
A Decomposition Theorem for a Class 
of Infinite Transformation Semigroups 

RALPH P . Tucci 

D E P A R T M E N T OF M A T H E M A T I C A L SCIENCES 
LOYOLA UNIVERSITY 
NEW ORLEANS, LA. 70118 U S A 

1. Introduction 

In recent years there has been a great deal of interest in infinite automata; see 
for example Bavel [2] and Gacs [9] (automata theory), Biermann [3] and Scott [15] 
(semantics), Reeker [11] (formal languages), and Reeker and Tucci [12] (algorithms). 
One approach to the study of infinite automata is to see how much of the theory of 
finite machines extends to infinite machines. The purpose of this paper is to gener-
alize results on the decomposition of finite automata to infinite automata. Previous 
results on the decomposition of infinite automata include the results of Bavel [2], 
in which he decomposes an infinite automaton into the union of certain sub-auto-
mata. Rhodes [13], [14] and Warne [18], [19] have developed decompositions for 
infinite semigroups similar to the classical Krohn—Rhodes decomposition (Arbib 
[1]). Esik [6], [7] and Esik and Gecseg [8] have studied decomposition from the point 
of view of varieties. Tucci [16] has developed a wreath product decomposition of 
infinite automata in terms of reset machines, group machines, and a third type, of 
machine known as unique predecessor machines (see Bavel [2]). This decomposition 
is in the spirit of the Krohn—Rhodes decomposition, although the decomposition 
itself is much weaker. It seems necessary to make certain assumptions on an infinite 
automaton to obtain a stronger decomposition, and that is what we do in this article. 

In this paper we work w th transformation semigroups rather than with auto-
mata because the notation is simpler. We develop a decomposition theorem for a 
certain class of unique predecessor transformation semigroups (Bavel [2]). The basic 
idea is to generalize the holonomy decomposition theorem of Eilenberg [5, theorem 
7.1] to infinite transformation semigroups. We choose the holonomy decomposition 
theorem because it generalizes to the infinite case in a fairly natural manner. We 
follow closely the exposition presented in Holcombe [10], especially in the last sec-
tion of this paper. 

The second section of this paper develops some technical results on the skeleton 
of a transformation semigroup, as defined in Holcombe [10], and the third section 
describes what we call the depth function, which is the dual of the height function 
given in Holcombe [10]. The fourth section describes the structure of the semigroups 
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into which a certain class of transformation semigroups can be decomposed. The 
final section contains the main decomposition theorem. 

A transformation semigroup is an ordered pair T={Q, S) where Q is a set 
and S is a semigroup, together with a partial product QXS-~Q denoted by con-
catenation, such that 

(1) (tfii)^ = q(SiSz) for all q£Q and s1,si£S; 
(2) if s1,s2^.S and qsY=qs2 for all q£Q, then sx=s2. 

Throughout this paper the symbol T always stands for the transformation semi-
group (Q, S). We assume that Q contains more than one element, and that Q and 
S are countable. If A is any subset of Q, then \A\ denotes the size of A. The semi-
group S is called the abstract (or action) semigroup of S. We will assume that S 
contains an identity 1 which satisfies the property that q- l=q for all q£Q. If S is 
generated by elements sx, s2, ..., sn,..., then we denote this by writing S=(s1} s2, ..., 

For each s£S we let Fs be the partial function induced by s, where Fs is given 
by the rule Fs(q)=F(q, s) for all q£Q- Note that Fs is single-valued where it is 
defined, but that Fs may not be defined on all of Q; the set {qd Q\qFs is defined} 
is the domain of i , denoted dom s. Sometimes for convenience we write qFs, or simply 
qs, for Fs(q). If a, b£S and qFaFb is undefined for all q£Q (i.e., the domain of Fb 
is disjoint from the range of Fa), then we adjoin a zero 0 to S and define ab=0. 
We can think of 0 as inducing a partial function on Q whose domain is 0. A trans-
formation semigroup T=(Q, S) is a unique predecessor transformation semigroup 
if F, is a 1 — 1 map for each s£S (Bavel, [2, p. 576]). When T is a unique predecessor 
transformation semigroup, we can define the set S ' _ 1 = {s_ 1 |s£S} where Fs— 1 = 
=(Fsy\ the partial function which is defined by the rule Fs — 1 (q)=q' if and only 
if Fs{rf)=q for all q, q'ZQ. Note that d o m j = g j ' - 1 for all s£S. We define the 
quotient of T.as the transformation semigroup T'=(Q, SUS'1). The transforma-
tion semigroups we consider in this paper are all quotients of unique predecessor 
transformation semigroups. Note that if s=s1s2...snkS, then S contains the element 
s ' l — s ^ l . - s ^ s i 1 , where Hence the action semigroup of the quotient 
of a unique predecessor transformation semigroup is regular. 

Throughout this paper the symbol N stands for the set of positive integers. 
We assume that the reader is familiar with the definitions of the restricted direct 
product and the wreath product of transformation semigroups as given in Holcombe 
[10]. We also assume that the reader is familiar with the basic theory of semigroups 
as presented in Clifford and Preston [4]. 

2. The skeleton 

To begin we need some preliminary definitions. 

2.1. Definition. The skeleton (Holcombe [10, p. 119]) of a transformation semi-
group T, denoted I(T), is the collection of subsets of Q of the form 0, {q} (where 
q£ Q), or Qs for any s£S. Since S contains an identity element by definition, we have 
that Q £ / ( r ) . Also, as we have observed earlier, if s£S, then dom so that 
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dom s£l(T) for every s£S. If A, B are two skeleton elements, then A^B if there 
is some s£S such that AQBs. Since S contains an identity element, and since 
this identity induces the identity map on Q, the condition A QB implies that A^B. 
Two skeleton elements A, B are equivalent (Holcombe [10, p. 119]), denoted A=B, 
if A^B and B^A; i.e., A=B if there are elements s,t£S such that AQBs 
and BQAt. If A^B and A^B, then we indicate this by writing A~^B. The ele-
ments A, B are strongly equivalent, denoted A =s B, if there are s, t£ S such that 
A=Bs, B=At. 

In a finite transformation semigroup, if A,B£I(T), AQB, and A =B, then 
A=B. However, in an infinite transformation semigroup we can have A,B£l(T), 
AQB, and A=B but A^B. 

2.2. Example. Let T=(Q, S) where Q={q„\n£N}, S=(s,s~1), and Fs(q„) = 
—<7n+I f ° r all q^Q- The partial function Fs—1 is defined in the obvious manner. 
If we take A = {q„\n>l}=Qs and B=Q then A,B^I(T) and A=B but A^B. S 

In a finite transformation semigroup, equivalent is the same as strongly equ-
ivalent (Holcombe [10, proposition 4.2.2]). This is not necessarily the case in an 
infinite transformation semigroup. 

2.3. Example. Let T=(Q, S) where 0 = {p„\n£N}U {q„\n£N} and S= 
= (a, b, s, t, a~x, b~\ s - 1 , f - 1 ) . Define 

( 1 ) Fa(Pj)=Pj f o r a l l 2 ; 

(2) Fb(qj) = qj for all . / ^ 2 ; 

(3) Fs{qj) =pj-1 for all jm 2; 

(4) F,(pj) = qJ-1 for all 

The partial functions induced by a - 1 , c"1, i - 1 are defined in the obvious way. 
For any other x£S and qdQ, we have that Fx(q) is undefined. 

Let ,Qa=A={pj\j^2}, and let Qb=B={q]\j^2}. Then AQBs and BQAt 
but there are no elements s', t'£S such that A=Bs' and B=At'. | 

We now develop a simple but important criterion which we need in section 5 
to make our decomposition work. 

2.4. Definition. The skeleton I(T) of the transformation semigroup T satisfies 
the weak ascending chain condition, or WACC, if every ascending chain of non-
equivalent skeleton elements under the relation ^ halts after finitely many steps. 
Similarly, the semigroup S satisfies the ascending chain condition on some class C of 
left (right, two-sided) ideals if every increasing chain under inclusion of left (right, 
two-sided) ideals from class C halts after finitely many steps. 

2.5. Example. The transformation semigroup in figure 2.1 does not satisfy 
WACC on its skeleton. The state set of this transformation semigroup consists of 
infinitely many components, where each component contains one more vertical edge 
labeled b than does the previous component. This transformation semigroup has 
the chain QabaSzQab2a^z since Qaba={q1), Qab2a—{qx, q2}, etc. 
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M I 

2.6. Proposition. Let T be a transformation semigroup, and let Qa, Qb£l(T). 
Then QaPiQbOiT). 

Proof. It is easy to see that Qaf)Qb = Qab~lb = Qba^a. | 

2.7. Proposition. The skeleton of the transformation semigroup T— (Q, S) 
satisfies WACC if and only if S satisfies ACC on cyclic left ideals. 

Proof. Let A = Qa, B=Qb for some a,b£S. Suppose first that A^B. Then 
there is some s£S such that QaQQbs. By proposition 2.6 Qa=QaP\Qbs= 
= Qa(bs)~1bs. It can be shown that dom = a, so that a = a(bs)~1bs. 
Hence SaS^SbS. Conversely, if SaSQSbS, then a=xby for some .v, y£S, 
so that Qa — QxbyQQby and therefore A^B. In a similar fashion, we can prove 
that A<gB if and only if SaQSb. Therefore, A=B if and only if SaS=SbS 
or Sa=Sb. Hence, I{T) satisfies WACC if and only if S satisfies ACC on cyclic 
left ideals and on cyclic two-sided ideals. The result now follows from the fact that 
every two-sided ideal is a left ideal. | 

From now on, we assume that the skeletons of all transformation semigroups 
under consideration satisfy WACC. We conclude this section with a technical result. 

2.8. Proposition. Let T—{Q, S) be a transformation semigroup, and let 
A, B£I(T), where A = Qa, B=Qb for some a, b£S. For any s£S, (Qaf]Qb)s= 
= Qas H Qbs. 

Proof. Let q£(Qaf]Qb)s. Then qtQas and q£Qbs so q^QasOQbs. Con-
versely, suppose q£Qasf)Qbs. Then there exist ¿/t, <y2€S such that q = (qla)s— 
=(q2b)s. Since all elements of 5 induce 1 — 1 maps on Q, we have q1a=q2b, so 
that qia£(Qar\Qb). Thus, q£(Qaf]Qb)s. | 

3. The depth function 

3.1. Definition. Let T=(Q, S) be a transformation semigroup. A depth function 
is a function d from I(T) to the class of ordinals such that 

(1) d(Q)=0. 
(2) d({q})>d{A) for all q$Q and A£I(T) with M | > 1 , and d(0)>d({q}) 

for all q£Q. 

(For simplicity we omit edges labeled by a - 1 and b~ 

a | a j a j a j a\ 

¡•J i j 

à\ t 

92 

Figure 2.1 
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(3) If A=B then d(A)=d(B). 
(4) If A^B then d(A)>d(B). 
(5) If there are A,B£l(T) such that d(A) = n and d(B) = m then for every 

ordinal A: with « < /c < w there is some C£l(T) such that d(C) = k. 

The depth function as defined in definition 3.1 is the dual of the height function 
as given in Holcombe [10, p. 121]. To construct a depth function we need the following 
proposition. 

3.2. Proposition. Let T=(Q, S) be a transformation semigroup and let 
A,B£l(T). Define a function d from I(T) to the class of ordinals as follows: 

(1) d(Q)=0. 
(2) Let \A\>1. If A = Q then d(A)=0; otherwise, ¿ 0 0 = s u p {l+d(B)\A-<B}. 
(3) If \A\ = l, then d(A) = sup {l+</(5)| |5|=>l}. 
(4) If A=0 then d(A) = l+d(B), where B is any one-element set in the skeleton. 

Then d is a depth function. (The depth of the transformation semigroup is d({q}) 
for any qdQ, which we denote by d(T).) 

Proof. We need to show that the conditions of definition 3.1 are satisfied. 
3.1 (1) This follows from the definition of d. 
3.1 (2) This follows from the definition of d. 
3.1 (3) Let A=B. If 1^1 = 151 = 1 or A=B=0 then d(A)=d(B) by defini-

tion. It is not possible that A is empty or a singleton while B is not, because of the 
definition of equivalence. 

Suppose now that M | > 1 , | -8 |>1. Then for any C£I(T) we have A<C if 
and only if 2?<C. 

3.1 (4) If A<B, then by definition d(A)>d(B). 
3.1 (5) This follows from the definition of d. | 

3.3. Proposition. Let T~{Q, S) be a transformation semigroup, let A£l(T), 
and let d be a depth function. 

(1) If d(A)=0 then A = Q. 
(2) If A, B£l(T) with A^B, A^B, and | f i | > l then d(A)>d(B). 

Proof. These facts follows immediately from the definition of d. | 

4. The holonomy transformation semigroup 

In this section we describe the structure of the transformation semigroups 
which we use in our decomposition. 

4.1. Definition. Let T=(Q, S) be a transformation semigroup and let G(S) 
be the group of units of S. For each A£I(T), let { s i 5 ' M s = ^ ^ d o m s , 
s$G(S)}, and let S(A) = S1(A)UG(S). Take ¿(S^A)) to be the ideal generated 
by St(A) (if S1(A)=0 then define J(Sx(y.0)=0), andletJ(A)=U{J(S1(A'))\A'QA, 
A'=A}. The holonomy transformation semigroup of A denoted T(A), has as its state 
set the set {Bx\B£l(T), BQA, B^A, and the action semigroup 
of T(A) is defined by taking J(A)UG(S) and identifying those elements which 
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act the same on the state set of T(A). We will denote the state set of T(A) by ST(A) 
and the action semigroup of T(A) by X(A). 

We define T(A) as we do for several reasons. First of all, if the transformation 
semigroup is finite then definition 4.1 reduces to Sj(A) = {s\As=A}, and this is 
the definition of S(A) in the finite case in Holcombe [10, p, 123]. (Note that T(A) 
contains the set of all permutations of A onto itself.) Second, in the finite case S(A) 
is a set of permutations on the maximal skeleton elements contained in A (Holcombe 
[10, proposition 4.3.1]); in the infinite case, the elements of St(A) map the skeleton 
elements in A to skeleton elements of A of the same depth in a 1 — 1 fashion (propo-
sition 4.5). Third, we define ST(A) as we do because there are some elements in 
X(A) which induce maps on A that do not necessarily preserve the depth of skeleton 
elements in A, and in fact may not map into A at all (proposition 4.5, example 4.6). 
Finally, we define T(A) by using /(yi)UG(S') to assure us that X(A) has at least as 
much structure as S (proposition 4.2 (1) and (2)) and to assure us that one important 
technical detail works out (proposition 4.2 (3)). 

4.2. Proposition. Let T(A)=(ST(A), X(Aj) be the holonomy semigroup of A. 
(1) X(A) is regular. 
(2) X(A) satisfies ACC on cyclic left ideals. 
(3) If As=A for some s£S then s embeds in X(A). 

Proof. (1) The ideal J(A) is a regular semigroup, for if s£J(A), then s~x = 
=s~1ss~1£J(A). Further, ./(/i)UG(S') is a regular semigroup, and X(A) is a 
homomorphic image of J (A) UG(S). 

(2) Any cyclic left ideal of J(A) is of the form J(A)aU{a} where a£J(A). But 
J (A) a is also a left ideal of S. Hence J (A) satisfies ACC on cyclic left ideals. Since 
every left ideal in J(A)UG(S) is contained in J (A), we have that J ( ^ ) U G ( 5 ) 
satisfies ACC on cyclic left ideals. The result now follows because X(A) is a homo-
morphic image of •/(HUGOS'). 

(3) Suppose As=A. If s£G(S), then s£T(A) by definition. If s$G(S), 
let i r=y4fldom s. By proposition 2.6 K£l(T). Also, A=As=Ks^K^A and 
hence K=A. Further, Kss~1=K and A ' ^ d o m ^ " 1 , so that ss'^S^K)^ 
QJ(K)QJ(A). But J (A) is an ideal, so that s=ss~1s£J(A). Hence s embeds in 
XW- I 

Although ST(A) consists of more than just the skeleton elements of T in A, 
we concentrate our attention mostly on these latter elements. To study these skele-
ton elements we need the following notation. 

4.3. Definition. Let T be a transformation semigroup and let A', A£l{T), A'QA. 
If A=A' then we define dA(A')=0. If A^A' then dA(A')=sup {l+dA(B)\Bel(T), 
A'QBQA, A'^B}. Note that for the function dA we take chains under inclusion, 
not chains under the relation S . Note also that dA (A') may be an infinite ordinal. 
When there is no ambiguity we abbreviate dA(Ar) by d(A'). Further, we define 

1(A) = {A'a{T)\A' g A} 
In(A) = {A'a{T)\A' g A, dA(A') = n) 

(A) = {A'a(T)\A' g A, dA(A') s n} 
IAA) = {A'a{T)\A' i A, dJA') > n}. 
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4.4. Lemma. Let T=(Q, S) be a transformation semigroup. If A'£ 1(A) and 
AxQB for some x£S where ^ g d o m x and B£l(T), then dA(A')^dB(A'x). 

Proof. Since A ^ dom x we know that the map C--Cx for every C£l(A) is 
an isomorphism between 1(A) and I(Ax) as posets ordered by inclusion. Moreover, 
C ^ D if and only if Cx^Dx, for all C,D£I(A). But then dA(Ar) = dAx(A'x)^ 
^dB(A'x) follows. This completes the proof. | 

4.5. Proposition. Let T=(Q, S) be a transformation semigroup and let AdI(T). 
(1) Let s^S^A), and let BfJn(A). Then the mapB^Bs is a 1 - 1 onto map 

from /„(A) to I„(A). 
(2) If s£S and s induces a 1 — 1 map from I„(A) to /„ (A) for all n, then s em-

beds in X(A). 

Proof (1) It is obvious that each maps 1(A) into 1(A). We first show 
that if B(iI„(A) then Bs£l„(A). If Bs=B then we are done. Otherwise, since 

we may directly infer from lemma 4.4 that dA(B)^dA(Bs). Now 
A=As dom s implies that As~1—Ass~1=A, and A—As implies that A^dom s:^1, 
so that again by lemma 4.4 we have that dA(Bs)^dA(Bss~1). Since Bss~1=B, 
we have that dA(B)—dA(Bs), so BsO„(A). (Note we have proven that if s^Sx(A) 
then i - 1 ^ ^ ) . ) 

To show that the map B-»Bs is onto, note that B=(Bs~r)s where the argu-
ment of the previous paragraph shows that Bs~1^J„(A). To show that the map is 
1 — 1, suppose that Bs—B's for some B'£l„(A). Then B=B' because every element 
of £ is 1 — 1 on its domain. 

(2) Let s be any element of S which maps I „(A) to I „(A) in a 1 — 1 onto fashion. 
If s£G(S), then automatically s embeds in X(A). If s$G(S), then by hypothesis the 
element s maps I0(A) to I0(A). In particular As=A. By proposition 4.2, s embeds 
in X(A). B 

In the finite case the condition AsQAQdom s implies that As=A, and 
hence that s permutes the elements of 1(A). This is not necessarily true in the infinite 
case; in particular, we may have that As^cJiA. 

4.6. Example. Let T—(Q, S) be a transformation semigroup where Q= 
= {qn\n£N} a n c l S=(a, s, a'1, s"1). Define: 

(1) Fa(qn) = qn, n^ 2; 
(2) Fs(qn) = qn+1, n ^ 1. 

The partial functions induced by a - 1 and are defined in the obvious manner. 
For any other x£S and qdQ, we have that Fx(q) is undefined. 

The set A = Qa={qn\n^2} is a skeleton element of this transformation semi-
group, and However, q ^ A s ' 1 and q ^ A . § 

If we assume that ^ i i g d o m i and if we also assume that As~1QA, then 
s - 1 may still not map I„(A) to I „(A) for all n. 

4.7. Example. Let T=(Q, S) be a transformation semigroup where Q= 
= {q„\n£N} and S=(s, (, s~\ t'1). Define: 
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(1) £ (?„ ) = 9n+1, n s l ; 

(2) = 91 and Ft(q2) = q2. 

The partial functions induced by s - 1 and f - 1 are defined in the obvious manner. 
For any other x£S and q€Q, we have that Fx(q) is undefined. 

Let A — Q, and note that AsQA^doms (in fact, ^ = d o m s ) and As~1QA. 
Then B=Qt={qi, q2}0(A) and Since Bs^QB but Bs^^B, we 
have dA(Bs~1)^~dA(B). In particular, i - 1 does not map In(Q) to In(Q) for all n. | 

We conclude this section by describing how the relation A=B induces a rela-
tion between 1(A) and 1(B). 

4.8. Proposition. Let T=(Q, 5) be a transformation semigroup, and let A, B£l(T) 
where A=B with AQBs and BQAt for some s, t£S. 

(1) In(A)QIn,(B)s and In(B)QI„,(A)t for all n. 
(2) If A=Bs and B=At, then In(A)QIn(B)s and In(B)QIn(A)t for all n. 

Proof. (1) Let A'£ln(A), and let B'={b£B\bs=a for some ad A'}. Note that 
B'=A's~\ so that B'£I(B)QI{T). Since AQBs, we have A'=B's. Suppose 
that B'Om(B). We must show that m^n. 

Choose any chain of non-equivalent skeleton elements from A to A', say 

A 3 A1 z>...=> A'. 

Since AQBs we have that ^j-Qdom j - 1 for all Aj. Therefore 

B = As'1 i AlS~x A's-1 = B'. 

By the argument of lemma 4.4, the elements of this chain are all non-equivalent. 
Therefore m ^ n . 

(2) Suppose now that A=Bs and B=At. We prove that m^n. Choose 
any chain of non-equivalent skeleton elements from B to B', say 

B B1 3 . . . = ) B'. 

Since BQAt, for each BjQB there exists some AjQA such that Bj—Ajt, and 
there is also some A"QA such that B'=A"t; that is, AJ=BJt-1 and A"=B't~\ 
Thus, we can rewrite this chain as 

B 3 A^ =>...z> A"t = B' 

This gives rise to a chain in A, namely 

A = Br1^A1 2...2 A". 

But then A'=B's=A"ts and A=Bs=Ats which yields the chain 

A = Ats 2 Ajts 2...3 A"ts = A'. 

Again, by the argument of lemma 4.4, the elements of this chain are all non-equiv-
alent. Therefore m S n . It follows that m=n. | 

The containments In(A)QIB+(B)s and In(B)QIn+(A)t in proposition 4.8(1) 
cannot be replaced by I„(A)QIn(B)s and J„(B)QIn(A)t. 
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4.9. Example. Let T—(Q, S) be a transformation semigroup where 

Q = {pK\ntN}\J{qH\n£N}. 
and 

S = (a, a', b, b', s, t, ar\ a"\ b~\ V~\ s~\ r1). 
Define : 

(1) Fa(Pn) = Pn 
for all « 5 2 ; 

(2) FAPn) = Pn 
for all n s 3; 

(3) Fb(qn) = q„ for all n s 2; 

(4) FM = qn for all 

(5) Fs(qn) = Pn- for all n s 2 

(6) F,(Pn) = qn-x for all n s 2, 

The partial functions induced by a a' 1, b \ b' 1, s are defined in the 
obvious manner. For all other x£S and q£ Q, we have that Fx(q) is undefined. 

Let A = Qa and let B=Qb. Then A<gBs and BQAt. By definition, AfJ0(A). 
If we let Bl = Qb' = {qa\n^3} then A=B^ but BAh(B) because B^B. Note 
also that A^B's for any other B'G(B). | 

The containments In(A)QIn(B)s and In(B)QT„(A)t in proposition 4.8 (2) 
cannot be replaced with equalities. 

4.10. Example. Let T= (Q, S) be a transformation semigroup where 

Q = {pn\neN}U{qn\n£N} 
and 

S = {a, b, c, x, s, t, a'1, b - 3 , c - 1 , x~x, t~x). 
Define : 

0 ) Fa(Pj) = Pj f o r 7 s i ; 

(2) FB(QJ) = f o r y s i ; 

(3) Fc(PJ) = PU/2) if y is even; 

(4) Fx(Pj) = Pj+i i f y i s o d d ; 

(5) Fs(qj) = Pj for all j s 1 ; 

(6) ^(/>2) = F,(P2j+i) = for y S 1 
The partial functions induced by a - 1 , b c _ 1 , t a n d x~x are defined in the 
obvious manner. For all other y£S and q£Q, the expression Fy(q) is undefined. 

The sets A = Qa= { p j l / s l } and B=Qb={qj\j^l} are strongly equivalent 
skeleton elements, with A—Bs and B—At. Let X=Ax—{p2j\jm\). Then XQA, 
AgXc, so that X£f0(A) but Xt^{ql}^B, so that Xt$I0(B). | 
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5. The decomposition theorem 

We now develop the decomposition theorem. The basic idea for this decomposi-
tion is the same as in the finite case; we start off with a "coarse" decomposition and 
refine it until we get the result we desire. Throughout this section we follow closely 
the presentation in Holcombe [10, chapter 4]. 

5.1. Definition. (1) (Holcombe [10, p. 102]). Let T=(Q, S) be a transforma-
tion semigroup. Let n={Hj}ja be a collection of subsets of Q such that Q= UJilHJ, 
where / is some indexing set for this collection. Then n is an admissible subset system 
if for any id I and sd S there exists jd I such that Hi Fs Q Hj. 

(2) Let n, n' be two admissible subset systems. Then we say that n ' ^ n if for 
every H'dn' there is some Hdn such that H'QH. 

5.2. Definition. Let T=(Q, S) and T'-(Q\ S') be two transformation semi-
groups. 

(1) (Holcombe [10, p. 431). A nartial function a : Q'-*0 is a covering of T 
by V if 

(a) a is surjective; 
(b) for every sdS there is some tsdS' such that either ot(q')s is undefined 

or a(q')s=a(q'ts) for every q'd Q• 
We denote the fact that T covers T by writing T^ V. 

(2) (Holcombe [10, p. 116]). A relation a on Q'X Q is called a relational cover-
ing of T by T' if 

(a) a is surjective; 
(b) for every sd S there is some tsdS' such that a (q') sQa (q'ts) for every q'dQ' • 

We denote the fact that a is a relational covering of T by T' by writing T'. 

5.3. Definition. (Holcombe [10, p. 122]). Let T=(Q, S) and T'=(Q', S') be 
two transformation semigroups, where T has depth function d. Let a be a relational 
covering of T by T'. Then a has rank i (with respect to d) if 

(1) a{q')dI(T) for all q'dQ'; 
(2) d{a.(q'))^i for all q'dQ' and d((a(qr))=i for at least one q'dQ' where 

0 
5.4. Definition. (Holcombe [10, p. _35]). Let T=(Q,S) be a transformation 

semigroup. The closure of S is the set S ^ S U {q|?€6} where, for each qdQ, q_is 
the constant map defined by xq=q for all xdQ. The closure of T is T = ( Q , S). 

For each ordinal j, we divide the set of skeleton elements of T at 
depth j into equivalence classes under the relation = , and we take a set of represen-
tatives from these classes, say A{, A{, . . . . We form the holonomy transformation 
semigroups for all A{ and take their join T(A{)VT(AJ

2)V.... This is denoted by 
Tj (T), a transformation semigroup with state set denoted by ST/ (T) and action 
semigroup denoted by x j (T) . Note that the sets at depth 0 are all equivalent to Q, 
so we can choose A\—Q, and hence T0

V (T) = T(Q). To ensure that the state sets 
of the T(A{y& are disjoint we will consider the state set of T(A{) to be {/c}X ST(AJ

k) 
instead of ST(A{). Thus, a typical element of the state set of T(A{) is denoted (k, b() 
where jfcsl, B{dST(A{). 

The next definition generalizes a definition in Holcombe [10, p. 126]. 
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5.5. Definition. For a transformation semigroup T=(Q, S), the set n1 is 
{A£l(T)\d (A) Sy }. 

Note that nj is an admissible subset system. We have Q—[JHin jH because 
if jSd(T) then ¿ ( M ) = / f o r a11 <l£Q a n d s o {<l)£nl- A l s o > 1 fB£nJ and s£S, then 
d { B s ) j so that Bs£nJ. 

5.6. Theorem. Let T=(Q, 5") be a transformation semigroup of depth at least 
1. Then there is a relational covering T ^ T g (T) of rank 1. 

Proof. By the argument of the previous paragraph, the set n1 is an admissible 
subset system. To specify the covering, let B'Zn1, let s£S, and define 

fB's if s£To(T) 
* s ~ \ Q s otherwise. 

By proposition 4.2, if s^To(T) then Qs^Q, so that Qs is of depth 1 or greater. 
The pair (n1, S) gives rise to the transformation semigroup (rc1, S / ~ ) where the con-
gruence ~ identifies any two elements of S which act identically on n1. Denote 
(jt1, S / ~ ) by TKn1). If we define a relation a : n^Q by a(B)=B for all Ban1 

then we obtain a relational covering T ^ T K n 1 ) of rank 1. We can in turn cover 
№ > by To (7"). | 

The proof of theorem 5.7 follows Holcombe [10, theorem 4.3.4]. 

5.7. Theorem. Let T=(Q, S) and let d be a depth function. Let 7t be an admis-
sible partition of rank j, where j<d(T). Then there is an admissible subset system 
n' of rank j+1 with n'^n. 

Proof Let Ij(n) = {A£n\d(A)=j}, let IJ+(n) = {A£n\d(A)>j}, and IJ++(n) = 
= {A£j(r)\A£/1+(Y) for some Y£lj(n)}. Define N ' = I } + ( N ) { J I J + + ( N ) . Then 

=Ti and rank (n') = j + l . We must show that n' is admissible. 
We first show that Q={Jhzk'H. Let q£Q. If q£A£LJ+(n) then there is nothing 

more to prove. If q$A for any A£l1+(n), then q£A for some A€lj(n). But 
d({q})>J by definition so {q}£lJ+ + (n) by definition of IJ+ + (n). Hence Q={Jiiin'H-

Now let Bdn', s£S. We must show that BsQA for some A£n'. There are 
two main cases to consider. 

Case I: BZlj+(n). Then B£n so BsQA for some A(In because n is admissible. 
There are two subcases to examine. 

Subcase 1: AfJj+(n). Then BsQA£n'. 

Subcase 2: A£lj(n). Since Bs^B and d(B)>j we have d(Bs)>j and so 
BsdI1+(A) for AfJj{N). Therefore Bs is an element of TZ'. 

Case l l : B£lJ++(n). Then BfJ1+(Y) for some YO^n) and Bs^Ys. There 
are two subcases to consider. 

Subcase 1: YsQA for some A£lj(jz). Then Bs<^A£n'. 

Subcase 2: Ys<gA for some A^Ijiji). Then BsQYsQA and d(Bs)^d(B)>j 
so that Bs£l1+(A). Hence Bs£n'. | 
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• 5.8. Theorem. Let T=(Q,S) and T'=(Q\ S') be transformation semigroups, 
and let T^T' be a relational covering of rank j, j<d(T), such that the image 
of a is Then there exists a.relational covering T ^ . T ) ( T ) O T ' such that 

(1) the rank of a7 is j+1; 
(2) the image of a ' is n J + 1 . 

Proof. Since T^aT', for every S there is some ts£S' such that a (q')s=<x(q'ts) 
for all q'ZQ'. Let A{, ..., A{, ... be a set of representatives of equivalence classes 
under = of skeleton elements in T of depth j. Recall that S7}v (J)=UiSfc({^} X ST(A{) 
denotes the state set of T ) ( T ) and that x](T) denotes the action semigroup of 
T ]{T). 

To define the relation a ' from STj(T) X Q' to Q consider an element ((/c, B{), q')e 
£KXQ'. If d{a(q'))=j then there is some A{ such that a.(q') = AJ

k\ in particular, 
a i q ^ ^ A i x for some x£S. We define 

«'((*, B{), q') = 
a ( q ) if u{a.(q)) 
B{x^oi{q') if <x(q') = AÍ, ot(q') Q A'x 
0 otherwise. 

By proposition 2.6, the image of a' is a skeleton element in all cases. Clearly, the 
rank of a' is greater than j . 

We now show that the image of a ' is ni+1. Writing nJ as / j ( t i )U I j+(n ) as in 
theorem 5.7, we have TzJ+1=IJ+(n)UIj++(n). Since the image of a is nJ, suppose 
that Z£nJ+1.- If Z£nJ then we have d{Z)>j and Z=a(q') for some q'eQ' and so 
u'((k,B{),q')=a(q')=Z for any (k,BJ

k)£K. If Z0v(Y) for some YOjin) then 
Y£nJ and Y=a(q') for some q'dQ'. Now Y=a{q')=A{ for some 1 ^k, so that 
Y^A{x for some x£S. Then Z=B{x for some B{fJ1+(Ak) by proposition 4.8, 
and also Z g T = « ( ? ' ) . Therefore Z=B{xr\a(qr)=a'((k, B{), q'). Hence the image 
of -a ' equals n i + 1 . 

We now prove that a' is a relational covering. The crucial part is the definition 
of the element of the action semigroup T)(T)oT' which covers a given element of S. 

;Let s£S and suppose that ts covers s with respect to the relational covering a. 
Thus aiq^sQaiq'ts) for all q'dQ'. As before, T ] ( T ) denotes the closure of the 
join of all the T(A{) for fcsl. Now the action semigroup of T^(T)oT' consists 
of all ordered pairs ( / , 0 where t£S' and / : Q-~x](T). Having chosen our 
element we define a function fs: Q'-*xJ(T) in the following way. Let q'(LQ'. 
Three possibilities arise : 

Case l: a(q'ts)dlj+(n). Then fs is chosen arbitrarily. 

¡II: a(q'ts)£lj(n) and «(q^s^a^q'Q. Then a(q'ts)=A}
k for some fcsl, 

s some such that a so that a (q ' t^y~ l ^A{. Now afaO s y ' 1 ^ 
A I 1 / r\ 1 / r»/ Í» _ . _ r\/ - T / -W-WT . /• 

Case 
so there is . S J = ^ k J , ^ »^j = 

and so «(q^sy'^B' for some B'£I1+(A{). We put fs=C(B% 
the constant map which .maps everything to B'. 

v . C a s e i n : a(q'1s)£lj(n) and a(q')s=a(q'is). Then a^-aiq'Q since 
Saiiq') and yet a(qr) is of depth at least j. Now, as stated in the definition of 
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a',A{=a.(q') implies that there is some xdS such that a(q')<^AJ
kx. Thus A{xs3 

Now cc(q,)s=cn(q,ts) implies that a(q')sQoc(q'ts)x' for some x'dS, so that in 
particular aiq^six^^oL^s. Therefore A{xs(x')ia.(q')six/)-1 =a(q') s=a(q') = 
=A{ which implies that A{xs(x/)~1=A{. It follows f rom proposition 4.2 that 
xî(x')-1 6 T{A{) g t / ( T ) , so we put 

fs(q') = xs(x')-1. 

This defines the function fs : Q'->-Xj(T). What remains is the task of showing 
that ( f s , t s ) covers s with respect to a'. Let ((l,B{), q')£KXQ'. We prove that 

«'((/, B{), q')s i «'(((/, B{), q')(fs, Q). (*) 

Case I : a(q'ts)elj+(n). If a(q')€/J+(n) then 

a'{(l,B{), q')s = cc(q')s g a.(q'Q. 
In all other cases 

a'((l,B{),q')sQa(q')sQa(q'ts). 

Since a(q'ts)£lJ+(n), we have that fs(q') is arbitrary and that 

«'(((/, B{), q ' ) ( f s , Q) = «'((/, B i l f j q ' l q'ts) = a(q'Q. 

Therefore the inequality (+) holds in this case. 
Case II: a(q'ts)elj(n) and a(q')s^a(q'ts). Now fs(q')=C(B'), where 

B'£l1+ (AJ
k) and QB', where y is defined in Case II above to be the 

element such that tt(q')sQoi(q'ts)QAJ
ky. Therefore 

a'(((/, B{), q')(f„ Q) = a((AB'), q'Q = B'yC\a(q'ts) 

By definition of a', we have a ' ( ( / ,£ / ) , q')Qa(q'), so that 

a '((/, B{), q')s g OL(q)s = a {q^sy^y g B'yDaiq'Q 

and so (*) holds again. 

C a s e m : oc(q'ts)£lj(n) and ot(q')s=oi(q'ts). If a ( q ' ) = A { then 
a'(((7, B{), q')(fs, Q) = a'((/, Bfxs(xT\ q'Q = B{xs{x')-1x'C\ai{q'ts). 

Recall that x is the element of S for which v.icf) QA{x and that x / is the element 
of S for which a(q't^QA{x'\ this latter inequality implies that a ( ^ 7 s ) g d o m ( x ' ) " 1 . 
In particular, cc(q'ts)(x')~1x'=a(q'ts). Using these facts together with proposition 
2.8 we can rewrite the last expression as 

Bjxsix'^x'naiq'tsXxT1*' = {B{xsC\a{q'ts)){xr)-Xx' = 

= BjxsHa(q'ts) 5 B{xsC\(t(q')s = 

= (B{xria(q'))s = a'((l,BJ), q')s 

and so (*) holds. Finally, if a(q')^A{ then a ' ( (1,5/) , q')=0 and so 

oe'((l, B{), q')s g «'(((1, B{), q')(fs,Q) 
as required. | 
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5.9. Main Decomposition Theorem. Let T=(Q, S) be a transformation semi-
group which is the quotient of a unique predecessor transformation semigroup, 
and let S satisfy ACC on cyclic left ideals. For each ordinal j , let 
A{, ..., A{, ... be a set of representatives of equivalence classes under = of skeleton 
elements of T of depth j. Then T is covered by a wreath product of transformation 
semigroups which are of one of the two following forms: 

(1) (AJ
k, C{) where C{ is the set of all constant maps from A{ to itself; 

(2) To (Q) = T(A{)V ...VT(AJ
k)\/.... 

Further, if A stands for any A{, then T(A)={ST{A), X(A)), where 
(a) ST(A) = {B\B£I(T), B=B'x for some B'QA, B^A, and some 

(b) X(A)=(J(A)UG(S))/~, where 
(i) J(A) is the ideal of S generated by the elements of S which induce 

a permutation on some BQA, B=A ; 
(ii) G(S) is the group of units of S; 

(iii) the congruence ~ identifies elements of J(A) UG (5 ) which act 
identically on ST(A)\ 

(iv) X(A) is regular and satisfies ACC on cyclic left ideals. 

Proof. Let n=d(T) be the depth of the transformation semigroup T. We 
prove by transfinite induction that for every 1 =j=n there is a relational covering 
r ^ ... oX? (T) oT0

V ( T ) of depth j. 
Base case y = l . This is theorem 5.6. 
Inductive step. Assume that there is an ordinal J such that the theorem is true 

for all j<-J, and assume that j=J. There are two cases to consider. 

Case I: / is a non-limit ordinal. Then the result follows from theorem 5.6. 
Case II: / is a limit ordinal. Note that 7rJ'= Pik<Jnk. Therefore, the image of 

. . . o T ^ r j o T o (7^ is n J , where the terms in this product are indexed by all the 
ordinals j such that O s j c J . This proves the existence of the relational covering. 

Now each T ] { T ) = ^ T j (T)^(K,C) where K={JkslA{ and C is the set of 
constant maps on K. We can in turn decompose (K, C) as (A{, C{)V...V(A{, C£)V 
V.. . and Tj(T) as T(A{)V ...\/T(AJ

k).... The remainder of the theorem follows 
from proposition 4.5. | 

If we assume that S has a composition series — that is, a sequence of two sided 
ideals / p / j D . . . 3 / , , 3 . . . such that each IJ+1 is a maximal ideal in the semi-
group I j — then it seems possible to replace the factors T(A{) of the decomposition 
by simple semigroups. (The author has not checked this fact. For a possible method 
of proof of this conjecture, see Tucci [17].) 

We conclude with two trivial examples to show that the decomposition can be 
either finite or infinite. 

5.10. Example. Consider the transformation semigroup of example 2.2. Any 
skeleton element is either equivalent to Q or is a_singleton. Hence the depth of the 
transformation semigroup T i s 1, and so Z ) = T ; that is, the decomposition 
is trivial in this case, g 
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5.11. Example. Let T=(Q, S) where Q={q„\ndN}, and 

S ={{xj,xj\ Oj, ajx\jd AO) 
where 

0 ) FxSln) = Vn+i for all n s i ; ... 

(2) Kk(qn) = q„ for all l ^ k ^ n . 

The functions induced by all xj1 and ay1, . / s i , are defined in the obvious manner. 
For all other s£S and q£Q, the expression Fs(q) is undefined. 

The skeleton elements of T are either singletons or of the form A„= {^I/SM 
for some integer «}. Hence there is an infinite descending chain of non-equivalent 
skeleton elements Q=A1ZDA2Z> . . . which yields an infinite decomposition 
. . . o T / ^ o T o CO- 1 
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