
Parallel programming structures and attribute grammars* 

R . ALVAREZ GIL a n d A . MAKAY 

Kalmár Laboratory of Cybernetics, Áprád tér 2, H-6720 Szeged, Hungary 

1. Introduction 

The attribute grammars are useful tools to give the semantics of programming 
languages for compiler construction, thus many complier generators based on attri-
bute grammars have been developed [4] [*/] [8] [9] [11] [12]. 

Many papers deal with attribute grammars describing structure of sequential 
languages for compiler construction, but only a few deals with parallel programming 
structures. 

In this paper we give the semantics of the bracket pair cobegin-coend and the 
symbol and in words, and afterwards we give the object which the parallel program-
ming constructions will be translated to. In section 3 we give an attribute grammar 
able to perform the required translation. The concept of attribute grammars and the 
notations used can be seen in [1]. In section 4 we mention some experiences got in the 
implementation by means of attribute grammars of a parallel programming language 
in which processes communicate through Hoare's monitors. 

The methods given in the paper were tested successfully in a CDC 3300 computer 
of the Hungarian Academy of Sciences with the help of the HLP/SZ compiler genera-
tor system [11]. 

* Supported by the Research Foundation of Hungary, Grant No. 1066, 1143. 



134 R. Alvarez Gil and Â. Makay 

2. Semantics and translation of the bracket pair 
cobegin-coend and the constructor and 

The constructor and is used to separate instructions such as the symbol;, but 
the instructions separated by and may be executed in parallel. The priority of the 
symbol and is higher than the priority of the symbol;. Thus in the following part of 
a program: statement,; statement2 and statement3; statements statement and 
statement3 are executed parallel, but after finishing the execution of s tatement 
and before beginning the execution of statement4. 

The bracket pair cobegin-coend is used to ecnlose a statement list such as the brac-
ket pair begin-end, but the statement of a statement list enclosed in a bracket pair 
cobegin-coend are executed parallel. To separate the statements enclosed in cobegin-
coend's can be used; as well as and or mixing the two symbols. 

For the translation of these parallel programming constructions we will use three 
primitives: fork, join and quit [2] [3]. We have selected these primitives because the 
operations fork and quit are available in all languages including the psosibility to 
creating and terminating processes, while join can be realized by a "go to" statement 
and a semafor. 

Execution of the operation fork w creates a new process starting at the statement 
labelled w. If a process executes a primitive join t, w it is equivalent with / := t — 1; 
if / = 0 then goto w as a unique and indivisable operation. 

To determine the tasks statically we have to decompose the program into seg-
ments representing processes or parts of processes. Of course, processes are not uni-
quily determined. For example let's see the following program: 

begin statementj; statement^ statement3; 
cobegin begin statement^ statements end; 

begin statement^ statement, and statements; 
statement^, statement^ end 

coend; 
statementu ; statement^; 
begin statement13; statement^ end and statement^ 

end 

This program can be partitioned into the following segments: 

tx: statementj; statement^, statement3 

f2 : statement,,; statements 
f3 : statement 
/4: statement, 
i5: statements 
t6: statement;,; statement^ 
t7: statementn ; statement^ 
f8 : statement^; statement^ 
tg: statement». 
Moreover we can associate to the program a task flow graph [10] in which each edge 
corresponds to the execution of a segment: 



Parallel programming structures and attribute grammars 135 

t* 

One of the possibilities to translate our program partitioned into those seg-
ments with the above primitives is the following: 

begin tt: statement!; statement^, statement3; K1:=2; fork f2 ; quit; 
t2: fork ts; statement^, statements; join « l 5 ?7; quit; 
t3: statement6; n3\—2; fork /4; quit; 
t4: fork tb; statement,; join n3, t6; quit; 
i5 : statement8; join n3, i6; quit; 
ts: statement9; statement10; join n l 5 /7; quit; 
t7\ s t a t emen t^ statement12; n7:— 2; fork ta; quit; 
ts: fork t9; statement13; statement14; join n7, end; quit; 
ta: statement15; join n7, end; quit; 

end: end 

An attribute grammar is able to define that kind of decomposition into segments 
and of translation to processes. 

3. An attribute grammar to describe parallel programming 
structures for compiler construction 

The translation of a structure cobegin statement^ . . . ; s ta tement coend or 
statement! and ... and s ta tement will be as follows : 
free m; t:—n; fork Jj; quit; 
5X: fork j2 ; occ m l 5 mi; ... code of statement!.. .; free m^, 

join t, end; quit; 

s„: nop; occ m„, m'„; ... code of statement« . . . ; free m„; 
join t, end; quit; 

end: occ m, m'; 
where free an occ are newly introduced macros to allocate and deallocate work-areas 
for processes. 

We use the well known attributes "codelength" (synthesized) and "codeloc" 
(inherited) which give the length and the localization of the generated code. Another 
synthesized attribute is "level" to calculate the size of the work-area necessary for 
each process. 

The code generation of parallel structures can be performed at the root of the 
subtree associated with them in the derivation tree after the generation of the code of 



136 R. Alvarez Gil and Â. Makay 

each segment (statement!, ..., statement,,). For the generation of the correct primiti-
ves and macros it is enough to know the size of the work-area and the localization of 
each statement, because the localization of a statement can be used to obtain the label 
of the work-area of the statement. 

We use some other attributes in the grammars. The synthesized attribute "csloc" 
gives the necessary information (the localization of the generated code and the size 
of the work-area of each statement) upwards to the root of the subtree. The inherited 
attribute "loclev" is a pair (m, m') giving the label and the size of the work-area 
which has to be allocated at the beginnig and has to be deallocated at the end of the 
execution of a parallel structure. The inherited attribute "costat" tells us whether a 
statement is in a parallel structure or not. 

The code generation can be performed by a synthesized attribute which is to be 
evaluated during the last pass. We do not deal with it, because it would have a long 
and trivial description in the 4-th, 7-th and 8-th syntactical rules of the attribute 
grammar. Furthermore in a syntactical rule p:X,0::=X1...Xn we will omit the se-
mantical rules of the form X0.a=Xj.a when there is no other Xt (1 s z ' s 

and zVy) which has the same attribute "a" , and also the rules of the form 
Xj.a=X0.a (1 —«p). 

Now see the attribute grammar: 
Nonterminal symbols and their attributes: 
program has no attributes 
block has codelength, level, codeloc, loclev 
coblock has codelength, codeloc, loclev 
stat_list has codelength, level, csloc, codeloc, loclev, soctat 
statement has codelength, level, codeloc, loclev, costat 
partstat_list has codelength, csloc, codeloc 
Syntactical rules with their semantical rules: 

i) program ::= block 
block.codeloc=2 
block.loclev=(l, block.level) 

ii) program ::= coblock 
coblock.codeloc = 1 
coblock.loclev=(0, 0) 

iii) block::=beginstat_listend 
stat_list.costat=false 

iv) coblock: := cobegin stat _list coend 
coblock.codelength =stat_list.codelength+5 
stat_list.codeloc=coblock.codeloc+4 
stat_list.loclev=(0, 0) 
stat_list.costat=true 

v) stat_listx::=statement; stat_list2 

stat_listj.codelength =statement.codelength+stat_list2.codelength 
stat list l e v e l = j s t a t e m e n t - l e v e l , if statement, level ^ stat_list2.level 

| stat_list2.level, if statement, level < stat_list2.level 
stat_list1.csloc=((statement.codeloc, statement, level), (ax, 6j), ..., (ak, bk)), 
where ((alt bx, ...,(ak, bk))=stat_list2.csloc 
stat_list2.codeloc=stat_listx.codeloc+statement.codelength 



Parallel programming structures and attribute grammars 137 

vi) stat_list: := statement 
stat_list.csloc=((statement.codeloc, statement.level)) 

vii) stat_list1: :=parstat_list; stat_list2 

stat.list^codelength = 

f parstat_list.codelength+stat_list2.codelength+5, 
if stat_list1.costat=false 

parstat_list.codelength+stat_list2.codelength, 
if stat_list1.costat=true 

stat_list1.csIoc=((a ], è j ) , . . . , (ak, bk), (ct, dt),..., (c,, dt)), where 
((aL, by), ..., (ak, bk)) =parstat_list.csloc and 
((Cj, dy),..., (c,, dt)) =stat_list2.csloc 

rstat_listj.codeloc+4, if 
stat_list1.costat=false 

stat_list1.codeloc, if 
stat_list1.costat=true 

stat_list1.codeloc+ 
parstat_list.codelength+5, if 

stat_list1.costat=false 
stat_list1.codeloc+ 
parstat_list.codelength, if 

stat_list1.costat=true 

parstat_list.codeloc= 

stat_list2.codeloc= 

Note: in this syntactical rule there is code generation if stat_list1.costat=fa1se 

viii) stat_list::=parstat_list 

stat_list.codelength = 

stat_list.level=0 

parstat_list.codeloc= 

parstat_list.codelength+5, 
if stat_list.costat=false 

parstat_list.codelength, 
if stat_list.costat=true 

stat_list. codeloc+4, 
if stat_list.costat=false 

stat_list.codeloc, 
if stat_list.costat=true 

Note: in this syntactical rule there is code generation if stat_list.costat=false 

ix) parstat_listx::= statement and parstat_list2 
parstat_list1.codelength=statement.codelength+parstat_list2.codelength 

parstat.listj.csloc=((statement.codeloc, statement.level), 
(aj, bt),..., (ak, bk)), where ((ax, bj, ..., 
..., (ak, bk)) =parstat_list2.csloc 

statement.loclev=(0, 0) 
statement.costat=true 
parstat_list2.codeloc=parstat_list1.codeloc+statement.codelength 



138 R. Alvarez Gil and Â. Makay 

x) parstat_list::= statement! and statement2 
parstat_list.codelength=statementi.codelength+statement2.codelength 
parstat_list.csloc=((statementj.codeloc, statementj.level), 

(statement2.codeloc, statement2.level)) 
statementj.loclev=(0, 0) 
statementj.costat=true 
statemen t2.codeloc=pars tat _list. codeloc+statement!.codelength 
statement2.loclev=(0,0) 
statement2.costat=ture 

xi) statement block 

statement.codelength = 

block.codeloc= 

block. loclev= 

block.codelength+5, if 
statement.costat=true 

block.codelength, if 
statement.costat=false 

statement.codeloc+3, if 
statement.costat=true 

statement.codeloc, if 
statement.costat=false 

' (statement.codeloc+1, statement.level), if 
statement.costat=true 

statement.loclev, if 
statement.costat=false 

xii) statement : := coblock 

statement.codelength = 

coblock.codelength+5, if 
statement.costat=true 

coblock.codelength, if 
statement.costat=false 

statement.level=0 

coblock.codeloc = 

statement.codeloc+3, if 
statement.costat=true 
statement.codeloc, if 
statement.costat=false 

The method given here was tested in the CDC 3300 computer of the Hungarian 
Academy of Sciences with the help of the HLP-SZ compiler generator system. 
A sequential programming language was augmented with the bracket pair cobegin-
coend and the symbol and, and we have produced a compiler based on an ASE (alter-
nating semantics evaluator) attribute evaluation strategy [6] which has the same 
number of passes (five) as the compiler generated for the basic sequential language 
has. This fact and the introduction of only three new attributes show us that the 
complexity of a compiler based on an ASE strategy does not increase by the introduc-
tion of the parallel structures discussed here. 



Parallel programming structures and attribute grammars 139 

4. Some remarks about the implementation of processes communicating 
through Hoare's monitors 

We have implemented a very simple experimental language in which parallel 
processes communicate through Hoare's monitors [5]. The language is block struc-
tured, and the scope rule for monitors is the usual: a monitor reference can appear 
in the block where the monitor was declared, or in a block contained in it. The 
structure of a block is the following: 
begin 
declarations of monitors local to the block; 
declarations of variables local to the block; 
... the block body ... 
end; 

A declaration of monitors has the form: 
monitor mt, m2, ..., m„ of m; 
and creates the monitors m1, mz, ...,m„ of type m, where m is a monitor type dec-
lared at the beginning of the program. For simplicity each monitor type must be 
declared at the beginning of the program. (In other implementations monitor types 
could be declared at the beginning of the blocks with the same scope rule of moni-
tors). The structure of a monitor type is the following: 
type monitor.type_name monitor; 

begin 
declaration of the condition variables; 
declarations of variables local to the monitor; 
procedure procedure-name (...formal parameters...); 

declarations of the normal parameters; 
begin 
.. .the procedure body... 
end; 

...declarations of other procedures local to the monitor...; 

...initialization of local data of the monitor... 
end; 

In the implementation of the experimental language each monitor has its local 
data area which contains the variables of the monitor, the queues of processes waiting 
on a condition or on a monitor call, and the queue of processes waiting after an issue 
of a signal operation. 

We have to introduce many new attributes. Four of them are the most important, 
and they will be described here: the synthesized attributes MTL and MINTRN, and 
the inherited attributes LMT and MTOTAL. 

The attribute MTL is used to construct a table in which informations are collected 
about the declared monitor types. We put into the table the following informations 
about each monitor type: 

— monitor type name; 
— list of the variables local to the monitor type; 
— list of the condition variables of the monitor type; 
— list of the procedures local to the monitor type which contains on each pro-

cedure the parameters of the procedure, the name of the procedure, and the 
list of condition variables which appear in a "wait" statement in the procedure; 



140 R. Alvarez Gil and Â. Makay 

— the object code of the initialization of the data local to the monitor and the 
length of the code. 

The attribute LMT leads the table (the address of the table) from the root daw-
nwards the leafs of the derivation tree. 

The attribute MINTERN is used to construct a table collecting information 
about the declared monitors. We put into the table the following informations about 
each monitor: 

— the monitor name; 
— the monitor type of the monitor; 
— the number of condition variables of the monitor and the number of vari-

ables local to the monitor; 
— addresses and lengths of the queues of the condition variables of the monitor; 
— address and length of the queue of processes waiting in a monitor call; 
— address and length of the queue of processes waiting by an executed "sig-

nal" statement. 
The attribute MTOTAL gives the table of the monitors valid in the environment 

wilh respect to the scope rule for monitors. 
The HLP/SZ is based on the programming language SIMULA, so we can use 

classes and objects, and attributes of type reference to work with tables. In other 
compiler generator systems based on attribute grammars the concept of global attri-
bute is introduced to make it easy to work with tables. 

Abstract 

This paper gives an attribute grammar for the translation of parallel program-
ming structures: the bracket pair cobegin-coend and the symbol and. The introduc-
tion of these constructions into a programming language does not increase the com-
plexity of a compiler based on an ASE attribute evaluation strategy. We discuss the 
implementation of Hoare's monitors by means of attribute grammars. The methods 
given here were tested in a CDC 3300 computer of the Hungarian Academy of Sciences. 

References 

[1] ALVAREZ, R.: Giving mathematical semantics of nondeterministical and parallel programming 
structures by means of attribute grammars. Acta Cybernetica, Tom. 7. Fasc. 4. 1986. 413—423. 

[2] CONWAY, M.: A multiprocessor system design. Proc. AFIPS 1963, Fall Joint Comput. Conf., 
24. Spartan Books, New York, 139—146. 

[3] DENNIS, J. B. and VON HORN, E. C.: Programming semantics for multiprogrammed computa-
tions. CACM 9, 3 (March 1966), 143—155. 

[4] GANZINGER, H., RIPKEN, K. and WILHELM, R.: Automating Generation of Optimizing Multi-
pass Compilers. In Information Processing '77, North-Holland Publ. Co., 1977, 535—540. 

[5] HOARE, C. A. R.: Monitors: An Operating System Structuring Concept. CACM 17, 10 (October 
1974) , 5 4 9 — 5 5 7 . 

[6] JAZAYERI, M. and WALTER, K. G.: Alternating Semantic Evaluator. In Proc. of ACM 1975 
Ann. Conf., 230—234. 

[7] KASTENS, U.: GAG: A Practical Compiler Generator. Lecture Notes in Computer Sciences 141, 
1982. 

[8] LEWI, J., D E VLAMINCK, K . , HUENS, J. a n d HUYBRECHTS, M . : A P r o g r a m m i n g M e t h o d o l o g y i n 
Compiler Construction. Part 1: Concepts. North-Holland Publ. Co., 1982. 



Parallel programming structures and attribute grammars 141 

[9] RAIHA, K . J., S o AKIN EN, M . , SOISOLON-SOINEN, E . a n d TEINARI, M . : T h e C o m p i l e r W r i t i n g 
System HLP (Helsinki Language Processor), Department of Computer Science, Report A-1978-2, 
University of Helsinki. 

[10] SHAW, A. C.: The logical design of operating systems. Prentice Hall Inc., 1974. 
[11] SIMON, E. and GYIMÓTHY, T.: Attributum nyelvtanok és alkalmazásuk. Akadémiai Pályamunka. 

MTA Automataelméleti Tanszéki Kutató Csoport, Szeged, 1983. 
[12] MAKAY, Á . , GYIMÓTHY, T . , SIMON, E . : A n i m p l e m e n t a t i o n o f the H L P . A c t a Cyberne t i ca , T o m . 

6. Fasc. 3, 1984. 315—327. 

(Received January 11, 1989) 


