On characteristic semigroups of Mealy automata

G. TANAKA

Hiroshima Shudo University Numata-cho, Asaminami-ku Hiroshima 731—31, JAPAN Dedicated to Professor Miyuki Yamada on his 60th birthday.

Abstract

The purpose of this paper is to investigate the characteristic semigroup of a Mealy automaton. We show that there exists a bijection from the set of regular \mathcal{D} -classes of a characteristic semigroup S'(M) of a Mealy automaton M onto the set of regular \mathcal{D} -classes of the semigroup $S(M^*)$ of the projection M^* .

1. Introduction

For a set *I*, the cardinality of *I* is denoted by |I|. I^* is the free monoid with an identity ε generated by *I*, and $I^+ = I^* - \{\varepsilon\}$. If $w \in I^+$ is a nonempty word, then we denote by \overline{w} the last letter of *w*. We use the symbol \emptyset for the empty set.

Let $\delta: S \to S_1$ and $\lambda: S_1 \to S_2$ be mappings of S and S_1 , respectively. We read a product $\delta\lambda$ from left to right: $(s)\delta\lambda = ((s)\delta)\lambda$, $s \in S$. The set $(S)\delta$ is called the image of δ and it is denoted by Im δ . The equivalence relation Ker δ defined on S by $(s_1, s_2) \in \text{Ker } \delta$ if and only if $(s_1)\delta = (s_2)\delta$ is called the kernel of δ .

An automaton A is a triple $A = (S, I, \delta)$, where S is a nonempty set of states, I is a nonempty set of inputs, δ is a state transition function such that $\delta(s, xy) = = \delta(\delta(s, x), y)$ and $\delta(s, \varepsilon) = s$ for all $s \in S$ and all $x, y \in I^*$.

A Mealy automaton M is a quintuple $M = (S, I, U, \delta, \lambda)$, where $M^* = (S, I, \delta)$ is an automaton, U is a nonempty set of outputs, $\lambda \colon S \times I \to U$ is an output function. The output function is also used in the extended sence; for $s \in S$ and $xy \in I^*$ such that $x \in I^*$ and $y \in I$, $\lambda(s, \varepsilon) = \varepsilon$ and $\lambda(s, xy) = \lambda(s, x)\lambda(\delta(s, x), y)$.

The automaton M^* mentioned above is called the *projection* of the Mealy automaton M.

Let $M = (S, I, U, \delta, \lambda)$ be a Mealy automaton. To each $x \in I^+$ we assign the transformation δ_x on S, where $\delta_x : s \to \delta(s, x)$, $s \in S$. Let $S(M^*) = \{\delta_x | x \in I^+\}$.

Then $S(M^*)$ is a subsemigroup of the full transformation semigroup on S. To each $x \in I^+$ we assign the mapping $\lambda_x: s \to \overline{\lambda(s, x)}, s \in S$. If xy is an element of I^+ such that both x and y are in I^+ , then $(s)\lambda_{xy} = (s)\delta_x\lambda_y$. The congruence g on I^+ is defined by xgy if and only if $\delta_x = \delta_y$ and $\lambda_x = \lambda_y$.

Put $S'(M) = \{(\lambda_x, \delta_x) | x \in I^+\}$. In S'(M) we introduce the multiplication as follows:

$$(\lambda_x, \delta_x)(\lambda_y, \delta_y) = (\delta_x \lambda_y, \delta_x \delta_y).$$

Since $(\delta_x \lambda_y, \delta_x \delta_y) = (\lambda_{xy}, \delta_{xy}) \in S'(M)$, the set S'(M) forms a semigroup which is isomorphic to I^+/ϱ . In this paper S'(M) is called the *characteristic semigroup* of M. We note that if $\lambda_x = \lambda_y$ and $\delta_x = \delta_z$ $(x, y, z \in I^+)$, then $(\lambda_y, \delta_z) = (\lambda_x, \delta_x)$ as a pair of mappings and $(\hat{\lambda}_v, \delta_z) \in S'(\hat{M})$.

We shall remark on another aspect of the characteristic semigroup of a finite Mealy automaton.

Remark. Assume that S is a finite set. On the output set U we define a multiplication by ab=b, $(a, b \in U)$. In such a way we obtain a right zero semigroup U. To each (λ_x, δ_x) in S'(M) we define the $|S| \times |S|$ row-monomial matrix $M(\lambda_x, \delta_x)$ by

$$M(\lambda_x, \delta_x)_{st} = \begin{cases} (s)\lambda_x & \text{if } (s)\delta_x = t, \\ 0 & \text{otherwise.} \end{cases}$$

Two matrices are multiplied in the obvious way, and the set of all matrices forms a semigroup. Since the mapping $(\lambda_x, \delta_x) \rightarrow M(\lambda_x, \delta_x)$ is an isomorphism, S'(M) is isomorphic to a subsemigroup of the wreath product $UwrS(M^*)$ of U and $S(M^*)$ (see [7]).

2. Regular *D*-class

On a semigroup T Green's relations are defined by

 $a\mathscr{R}b \Leftrightarrow aT^1 = bT^1, \quad a\mathscr{L}b \Leftrightarrow T^1a = T^1b,$ $a \mathscr{D} b \Leftrightarrow a \mathscr{L} c$ and $c \mathscr{R} b$ for some $c \in T$.

The intersection of two equivalences \mathcal{R} and \mathcal{L} is denoted by \mathcal{H} . An element x of a semigroup T is called *regular* if there exists y in T with xyx = x. If D is a \mathcal{D} -class, then either every element of D is regular or no element of D is regular. Therefore we call a \mathcal{D} -class regular if all its elements are regular. In a regular \mathcal{D} -class each \mathcal{R} class and each \mathscr{L} -class contains at least one idempotent.

Let T be a subsemigroup of the full transformation semigroup on a set S, and let D be a regular \mathcal{D} -class of T. If $x, y \in D$, then we have $x \mathcal{L} y$ in $T \Leftrightarrow \text{Im } x = \text{Im } y$, and $x \Re y$ in $T \Leftrightarrow \text{Ker } x = \text{Ker } y$ (see [2, p 39]).

The proof of the next lemma is omitted.

Lemma 1. Let δ be a transformation on a set S_1 such that $\delta^2 = \delta$, and let λ be a mapping from S_1 to S_2 . Then $\delta \lambda = \lambda$ if and only if Ker $\delta \subseteq \text{Ker } \lambda$.

In what follows M means a Mealy automaton such that $M = (S, I, U, \delta, \lambda)$.

Theorem 1. $(\lambda_x, \delta_x) \in S'(M)$ is a regular element if and only if δ_x is a regular element of $S(M^*)$ and Ker $\delta_x \subseteq$ Ker λ_x .

Proof. "only if" part. Since (λ_x, δ_x) is a regular element, there exists some (λ_y, δ_y) in S'(M) such that $\delta_x \delta_y \delta_x = \delta_x$ and $\delta_x \delta_y \lambda_x = \lambda_x$. This implies that Ker $\delta_x \subseteq \subseteq$ \subseteq Ker $\delta_x \delta_y \lambda_x =$ Ker λ_x . "if" part. Since δ_x is a regular element, $\delta_x \delta_y \delta_x = \delta_x$ for some δ_y in $S(M^*)$. From $\delta_x \delta_y \mathscr{R} \delta_x$ we have Ker $\delta_{xy} = \text{Ker } \delta_x \subseteq \text{Ker } \lambda_x$. Since δ_{xy} is an idempotent, by Lemma 1, $\delta_{xy} \lambda_x = \lambda_x$. Therefore we have (λ_x, δ_x) .

 $(\lambda_{y}, \delta_{y})(\lambda_{x}, \delta_{x}) = (\lambda_{x}, \delta_{x}). Q.E.D.$

For a subset H of S'(M) we define the sets of mappings by

$$H^{(1)} = \{\lambda_x | (\lambda_x, \delta_x) \in H\}, \quad H^{(2)} = \{\delta_x | (\lambda_x, \delta_x) \in H\}.$$

Theorem 2. If L is an \mathscr{L} -class contained in a regular \mathscr{D} -class of S'(M), then $L^{(2)}$ is an \mathcal{L} -class of $S(M^*)$.

Proof. It is clear that there exists some regular \mathscr{L} -class L^* of $S(M^*)$ such that $L^{(2)} \subseteq L^*$. Now we show the validity of the reverse inclusion. Let $(\lambda_e, \delta_e) \in L$ be an idempotent of S'(M). Then δ_e is an idempotent of L^* and δ_e is a right identity for L^* . Hence for every δ_x in L^* we have $\delta_x \delta_e = \delta_x$ and $\delta_p \delta_x = \delta_e$ for some δ_p in $S(M^*)$. Consequently, $(\delta_x \lambda_e, \delta_x) = (\lambda_{xe}, \delta_{xe}) \in S'(M)$ and $(\delta_x \lambda_e, \delta_x)(\lambda_e, \delta_e) = (\delta_x \lambda_e, \delta_x)$. Moreover, we have $(\lambda_p, \delta_p)(\delta_x \lambda_e, \delta_x) = (\lambda_e, \delta_e)$. This yields that $(\lambda_e, \delta_e) \mathscr{L}(\delta_x \lambda_e, \delta_x)$ in S'(M), and therefore $\delta_x \in L^{(2)}$. Q.E.D.

Theorem 3. If L is an \mathscr{L} -class contained in a regular \mathscr{D} -class of S'(M), then $(\lambda_x, \delta_x) \rightarrow \delta_x$ is a bijection from L onto $L^{(2)}$.

Proof. An idempotent (λ_e, δ_e) in L is a right identity for L. If $(\lambda_p, \delta_x), (\lambda_a, \delta_x) \in L$, then

$$(\lambda_p, \delta_x) = (\lambda_p, \delta_x)(\lambda_e, \delta_e) = (\delta_x \lambda_e, \delta_x) = (\lambda_q, \delta_x)(\lambda_e, \delta_e) = (\lambda_q, \delta_x).$$

O.E.D.

Let H_1 and H_2 be \mathscr{H} -classes contained in the same \mathscr{D} -class of S'(M). Then, using Green's lemma, it can be seen that $|H_1^{(2)}| = |H_2^{(2)}|$ holds (see [5]). However, there are examples that show that in general the equality $|H_1^{(1)}| = |H_2^{(1)}|$ does not hold. Therefore, in the next theorem, the condition that boht H_1 and H_2 are in the same \mathcal{L} -class is indispensable.

Theorem 4. Let L be an \mathscr{L} -class in a regular \mathscr{D} -class of S'(M). If H_1 and H_2 are two \mathscr{H} -classes contained in L, then $|H_1^{(1)}| = |H_2^{(1)}|$.

Proof. Let (λ_e, δ_e) be an idempotent of L, and let H be an \mathscr{H} -class of (λ_e, δ_e) . If $\lambda_z \in H^{(1)}$, then $\delta_e \lambda_z = \lambda_z$ since (λ_e, δ_e) is an identity of H. Let $\lambda_x, \lambda_y \in H^{(1)}$ and $\lambda_x \neq \lambda_y$. Then $(s)\delta_e \lambda_x \neq (s)\delta_e \lambda_y$ for some $s \in S$, therefore λ_x and λ_y are distinct mappings on Im δ_e . Let H_1 be an arbitrary \mathcal{H} -class in L. Then $(\lambda_p, \delta_p)H = H_1$ for some (λ_p, δ_p) in S'(M). Thus $H_1^{(1)} = \{\delta_p \lambda_w | \lambda_w \in H^{(1)}\}$. Assume that $\delta_p \lambda_x = \delta_p \lambda_y$ for some $\lambda_x, \lambda_y \in H^{(1)}, (\lambda_x \neq \lambda_y)$. Then $\delta_p \delta_e \lambda_x = \delta_p \delta_e \lambda_y$. Since $\delta_p \delta_e \in H_1^{(2)}$, we have that $\delta_p \delta_e \mathscr{L} \delta_e$, and so, $\operatorname{Im} \delta_p \delta_e = \operatorname{Im} \delta_e$. Therefore for every $s \in \operatorname{Im} \delta_e$ there exists some $t \in S$ with $(t) \delta_p \delta_e = s$. Then $(s) \lambda_x = (t) \delta_p \delta_e \lambda_x = (t) \delta_p \delta_e \lambda_y = (s) \lambda_y$ holds for every s in $\operatorname{Im} \delta_e$, which is a contradiction. Hence $\lambda_x \neq \lambda_y$ implies $\delta_p \lambda_x \neq \delta_p \lambda_y$. This shows that the mapping $\theta: H^{(1)} \to H_1^{(1)}$ defined by $(\lambda_w)\theta = \delta_p \lambda_w$ is a bijection from $H^{(1)}$ onto $H_1^{(1)}$. Q.E.D.

Theorem 5. If R is an \mathscr{R} -class contained in a regular \mathscr{D} -class of S'(M), then $\mathbb{R}^{(2)}$ is an \mathscr{R} -class of $S(M^*)$.

Proof. It is clear that there exists an \mathscr{R} -class R^* of $S(M^*)$ such that $R^{(2)} \subseteq R^*$. We shall show that the reverse inclusion holds, too. Let $(\lambda_e, \delta_e) \in R$ be an idempontent. Then δ_e is an idempotent in R^* , and therefore, $\delta_e \delta_x = \delta_x$ for every $\delta_x \in R^*$. For the word $ex \in I^+$ we have $(\lambda_{ex}, \delta_{ex}) = (\delta_e \lambda_x, \delta_x) \in S'(M)$. Since $\delta_x \mathscr{R} \delta_e$, there exists some $\delta_p \in S(M^*)$ such that $\delta_x \delta_p = \delta_e$. In this case $(\delta_e \lambda_x, \delta_x) (\lambda_{pe}, \delta_{pe}) = (\lambda_e, \delta_e)$ and $(\lambda_e, \delta_e) (\delta_e \lambda_x, \delta_x) = (\delta_e \lambda_x, \delta_x)$. Therefore $(\delta_e \lambda_x, \delta_x) \in R$ and $\delta_x \in R^{(2)}$. Q.E.D.

Theorem 6. ([6]). Let D be a regular \mathscr{D} -class of S'(M) and (λ_x, δ_x) , $(\lambda_y, \delta_y) \in D$. Then $(\lambda_x, \delta_x) \mathscr{R}(\lambda_y, \delta_y)$ if and only if Ker $\delta_x = \text{Ker } \delta_y \subseteq (\text{Ker } \lambda_x \cap \text{Ker } \lambda_y)$.

Theorem 7. If R_1 and R_2 are distinct \mathscr{R} -classes in the same regular \mathscr{D} -class of S'(M), then $R_1^{(2)} \cap R_2^{(2)} = \emptyset$.

Proof. If $R_1^{(2)} \cap R_2^{(2)} \neq \emptyset$ then, by Theorem 5, we have $R_1^{(2)} = R_2^{(2)}$. If $(\lambda_x, \delta_x) \in R_1$ and $(\lambda_y, \delta_y) \in R_2$, then δ_x and δ_y are in $R_1^{(2)}$, thus Ker $\delta_x = \text{Ker } \delta_y$. By Theorem 1, Ker $\delta_x \subseteq \text{Ker } \lambda_x$ and Ker $\delta_y \subseteq \text{Ker } \lambda_y$. Therefore, by Theorem 6, we have that $(\lambda_x, \delta_x) \mathscr{R}(\lambda_y, \delta_y)$, and so $R_1 = R_2$, which is a contradiction. Q.E.D.

Theorem 8. If D is a regular \mathcal{D} -class of S'(M), then $D^{(2)}$ is a regular \mathcal{D} -class of $S(M^*)$.

Proof. It is obvious that there exists a regular \mathscr{D} -class D^* such that $D^{(2)} \subseteq D^*$. We show that the reverse inclusion holds. Let $\delta_x \in D^*$ and let L^* be an \mathscr{L} -class of D^* containing δ_x . If R is an \mathscr{R} -class of D then, by Theorem 5, $R^{(2)}$ is an \mathscr{R} -class of D^* . Hence $R^{(2)} \cap L^* \neq \emptyset$. If $\delta_y \in R^{(2)} \cap L^*$, then $(\lambda_p, \delta_y) \in D$ for some λ_p . Let L be an \mathscr{L} -class containing (λ_p, δ_y) . Then $\delta_y \in L^{(2)} \cap L^*$. Thus, by Theorem 2, $L^{(2)} = L^*$. This means that $\delta_x \in L^{(2)} \subseteq D^{(2)}$, and so $D^* \subseteq D^{(2)}$. Q.E.D.

Theorem 9. Let D be a regular \mathscr{D} -class of S'(M), and let D_R and $D_R^{(2)}$ be sets of \mathscr{R} -classes of D and $D^{(2)}$, respectively. Then $|D_R| = |D_R^{(2)}|$.

Proof. By Theorems 7 and 8, the mapping $R \rightarrow R^{(2)}$ is a bijection from the set of \mathscr{R} -classes of D onto the set of \mathscr{R} -classes of $D^{(2)}$. Q.E.D.

If D is a finite regular \mathcal{D} -class, then D and $D^{(2)}$ consists of the same number of \mathcal{R} -classes. However, note that we cannot in general assert that D and $D^{(2)}$ have the same number of \mathcal{L} -classes.

Lemma 2. If (λ_w, δ_e) is a regular element of S'(M) such that δ_e is an idempotent, then (λ_w, δ_e) is an idempotent and $\lambda_w = \delta_e \lambda_w$.

Proof. There exists some idempotent (λ_f, δ_f) such that $(\lambda_w, \delta_e) \mathscr{L}(\lambda_f, \delta_f)$. Since (λ_f, δ_f) is a right identity in its \mathscr{L} -class, we obtain that $(\lambda_w, \delta_e)(\lambda_f, \delta_f) = (\delta_e \lambda_f, \delta_e \delta_f) = (\lambda_w, \delta_e)$. Thus $\delta_e \lambda_f = \lambda_w$. From this we have that (λ_w, δ_e) is an idempotent and $\lambda_w = \delta_e \lambda_w$. Q.E.D.

Theorem 10. If D^* is a regular \mathcal{D} -class of $S(M^*)$, then there exists a unique regular \mathcal{D} -class D of S'(M) such that $D^{(2)} = D^*$.