On characteristic semigroups of Mealy automata

G. TAnaka
Hiroshima Shudo University Numata-cho, Asaminami-ku Hiroshima 731-31, JAPAN
Dedicated to Professor Miyuki Yamada on his 60th birthday.

Abstract

The purpose of this paper is to investigate the characteristic semigroup of a Mealy automaton. We show that there exists a bijection from the set of regular \mathscr{D}-classes of a characteristic semigroup $S^{\prime}(M)$ of a Mealy automaton M onto the set of regular \mathscr{D}-classes of the semigroup $S\left(M^{*}\right)$ of the projection M^{*}.

1. Introduction

For a set I, the cardinality of I is denoted by $\left[I \mid . I^{*}\right.$ is the free monoid with an identity ε generated by I, and $I^{+}=I^{*}-\{\varepsilon\}$. If $w \in I^{+}$is a nonempty word, then we denote by \vec{w} the last letter of w. We use the symbol \emptyset for the empty set.

Let $\delta: S \rightarrow S_{1}$ and $\lambda: S_{1} \rightarrow S_{2}$ be mappings of S and S_{1}, respectively. We read a product $\delta \lambda$ from left to right: $(s) \delta \lambda=((s) \delta) \lambda, s \in S$. The set $(S) \delta$ is called the image of δ and it is denoted by $\operatorname{Im} \delta$. The equivalence relation Ker δ defined on S by $\left(s_{1}, s_{2}\right) \in \operatorname{Ker} \delta$ if and only if $\left(s_{1}\right) \delta=\left(s_{2}\right) \delta$ is called the kernel of δ.

An automaton A is a triple $A=(S, I, \delta)$, where S is a nonempty set of states, I is a nonempty set of inputs, δ is a state transition function such that $\delta(s, x y)=$ $=\delta(\delta(s, x), y)$ and $\delta(s, \varepsilon)=s$ for all $s \in S$ and all $x, y \in I^{*}$.

A Mealy automaton M is a quintuple $M=(S, I, U, \delta, \lambda)$, where $M^{*}=(S, I, \delta)$ is an automaton, U is a nonempty set of outputs, $\lambda: S \times I \rightarrow U$ is an output function. The output function is also used in the extended sence; for $s \in S$ and $x y \in I^{*}$ such that $x \in I^{*}$ and $y \in I, \lambda(s, \varepsilon)=\varepsilon$ and $\lambda(s ; x y)=\lambda(s, x) \lambda(\delta(s, \dot{x}), y)$.

The automaton M^{*} mentioned above is called the projection of the Mealy automaton M.

Let $M=(S, I, U, \delta, \lambda)$ be a Mealy automaton. To each $x \in I^{+}$we assign the transformation δ_{x} on S, where $\delta_{x}: s \rightarrow \delta(s, x) ; s \in S$. Let $S\left(M^{*}\right)=\left\{\delta_{x} \mid x \in I^{+}\right\}$.

Then $S\left(M^{*}\right)$ is a subsemigroup of the full transformation semigroup on S. To each $x \in I^{+}$we assign the mapping $\lambda_{x}: s \rightarrow \lambda(s, x), s \in S$. If $x y$ is an element of I^{+}such that both x and y are in I^{+}, then $(s) \lambda_{x y}=(s) \delta_{x} \lambda_{y}$.

The congruence ϱ on I^{+}is defined by $x \varrho y$ if and only if $\delta_{x}=\delta_{y}$ and $\lambda_{x}=\lambda_{y}$. Put $S^{\prime}(M)=\left\{\left(\lambda_{x}, \delta_{x}\right) \mid x \in I^{+}\right\}$. In $S^{\prime}(M)$ we introduce the multiplication as follows:

$$
\left(\lambda_{x}, \delta_{x}\right)\left(\lambda_{y}, \delta_{y}\right)=\left(\delta_{x} \lambda_{y}, \delta_{x} \delta_{y}\right)
$$

Since $\left(\delta_{x} \lambda_{y}, \delta_{x} \delta_{y}\right)=\left(\lambda_{x y}, \delta_{x y}\right) \in S^{\prime}(M)$, the set $S^{\prime}(M)$ forms a semigroup which is isomorphic to I^{+} / ϱ. In this paper $S^{\prime}(M)$ is called the characteristic semigroup of M. We note that if $\lambda_{x}=\lambda_{y}$ and $\delta_{x}=\delta_{z}\left(x, y, z \in I^{+}\right)$, then $\left(\lambda_{y}, \delta_{z}\right)=\left(\lambda_{x}, \delta_{x}\right)$ as a pair of mappings and $\left(\lambda_{y}, \delta_{z}\right) \in S^{\prime}(M)$.

We shall remark on another aspect of the characteristic semigroup of a finite Mealy automaton.

Remark. Assume that S is a finite set. On the output set U we define a multiplication by $a b=b,(a, b \in U)$. In such a way we obtain a right zero semigroup U. To each $\left(\lambda_{x}, \delta_{x}\right)$ in $S^{\prime}(M)$ we define the $|S| \times|S|$ row-monomial matrix $M\left(\lambda_{x}, \delta_{x}\right)$ by

$$
M\left(\lambda_{x}, \delta_{x}\right)_{s t}= \begin{cases}(s) \lambda_{x} & \text { if }(s) \delta_{x}=t \\ 0 & \text { otherwise }\end{cases}
$$

Two matrices are multiplied in the obvious way, and the set of all matrices forms a semigroup. Since the mapping $\left(\lambda_{x}, \delta_{x}\right) \rightarrow M\left(\lambda_{x}, \delta_{x}\right)$ is an isomorphism, $S^{\prime}(M)$ is isomorphic to a subsemigroup of the wreath product $U \mathrm{wr} S\left(M^{*}\right)$ of U and $S\left(M^{*}\right)$ (see [7]):

2. Regular \mathscr{D}-class

On a semigroup T Green's relations are defined by

$$
\begin{aligned}
& a \mathscr{R} b \Leftrightarrow a T^{1}=b T^{1}, \quad a \mathscr{L} b \Leftrightarrow T^{1} a=T^{1} b, \\
& a \mathscr{D} b \Leftrightarrow a \mathscr{L} c \text { and } c \mathscr{R} b \text { for some } c \in T .
\end{aligned}
$$

The intersection of two equivalences \mathscr{R} and \mathscr{L} is denoted by \mathscr{H}. An element x of a semigroup T is called regular if there exists y in T with $x y x=x$. If D is a \mathscr{D}-class, then either every element of D is regular or no element of D is regular. Therefore we call a \mathscr{D}-class regular if all its elements are regular. In a regular \mathscr{D}-class each \mathscr{R} class and each \mathscr{L}-class contains at least one idempotent.

Let T be a subsemigroup of the full transformation semigroup on a set S, and let D be a regular \mathscr{D}-class of T. If $x, y \in D$, then we have $x \mathscr{L} y$ in $T \Leftrightarrow \operatorname{Im} x=\operatorname{Im} y$, and $x \mathscr{R} y$ in $\dot{T} \Leftrightarrow \operatorname{Ker} x=\operatorname{Ker} y$ (see $[2, \mathrm{p} 39]$).

The proof of the next lemma is omitted.
Lemma 1. Let δ be a transformation on a set S_{1} such that $\delta^{2}=\delta$, and let λ be a mapping from S_{1} to S_{2}. Then $\delta \lambda=\lambda$ if and only if $\operatorname{Ker} \delta \subseteq \operatorname{Ker} \lambda$.

In what follows M means a Mealy automaton such that $M=(S, I, U, \delta, \lambda)$.

Theorem 1. $\left(\lambda_{x}, \delta_{x}\right) \in S^{\prime}(M)$ is a regular element if and only if δ_{x} is a regular element of $S\left(M^{*}\right)$ and Ker $\delta_{x} \subseteq \operatorname{Ker} \lambda_{x}$.

Proof. "only if" part. Since (λ_{x}, δ_{x}) is a regular element, there exists some (λ_{y}, δ_{y}) in $S^{\prime}(M)$ such that $\delta_{x} \delta_{y} \delta_{x}=\delta_{x}$ and $\delta_{x} \delta_{y} \lambda_{x}=\lambda_{x}$. This implies that $\operatorname{Ker} \delta_{x} \subseteq$ $\subseteq \operatorname{Ker} \delta_{x} \delta_{y} \lambda_{x}=\operatorname{Ker} \lambda_{x}$. "if" part. Since δ_{x} is a regular element, $\delta_{x} \delta_{y} \delta_{x}=\delta_{x}$ for some δ_{y} in $S\left(M^{*}\right)$. From $\delta_{x} \delta_{y} \mathscr{R} \delta_{x}$ we have $\operatorname{Ker} \delta_{x y}=\operatorname{Ker} \delta_{x} \subseteq \operatorname{Ker} \lambda_{x}$.

Since $\delta_{x y}$ is an idempotent, by Lemma 1, $\delta_{x y} \lambda_{x}=\lambda_{x}$. Therefore we have (λ_{x}, δ_{x}). $\cdot\left(\lambda_{y}, \delta_{y}\right)\left(\lambda_{x}, \delta_{x}\right)=\left(\lambda_{x}, \delta_{x}\right)$. Q.E.D.

For a subset H of $S^{\prime}(M)$ we define the sets of mappings by

$$
H^{(1)}=\left\{\lambda_{x} \mid\left(\lambda_{x}, \delta_{x}\right) \in H\right\}, \quad H^{(2)}=\left\{\delta_{x} \mid\left(\lambda_{x}, \delta_{x}\right) \in H\right\} .
$$

Theorem 2. If L is an \mathscr{L}-class contained in a regular \mathscr{D}-class of $S^{\prime}(M)$, then $L^{(2)}$ is an \mathscr{L}-class of $S\left(M^{*}\right)$.

Proof. It is clear that there exists some regular \mathscr{L}-class L^{*} of $S\left(M^{*}\right)$ such that $L^{(2)} \subseteq L^{*}$. Now we show the validity of the reverse inclusion. Let $\left(\lambda_{e}, \delta_{e}\right) \in L$ be an idempotent of $S^{\prime}(M)$. Then δ_{e} is an idempotent of L^{*} and δ_{e} is a right identity for L^{*}. Hence for every δ_{x} in L^{*} we have $\delta_{x} \delta_{e}=\delta_{x}$ and $\delta_{p} \delta_{x}=\delta_{e}$ for some δ_{p} in $S\left(M^{*}\right)$. Consequently, $\quad\left(\delta_{x} \lambda_{e}, \delta_{x}\right)=\left(\lambda_{x e}, \delta_{x e}\right) \in S^{\prime}(M)$ and $\left(\delta_{x} \lambda_{e}, \delta_{x}\right)\left(\lambda_{e}, \delta_{e}\right)=\left(\delta_{x} \lambda_{e}, \delta_{x}\right)$. Moreover, we have $\left(\lambda_{p}, \delta_{p}\right)\left(\delta_{x} \lambda_{e}, \delta_{x}\right)=\left(\lambda_{e}, \delta_{e}\right)$. This yields that $\left(\lambda_{e}, \delta_{e}\right) \mathscr{L}\left(\delta_{x} \lambda_{e}, \delta_{x}\right)$ in $S^{\prime}(M)$, and therefore $\delta_{x} \in L^{(2)}$. Q.E.D.

Theorem 3. If L is an \mathscr{L}-class contained in a regular \mathscr{D}-class of $S^{\prime}(M)$, then $\left(\lambda_{x}, \delta_{x}\right) \rightarrow \delta_{x}$ is a bijection from L onto $L^{(2)}$.

Proof. An idempotent $\left(\lambda_{e}, \delta_{e}\right)$ in L is a right identity for L. If $\left(\lambda_{p}, \delta_{x}\right),\left(\lambda_{q}, \delta_{x}\right) \in L$, then

$$
\left(\lambda_{p}, \delta_{x}\right)=\left(\lambda_{p}, \delta_{x}\right)\left(\lambda_{e}, \delta_{e}\right)=\left(\delta_{x} \lambda_{e}, \delta_{x}\right)=\left(\lambda_{q}, \delta_{x}\right)\left(\lambda_{e}, \delta_{e}\right)=\left(\lambda_{q}, \delta_{x}\right) .
$$

Q.E.D.

Let H_{1} and H_{2} be \mathscr{H}-classes contained in the same \mathscr{D}-class of $S^{\prime}(M)$. Then, using Green's lemma, it can be seen that $\left|H_{1}^{(2)}\right|=\left|H_{2}^{(2)}\right|$ holds (see [5]). However, there are examples that show that in general the equality $\left|H_{1}^{(1)}\right|=\left|H_{2}^{(1)}\right|$ does not hold. Therefore, in the next theorem, the condition that boht H_{1} and H_{2} are in the same \mathscr{L}-class is indispensable.

Theorem 4. Let L be an \mathscr{L}-class in a regular \mathscr{D}-class of $S^{\prime}(M)$. If H_{1} and H_{2} are two \mathscr{H}-classes contained in L, then $\left|H_{1}^{(1)}\right|=\left|H_{2}^{(1)}\right|$.

Proof. Let $\left(\lambda_{e}, \delta_{e}\right)$ be an idempotent of L, and let H be an \mathscr{H}-class of $\left(\lambda_{e}, \delta_{e}\right)$. If $\lambda_{z} \in H^{(1)}$, then $\delta_{e} \lambda_{z}=\lambda_{z}$ since $\left(\lambda_{e}, \delta_{e}\right)$ is an identity of H. Let $\lambda_{x}, \lambda_{y} \in H^{(1)}$ and $\lambda_{x} \neq \lambda_{y}$. Then $(s) \delta_{e} \lambda_{x} \neq(s) \delta_{e} \lambda_{y}$ for some $s \in S$, therefore λ_{x} and λ_{y} are distinct mappings on Im δ_{e}. Let H_{1} be an arbitrary \mathscr{H}-class in L. Then $\left(\lambda_{p}, \delta_{p}\right) H=H_{1}$ for some $\left(\lambda_{p}, \delta_{p}\right)$ in $S^{\prime}(M)$. Thus $H_{1}^{(1)}=\left\{\delta_{p} \lambda_{w} \mid \lambda_{w} \in H^{(1)}\right\}$. Assume that $\delta_{p} \lambda_{x}=\delta_{p} \lambda_{y}$ for some $\lambda_{x}, \lambda_{y} \in H^{(1)},\left(\lambda_{x} \neq \lambda_{y}\right)$. Then $\delta_{p} \delta_{e} \lambda_{x}=\delta_{p} \delta_{e} \lambda_{y}$. Since $\delta_{p} \delta_{e} \in H_{1}^{(2)}$, we have that $\delta_{p} \delta_{e} \mathscr{L} \delta_{e}$, and so, $\operatorname{Im} \delta_{p} \delta_{e}=\operatorname{Im} \delta_{e}$. Therefore for every $s \in \operatorname{Im} \delta_{e}$ there exists some $t \in S$ with ($t) \delta_{p} \delta_{e}=s$. Then (s) $\lambda_{x}=(t) \delta_{p} \delta_{e} \lambda_{x}=(t) \delta_{p} \delta_{e} \lambda_{y}=(s) \lambda_{y}$ holds for every s in $\operatorname{Im} \delta_{e}$, which is a contradiction. Hence $\lambda_{x} \neq \lambda_{y}$ implies $\delta_{p} \lambda_{x} \neq \delta_{p} \lambda_{y}$. This shows that the mapping $\theta: H^{(1)} \rightarrow H_{1}^{(1)}$ defined by $\left(\lambda_{w}\right) \theta=\delta_{p} \lambda_{w}$ is a bijection from $H^{(1)}$ onto $H_{1}{ }^{(1)}$. Q.E.D.

Theorem 5. If R is an \mathscr{R}-class contained in a regular \mathscr{D}-class of $S^{\prime}(M)$, then $R^{(2)}$ is an \mathscr{R}-class of $S\left(M^{*}\right)$.

Proof. It is clear that there exists an \mathscr{R}-class R^{*} of $S\left(M^{*}\right)$ such that $R^{(2)} \subseteq R^{*}$. We shall show that the reverse inclusion holds, too. Let $\left(\lambda_{a}, \delta_{e}\right) \in R$ be an idempontent. Then δ_{e} is an idempotent in R^{*}, and therefore, $\delta_{e} \delta_{x}=\delta_{x}$ for every $\delta_{x} \in R^{*}$. For the word ex $\in I^{+}$we have $\left(\lambda_{e x}, \delta_{e x}\right)=\left(\delta_{e} \lambda_{x}, \delta_{x}\right) \in S^{\prime}(M)$. Since $\delta_{x} \mathscr{R} \delta_{e}$, there exists some $\delta_{p} \in S\left(M^{*}\right)$ such that $\delta_{x} \delta_{p}=\delta_{e}$. In this case $\left(\delta_{e} \lambda_{x}, \delta_{x}\right)\left(\lambda_{p e}, \delta_{p e}\right)=\left(\lambda_{e}, \delta_{e}\right)$ and $\left(\lambda_{e}, \delta_{e}\right)\left(\delta_{e} \lambda_{x}, \delta_{x}\right)=\left(\delta_{e} \lambda_{x}, \delta_{x}\right)$. Therefore $\left(\delta_{e} \lambda_{x}, \delta_{x}\right) \in R$ and $\delta_{x} \in R^{(2)}$. Q.E.D.

Theorem 6. ([6]). Let D be a regular \mathscr{D}-class of $S^{\prime}(M)$ and $\left(\lambda_{x}, \delta_{x}\right),\left(\lambda_{y}, \delta_{y}\right) \in D$. Then $\left(\lambda_{x}, \delta_{x}\right) \mathscr{R}\left(\lambda_{y}, \delta_{y}\right)$ if and only if Ker $\delta_{x}=\operatorname{Ker} \delta_{y} \subseteq\left(\operatorname{Ker} \lambda_{x} \cap \operatorname{Ker} \lambda_{y}\right)$.

Theorem 7. If R_{1} and R_{2} are distinct \mathscr{R}-classes in the same regular \mathscr{D}-class of $S^{\prime}(M)$, then $R_{1}^{(2)} \cap R_{2}^{(2)}=\emptyset$.

Proof. If $R_{1}^{(2)} \cap R_{2}^{(2)} \neq \emptyset$ then, by Theorem 5, we have $R_{1}^{(2)}=R_{2}^{(2)}$. If $\left(\lambda_{x}, \delta_{x}\right) \in R_{1}$ and $\left(\lambda_{y}, \delta_{y}\right) \in R_{2}$, then δ_{x} and δ_{y} are in $R_{1}^{(2)}$, thus Ker $\delta_{x}=\operatorname{Ker} \delta_{y}$. By Theorem 1, $\operatorname{Ker} \delta_{x} \subseteq \operatorname{Ker} \lambda_{x}$ and Ker $\delta_{y} \subseteq \operatorname{Ker} \lambda_{y}$. Therefore, by Theorem 6, we have that $\left(\lambda_{x}, \delta_{x}\right) \mathscr{R}\left(\lambda_{y}, \delta_{y}\right)$, and so $R_{1}=R_{2}$, which is a contradiction. Q.E.D.

Theorem 8. If D is a regular \mathscr{D}-class of $S^{\prime}(M)$, then $D^{(2)}$ is a regular \mathscr{D}-class of $S\left(M^{*}\right)$.

Proof. It is obvious that there exists a regular \mathscr{D}-class D^{*} such that $D^{(2)} \subseteq D^{*}$. We show that the reverse inclusion holds. Let $\delta_{x} \in D^{*}$ and let L^{*} be an \mathscr{L}-class of D^{*} containing δ_{x}. If R is an \mathscr{R}-class of D then, by Theorem $5, R^{(2)}$ is an \mathscr{R}-class of D^{*}. Hence $R^{(2)} \cap L^{*} \neq \emptyset$. If $\delta_{y} \in R^{(2)} \cap L^{*}$, then $\left(\lambda_{p}, \delta_{y}\right) \in D$ for some λ_{p}. Let L be an \mathscr{L}-class containing $\left(\lambda_{p}, \delta_{y}\right)$. Then $\delta_{y} \in L^{(2)} \cap L^{*}$. Thus, by Theorem $2, L^{(2)}=L^{*}$.

This means that $\delta_{x} \in L^{(2)} \subseteq D^{(2)}$, and so $D^{*} \subseteq D^{(2)}$. Q.E.D.
Theorem 9. Let D be a regular \mathscr{D}-class of $S^{\prime}(M)$, and let D_{R} and $D_{R}^{(2)}$ be sets of \mathscr{R}-classes of D and $D^{(2)}$, respectively. Then $\left|D_{R}\right|=\left|D_{R}^{(2)}\right|$.

Proof. By Theorems 7 and 8, the mapping $R \rightarrow R^{(2)}$ is a bijection from the set of \mathscr{R}-classes of D onto the set of \mathscr{R}-classes of $D^{(2)}$. Q.E.D.

If D is a finite regular \mathscr{D}-class, then D and $D^{(2)}$ consists of the same number of \mathscr{R}-classes. However, note that we cannot in general assert that D and $D^{(2)}$ have the same number of \mathscr{L}-classes.

Lemma 2. If $\left(\lambda_{w}, \delta_{e}\right)$ is a regular element of $S^{\prime}(M)$ such that δ_{e} is an idempotent, then (λ_{w}, δ_{e}) is an idempotent and $\lambda_{w}=\delta_{e} \lambda_{w}$.

Proof. There exists some idempotent $\left(\lambda_{f}, \delta_{f}\right)$ such that $\left(\lambda_{w}, \delta_{e}\right) \mathscr{L}\left(\lambda_{f}, \delta_{f}\right)$. Since $\left(\lambda_{f}, \delta_{f}\right)$ is a right identity in its \mathscr{L}-class, we obtain that $\left(\lambda_{w}, \delta_{e}\right)\left(\lambda_{f}, \delta_{f}\right)=\left(\delta_{e} \lambda_{f}, \delta_{e} \delta_{f}\right)=$ $=\left(\lambda_{w}, \delta_{e}\right)$. Thus $\delta_{e} \lambda_{f}=\lambda_{w}$. From this we have that $\left(\lambda_{w}, \delta_{e}\right)$ is an idempotent and $\lambda_{w}=\delta_{e} \lambda_{w}$. Q.E.D.

Theorem 10. If D^{*} is a regular \mathscr{D}-class of $S\left(M^{*}\right)$, then there exists a unique regular \mathscr{D}-class D of $S^{\prime}(M)$ such that $D^{(2)}=D^{*}$.

