has been formulated by Mazurkiewicz for the case of 
trace languages. Fortunately, it is still true for labelled trace languages, although our 
operation of synchronization is more powerful and general than his one. 

Theorem 1. The concurrent composition || is the least function from P(D1)X 
XP(D2) to P(C(DI, D2)) (w.r.t. the inclusion ordering of its values) meeting the 
following conditions: 

for each actioncase x in C(DU D2), U, Ux, C/2€P(A), V, VU V2£P(D2). 

The proof of the theorem is similar to the proof of Theorem 1, [14], pp. 352 and 
is omitted here. 

b) Union and intersection. 
We deal with the construction of activities from activities over different labelled 

dependencies. The union is intended for the nondeterministic choice and the inter-
section is intended to represent the tied synchronization. 

Let N(DL, D2) be the labelled dependency defined by 

N(DltDJ = AU{((a , i + # ( a , A)) , (b,j + #(b, A))) |((«, 0, (b,j))tDa}\J 

Usyre({(a, j), (a, i)+ # ( a , A ) l ( f , j )€dom(A) , (a, /)€dom(A)})-

A mapping j : T(D2)-*T(N(DU A ) ) associated to N ( A . A ) is defined by 

Gi((a,j)) = (a, gia(J)), 

G'i{(a>j)) — (3> g'iM 

(a) 

(b)' 

(c) 

(d) 

(ht(x) U)\\(h2(x))V) = x(U \\V), 

u w ^ v j = mvjvmv*), 

[e]0l II [e]x>2 = [£]c(Dll0i), 

s((a, 0) = (a, / + # (a, (a, i)<=dom (A)-
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Let I(D1,D2) be the labelled dependency defined by I{DU D2) = C(Dly D2)C] 
n ( r x { l , 2 , ...})2, where Y=l{D1)C\l{D2). Since C(DU Z)2)fl(dom (I(D1,D2)))2= 
— I{D1, D2) each labelled trace over 1(DU D2) is a labelled trace over C (Di, D2). 
Let /jl5 h2 be homomorphisms associated with C(D1, D2). 

Definition 5. (i) A nondeterminic composition Ux • U2 of Ux and U2 is a labelled 
trace language over N(Dt, D2) defined by 

I/iD U2— UxV>s(lJ^), where the operation U on the right hand side is for labelled 
trace languages over N(D1, D2) with considering U1 as a labelled trace language 
over N(D!, D2). 

(ii) 1 he intersection Ux n U2 of (J1 and U2 is a labelled trace language over 
/(£>!, D2) defined by 

u,nu2 = {t£T(i(Du D2))| h^e vlt h2(i)e u2}. 

Proposition 6. For U',U"£P(Dd, V'eP(D2), 
a) U'\jU"siU'{JU"-, N(Dlt D^Dx, 
b) U'\\V' = U'nV if D1 = D2. 
This follows immediately from Definition 3. 

Proposition 7. Let £>l5 D2, D3, D be labelled dependenceis on X, U£P(D), 
VZPiDJ, W£P(D2), Z£P(D,), t2£T(D2). Then 

a) [s]Dloi7^i7o[8]Dl-C/, 
b) (UoV)oW=Uo(VoW), 
c) Uo(VoW) = (UoV)n(UoW), ( i V O W ) o U ^ ( V o U ) n ( W o U ) , 
d) t x o U o t ^ t x o V o t ^ U ^ V . 
Proof, a), b) and d) are obvious. To prove c) consider a mapping h from 

dom(N(S(D,D1), S(D,D2))) onto dom (S(D, N(D1; D2)) defined by: 

h((n -Yi -((">& '^J U ' J > ) ~ l(a, j— #(a , £>))> otherwise. 

By the definition of the operations S, No n labelled dependencies, ((a, i), (b,j))£ 
6 N ( S ( D , A) , S(D, D2)) iff (h((a, /)), h((b,j))£S(D, N{Dx, D2)). Hence, h can be 
extended to a homomorphism from T(N(S(D, DJ, S(D, D2))) to T(S(D, NiD^ D2))) 
in the obvious way (by Lemma 1). Furthermore, it can be seen easily that 
h{{U°V)n{UoW))=Uo(VUW). By Proposition 2, Uo{VnW)^{UoV)U{UoW). 
The remaining case of c) is proved similarly. 

4. Relations to other models 

As mentioned in the section 2 each labelled trace induces a lebelled partial order-
ing over X, and each labelled partial ordering over X is a finite labelled event struc-
ture over X ([16]). Thus, a labelled trace language over a labelled dependency on A1 is 
a set of labelled event structures having a very simple representative: a (finite) 
labelled dependency and a word language (may be represented by a regular expression). 
In our paper [8] we have related labelled trace languages to Petri nets and some 
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interesting results have been obtained. In this section, we relate labelled trace lan-
guages to semilanguages introduced by Starke [18], [19]. 

Definition 6 ([19] pp. 337). 
(i) A labelled partial ordering (lpo for short) over A' is a t r ip l e^ , S, P), where 

(A, S) is a irreflexive partial ordering, /?: A-*X is a labelling mapping. 
(ii) Two lpo's (A, S, P) and (A', S', /?') are said to be isomorphic iff there exists 

a bijection b from A onto A' which preserves the labelling and the ordering: 

aSc** b(a)S'b{c)&p(a) = p'(b(a)). 

The isomorphy class [(A, S, /?)] of a finite lpo (A, S, P), i.e. the class of all lpo's 
which are isomorphic with (A, S, P) is called a partial word over X. A partial word 
[(A, S, p)] over X such that for all a, b from A 

p(b) = P(a)=>aSbVbSaVa = b, (1) 

i.e. where all the sets P~x(x) (for x£X) are chains w.r.t. S is called a semiword 
overA. 

Let pit) denote a partial word over X induced by a labelled trace t over a label-
led dependency on X (see section 2) i.e. p{t)= [{A, S, P)] where (A, S, ft) is the 
labelled partial ordering induced by t. 

Theorem 2. For each labelled trace t over a labelled dependency on X, pit) is a 
semiword over X. 

Proof. Let D(t) be a dep-graph of t, where t is a labelled trace over a labelled 
dependency D on X. By the definition of A if x, y are cases of an action a£X, 
(x, y)£D. Thus, the labelled partial ordering over X induced by t satisfies (1). Con-
sequently, p{t) is a semiword over X. 

It follows from Theorem 2 that every labelled trace language over a labelled 
dependency on A'generates a semilanguage over X in the natural way. 

For U£P(D), denote by 
SL(U) = {p(№U}. 

SL(U) is called semilanguage generated by U. 
Theorem 3. Let U^P(D^), V£P(D2), where Dx, Z>2 are labelled dependencies 

on X. Then 
SL(U® oV) = SXit/o thorny). 

Proof 
By (iii) of Definition 4 

U* = {(U- {[e]Dl})o(i/- {[e]Dl}))*(t/U {[eJsiDLDoOC/^SCA, A)), 

' where C/U {[sIs^d,)} is considered as a labelled trace language over S{Dl, A)-
It follows from the definition of S(A> A ) and of the sequential concatenation that 
for teT(SiDx, Dj)), p(t)£U0 if and only if there exist tx, t2, ..., tn £ U- {[e]Dl} such 
that 

(i) D(t)=0 iff n=0, and 
(ii) Let D(t¡), ...,D(tn) be dep-graphs of tx, ..., tn over A . - 0 ( 0 = 

= (V¡, Ei, X¡, p¡), 1=1 ,2 , . . . , « , ViDFJ=0 for /Vy, i,JSn. 
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Then £>(/) = ( Û Vi, E, X, /?), where 
i = l 

£ = ( U £,)il{(a, b)\aÇVt, b£Vi+1, i ^ n-l},p\Vl = ft. 
¡=i 

Hence, since ¥¡9*0 for i^n, for aÇfs, b^Vj, (a, b) is an arc of the tran-
sitive closure of D(t). From the definition of the sequential concatenation of labelled 
trace languages it follows that 

SL( i/o C/®) U {p ([EIDJ) = SL(m\ 

SL(U® oV) = SL(UoU®oV)USL(V). 

By the definition of the operation • our theorem is obtained from the last 
equality. 

To relate labelled trace languages to interleavings of strings we recall the syn-
chronization mechanism introduced by Hoare [7], E. Knuth [12]. 

Definition 7 ([7]). Let L 2 ^X*, YQX. The synchronized parallel compo-
sition Lil|yL2 is the set (J yv1\\Yw2, where WjHyWg denotes the set of all successful 

Wl6L, 
. . . . . interleavings of w1 and w2 with synchronising communications in Y and is defined 

inductively as follows : 

(i) eflre = {£} 

(0 
(ii) aw||ye = e]|yaw = | 

if a€Y 
(w||ye) if a$Y, 

(iii) aw\\Ybw' = bw'\\raw = 

a(w||yw') if a = b£Y 
0 if a^bAa,b£Y 
a(w\\Ybw') if a$YAb£Y 
La(w||yi>w')Ufc(aw|]yw') if a$Y, b$Y. 

Theorem 4. For a labelled trace language U£P(D) let inter (£/)= U K0-
ttu 

Then, for U£P{Di), V£P(D2), (where Dlt D2 are labelled dependencies) and 
y=/ (dom D j n / i d o m (D2), 

a) inter (C/oF)=inter (U) inter (F), 
b) inter (£/|| F)=inter (£/)|| y inter (F), 

c) inter ([/»)=(inter (£/))*, 
d) inter (E/nF)=inter (i/)Uinter (F), 
e) inter (JJ n F)=inter (U) n inter (F). 

Proof, a) and c), d) are obvious, e) follows from b). 
b) is proved as follows. 
Let hx and h2 be the projections associated with C(D1, D2). Clearly, for U\\V 

h ^ U , h2(tKV, and /(OlKdomCD^^^faii^iinteriFX/iOlKdomCD.w^/faO^i 
Qinter (£/). Thus, inter (£/ | |F) i inter (f/) | |y inter (F). 

6 Acta Cybernetica 8/3 
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Let jointer (C/)[|y inter (V). By Definition 7, j|,(dom(Dl))6inter (tf), j | ( (dom(D! ) )e 
6inter (V). There exist u£U, v€V such that y|i(dom(Dl))e/(w), J>li(dom(Ds))€/(i>)- By 
Proposition 4, is defined. 

It follows easily from the definition of hx and h2 that y£l{t). This completes the 
proof of the theorem. 

In the sequel, for simplicity of denotation, if and L2 are considered over fixed 
alphabets, say Tj and I 2 . and Y=I1C\I2, we shall writte Ll\\L2 instead of LX\\YL2. 

Proposition 8. Let L^, L2, L3 are languages over ZLT I2. r 3 respectively. Then 

LAL* = L2\\LX, a n d (LAL2)\\LZ = ¿I||(L2||L3). . 

Proof. Straightforward from the definition of the operation ||. 

5. Labelled trace languages as a noninterleaving semantics for CSP 

The notion of CSP presented in this paper is at an abstract level necessary for 
our purpose. 

Let Comm be a finite set of actions. A process P over Comm is in one of the fol-
lowing forms: 

p — Pl'i • • • > Pn> 

p = [p1«p2ll...llpn], . 

p 

p = [Pi • p2 • • • • • p„], 

p = a — Pi, adComm, 

p - skip, (skip $ Comm), 

p = P1\{b1,b2, ...,&„}, 

where Pu P2, ..., Pn are processes over Comm. 
The meaning of the above constructions of processes is given informally as fol-

lows. 
P1-,P2;...; P„ specifies sequential excution of Plt P2, ..., P„ in the order writ-

ten (process by process, P i + 1 starts only Pt has terminated, lsz '^n— 1), and 
starts with the start of P1; terminates with the termination of Pk. 

[Pil|P2|| ...||P„1 specifies concurrent excution of its constituent processes. They 
all start simultaneously and the process P=[P1||...||P„] terminates successfully 
only if and when they have all successfully terminated. T he relative speed with which 
they are excuted is arbitrary. The set of actions excuted by each of them is required 
to be disjoint from those executed by the rest. Plt P2, ..., Pn are synchronized by the 
actions intended. P; excutes an action intended to synchronize with Pj (in the con-
struction) if and only if Pj excutes a corresponding action (intended to synchronize 
Pj with P,) simultaneously (see [6], [7], [11]). 

<g> P specifies as many iterations as necessary of P sequentially. 
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[ ^ • ^ • ••••-Pn] specifies excution of exactly one of its consituent processes 
and the choice between them is fully nondeterministic, cannot be influenced by the 
environment. 

a — s p e c i f i e s excution of the action a followed by excution of P±. 
Skip specifies the process having no effect and never fails. 
Now, we identify the action intended to synchronize P ; with Pj with a corre-

sponding action intended to synchronize Pj with Pf in a construct [i,il|Z>
2||...||Pn]. 

We can suppose that the set of actions excuted by Pf may not be disjoint from the one 
by Pj and the actions in their intersection require that Pj and Pj must excute each 
of them simultaneously. (This abstraction has been made by Hoare in [7], [2], Janicki 
in [11]). 

The interleaving semantics for CSP given by Hoare [2], [7] is a follows. 
Each process over Comm is identified with a subset of Comm* called its inter-

leaving semantics : 

skip:={e}, 

a - P := aP, 

Pl"> Pi\ •••') Pn'= PlPt-'-Pm 

[P inP 2 D. . . nP„ ] :=P iUP 2 U. . .U P „ , 

[P1|!P2||...||Pn]:=P1||P2||...||Pn, where 

the operation || on languages is defined in the previous section and P1( ..., P„ are 
considered as languages over alph (Pj), ..., alph (P„) respectively. (Here for a lan-
guage L, alph (L) denotes the smallest alphabet, over which L is a language). 

<S5P:= P*, 

P\{£>1, ..., bn}:= P|alph(i'1)\{i'1 &„}> 

where P\A denotes the projection of P on A*. 
Because of the presence of the hidding operation in CSP, to relate our model 

to CSP we have to extend the notion of labelled trace languages. 
An £-labelled dependency on X is a symmetric relation {e})X {1, 2, ...})2 

satisfying: 

(i) (a, i)€dom (De) (a, j)£dom(De) for j ^ i, 

(ii) ((a, i), (a,j))€-De for (a, i), (a,j)edom(D£) and a ^ e. 

An £-labelled dependency on X may not be reflexive in its domain. However, this 
has no effect in the definition of trace languages and the notion of trace languages is 
extended to this case. Then, a trace language over D£ is called an £-labelled trace lan-
guage over De. All the notions and the results presented in the previous sections are 
valid for £-labelled trace languages as well with the only exception that the set Y in 
the definition of the operation || of labelled trace languages is modified as 

Y = (/(dom (Z^n / tdomCADNM. 

6« 
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e-labelled trace semantics proposed for CSP is presented bellow. Each process 
over Comm is identified with an e-labelled trace language over an e-labelled depend-
ency on Comm as follows: 

a - P:= {[(a, l)]{((a,!),(<., 
P l 5 P2; ...; Pn:=P1oP2o...oPn-, 

[ P i D . . . D P n ] : = P 1 D P 2 D . . . n P n ; 
<g> P :=P® 

P\{b1....,b„}:=hibi U ( P ) , 

where hp t j is defined as follows: For an e-labelled dependency De on X let 

h (i W = i(a' 0 if UA(a, OedomiA) 
' " l (e,0 if ac{b l t i>„}A(fl, i) dom (£>.). 

Dt{blt ..., bn) = {(h{bi bJ(x), h{bi y)£D.}. 
By Lemma 1, h(b b} is considered as a homomorphism from T(De) to 

T(Dt\{bit...,bn}). 
1 he correspondence between e-labelled trace semantics and interleaving seman-

tics for CSP is stated by the following theorem, which follows immediately from 
Theorem 4. 

Theorem 5. For a process P over Comm. Let LT(P), INTER (P) denote the 
e-labelled trace semantics, interleaving semantics, respectively, for P. Then 

inter (LT(P)) = INTER (P). 
Proposition 9. If a process P over Comm does not contain a construction 

[Pi • . . . • P„], LT(P) contains, at most, one element. 
The Proposition follows from Proposition 3. 

6. Conclusion 

We have presented an extention of the theory of traces as an attempt to provide 
a mathematical description for the behaviour of concurrent systems, more specifically, 
CSP. Labelled trace languages have been shown to be more powerful than trace 
languages and to have a simple representation. 

However, the construction of the theory of CSP based upon labelled trace lan-
guages requires a deeper study on labelled trace languages concluding a construction 
of domains of the operations on processes so that the operations are continuous and 
the representation of the properties of processes in its semantics in the model. This 
will be presented in our future work. 
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