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Abstract 

It is argued that the modularization of language implementation software should be based on the 
concepts of the source language rather than on certain implementation techniques: this would lead 
to more maintainable and reusable software components. Various techniques supporting source 
language oriented modularization are explored, covering both syntactic and semantic issues. For 
scanning and parsing, a lazy LL(1) method based on independent nonterminal modules is proposed; 
in this method the scanner and the parser are partially constructed during parsing according to the 
needs of a particular input. For semantic aspects, an object-oriented approach is suggested in which 
the source program is viewed as a collection of objects. The classes are derived systematically on the 
basis of a disciplined syntactic specification of the language. 

1. Introduction 

A crucial question of any software development is how to divide the software 
into managable pieces, modules, with simple mutual relationships. The answer can 
vary considerably, depending on the way a system designer thinks about the system. 
There are at least two basic approaches. In the implementation-oriented approach 
the system is viewed as a hierarchy of abstract machines; then the modules provide 
services required by the abstract machines. In the task-oriented approach the system 
is divided into pieces according to the logical task of the system, so that different 
modules implement different subtasks. An important advantage of the latter approach 
is that if the task is slightly changed, the system can be relatively easily updated by 

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages 
and Software Tools, Szeged, Hungary, August 8—11, 1989. 

mailto:koskimie@ondake.uta.fi


194 K. Koskimies 

replacing the corresponding modules with new ones. The latter view is normally 
taken also in object-oriented programming. 

As a software product, a language system (analyzer, compiler, translator, 
interpreter) is perhaps one of the most studied. The structure of such a system has 
become practically standard, and the components can be usually developed using 
well-known systematic techniques, often supported by automatic generation tools. 
The standard structure of a language system follows basically the implementation-
oriented approach: typical modules are an input buffer, a scanner, symbol table, 
code generation services (see e.g. [WeM 80]). These modules can be understood as 
an abstract implementation machine for a particular language. 

It is somewhat surprising that alternative modularization techniques, in particular 
the task-oriented approach, have not been applied in practical language implementa-
tion. The task-oriented approach (which can be called language-oriented approach 
in the context of language systems) has obvious advantages over the implementation-
oriented approach: 

• the number of modules depends on the size of the language, implying that the 
sizes of the modules remain small; 

• during language development, some part of the language can be easily changed 
by replacing the module corresponding to that part with another module; 

• components of existing language systems can be reused in the development of 
new languages; 

• system maintenance becomes easier because of fine-grained modularization that 
can be understood on a high conceptual level (i.e., on the level of the source 
language). 

Although the language-oriented modularization principle has not been applied 
in practical implementations of programming languages (to my knowledge), it is 
not a completely new idea in the research. From a theoretical point of view, the 
subject has been studied by Watt [Wat 85]. Some experimental language implemen-
tation systems provide a modular specification language (e.g. [Toe 88]). In some 
implementation systems ([Gro 84], [HeR 75]) a language implementation can be 
developed in a step-wise way that is ideologically close to the language-oriented 
modularization. 

In this paper we study the language-oriented modularization on the level of a 
general-purpose modular implementation language (say, Modula-2 or Oberon 
[Wir 88]). Our results can be applied to writing modular language systems by hand, 
but they can equally well be used in the design of a generator producing (modular) 
implementations on the basis of high-level specifications. We feel that even in a 
system providing a modular specification language the generated code should also 
be modular: otherwise a small change in some of the specification modules requires 
a complete recompilation of the generated code (even though the other specification 
modules perhaps need not be reprocessed). 

We proceed as follows. In the next section we introduce a notation for describing 
the construction of programs; we will use this notation throughout the paper. Sec-
tion 3 is an informal introduction to a parsing technique supporting modular imple-
mentations; this part is essentially a summary of the results given in [Kos 89]. In 
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Section 4 we present a method for constructing an abstract representation of a 
program in a modular way. Section 5 discusses briefly the problems in modularizing 
the dynamic semantics. Sections 4 and 5 are mostly extensions of the ideas presented 
in [Kos 88]. Finally, in Section 6 we present some concluding remarks. 

2. Program generation tools 

We make use of static statements enclosed in brackets; these statements can be 
regarded as advanced "macro" facilities that can be used within normal program 
text. They are assumed to be executed by a preprocessor (or by the compiler) to 
produce the actual source code to be inserted in their places. Hence, the information 
on which the execution depends must be static. We use three kinds of static state-
ments. The let statement allows the value of a static expression to be inserted in the 
code: 

[letX = E'.p\ 

where E is a (static expression) and J? is an arbitrary string. As a result, the string 
obtained from /? by replacing every occurrence of X with the string representation 
of the value of E is inserted into the source code at this point. A short-hand notation 
can be used for nested let statements: 

[letXj. = Ex\ [letXa = E2: ...: J?]] 

can be written in the short form: 
[letXl=E1,X2 = E2,...:p\. 

Static if statement is given in the form: 
[ifE:P] 

where E is a condition (Boolean expression) and jS is an arbitrary string. The con-
dition must be a static expression; if it yields true ft is included in the program; 
otherwise the entire statement is ignored by the compiler. Similarly, a static for 
statement 

[forXinS:p\ 

denotes a sequence of strings, each obtained from /? by replacing the occurrences 
of X with one element in the ordered set S. The above statement then generates : 

PiP»-Pk 
where is obtained from /? by replacing every occurrence of X with the z'th element 
of S. We assume that all sets discussed here are ordered; if the order is not explicitly 
given some arbitrary order is assumed. Static statements may be nested, in which 
case the outermost statements are executed first. Note that we use italic bold for the 
keywords of static statements to distinguish them from the keywords of the normal 
program text. 

We use these static statements mainly to express the generation of programs in 
a compact way: a program containing static statements can be understood as an 
algorithm.for producing a normal program. 

2 Acta Cybernetica IX/3 
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3. Scanning and parsing 

We define first some basic concepts. A context-free grammar (CFG) is a 4-tuple 
(Vr, Vn, S, P), where VT is the set of terminal symbols, VN is the set of nonterminal 
symbols, S is the start symbol and P is the set of productions of the form A-*fi, 
where A is a nonterminal and /? is a possibly empty string of terminals and non-
terminals. A production of the form A-+B, where B is a nonterminal, is called a 
chain production. A CFG is reduced if every nonterminal is used in the derivation 
of a terminal string. A CFG in non-circular if there is no nonterminal that can pro-
duce a string consisting of this nonterminal only. 

Assuming that the modularization is based on language concepts that are 
(mostly) represented by certain syntactic structures, we decide that for each non-
terminal of the language there is a separate module that implements this nonterminal. 
It might be argued that this decision leads to a huge number of modules in some 
cases (say, several hundreds), but on the other hand it allows very fine-grained reuse 
of language structures. We do not regard the possibly great number of modules as 
a serious problem, assuming that the module library is organized in some sensible way. 

The natural way to proceed is then to introduce a handling procedure for each 
nonterminal module, taking care of the processing of the structure generated by 
that nonterminal in the well-known recursive descent style. However, the basic mo-
dularization principle requires that when writing one module we are not allowed to 
make use of the detailed knowledge of the tasks of the other modules. This principle 
guarantees that the modules are interchangeable, as long as the interfaces remain 
the same. When applied to nonterminal modules, this means that we must be able 
to replace the implementation part of a nonterminal module into another one without 
affecting the implementation of the other modules. In language terms, if we change 
the productions of a nonterminal, it must be sufficient to change the implementation 
part of that nonterminal only. Note that if the processing procedures are written in 
the traditional way, this does not hold because the starter and follower symbols of 
nonterminals are assumed to be known globally, and because all the terminal tokens 
of the language are assumed to be known by a scanner. 

Hence, our problem is the following: how can we write the analysis procedure 
for one nonterminal module on the basis of the productions of that nonterminal 
only, without using any knowledge about the productions of other nonterminals 
and the tokens appearing in them? This implies that the global information about 
the entire language cannot be embedded statically into the program code, but it 
must be computed at run-time. The key question is when and how to collect this 
information. In a nondeterministic top-down analyzer (e.g. [Gro 84], [HeR 75]) the 
necessary information is essentially recomputed every time it is needed. The other 
extreme is to compute all the information before the analysis of an input begins. 
In both cases some loss of efficiency is expected: the former method involves back-
tracking (which is unpleasent also for the semantic processing), the latter method 
implies that the analysis time of every program is increased by the time required 
for parser and scanner construction which is particularly unsatisfactory for small 
programs of a large language. 

Our choice is a method which is between these two extremes. We find out the 
necessary information about the grammar on the fly during parsing, and store it so 
that it need not be recomputed when the same parsing situation occurs later. This 
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means that we construct the parser during parsing, but only as far as is needed to 
analyze a particular input text. This approach can be called lazy in the sense that the 
analyzer is constructed in a lazy manner. The lazy approach has been previously 
taken in the context of LR parsing by Heering, Klint and Rekers in [HKR 88]. 

In a traditional recursive descent parser, gljbal grammar information is used 
only to select the alternative production of a nonterminal, when the procedure of 
the nonterminal has been activated. Hence, this part of an analyzer procedure must 
be removed so that the selection can be based on some global data structure that is 
built during parsing. The analyzer will therefore be partly table-driven (the global 
data structure for selecting the alternative), partly hard-coded (the code for analyzing 
the right-hand sides of productions). 

Obviously it is possible to give each nonterminal module a procedure that com-
putes the starter symbols of that nonterminal (say A), using the corresponding pro-
cedures of those nonterminals appearing on the left-hand sides of the productions 
of A. Then a straightforward way to construct a lazy recursive descent parser would 
be to augment each analyzer procedure with an initial action that computes and 
stores the starter symbols of that nonterminal, together with information that in-
dicates which production must be selected for each starter symbol, if they have not 
been already computed. By matching the current input symbol with one of the 
starter symbols the correct alternative can be selected, and the parsing proceeds in 
the normal way. If none of the starter symbols matches with the input, and there 
is an alternative that produces the empty string (assuming this can be decided), 
this alternative can be safely selected. If there is no such alternative, a syntax error 
must be reported. Obviously this works at least for LL(1) grammars: the fact that 
the parser makes a "default" move corresponding to the derivation of an empty 
string does not essentially change the behaviour of the parser. However, this scheme 
leads to an unnecessarily inefficient parser because the same current input symbol 
will be matched with a starter symbol many times on different nonterminal levels 
when the right-hand side of a production begins with another nonterminal. Note 
that when a starter symbol is matched with the current input in a nonterminal pro-
cedure, all the subsequent productions that are applied next to expand the leading 
nonterminal symbols on the right-hand sides of productions are in fact known in 
LL parsing. We call these productions the left-corner productions of the nonterminal 
in that context. So, our aim is a global data structure that supplies for each nonter-
minal not only pairs (a, p) where a is a starter symbol and p is the production to be 
applied, but sequences of the form (a, p1, ..., pk), where px, ...,pk is the sequence 
of the left-corner productions of the nonterminal in the parsing situation determined 
by the starter symbol a. The analysis procedures will then select the alternatives of 
the nonterminals according to this sequence, without consulting any more the 
current input symbol. The required data structure will be a labelled directed graph 
called the start tree of the nonterminal. 

Suppose that the productions of each nonterminal are numbered 1, ..., n; i.e. 
the alternative production rules of a nonterminal are given by unique numbers. 
The leaves of the start tree of A will be the starter tokens of A, and some additional 
special symbols for handling empty derivations. The essential property of the start 
tree of A is the following: if there is a leaf labelled t (terminal symbol), then the 
labels of the arcs on the path from this leaf node to the root give the (numbers of the) 
left-corner productions when an A produces something that begins with t. In additi-

2• 
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on, if there is a leaf labelled (A), the labels of the arcs on the path from this leaf 
to the root give the (numbers of the) left-corner productions when an A produces 
the empty string. 

Assuming that we know how to build the start trees we can parse as follows. 
When the analyzer procedure of the nonterminal A is called, we first check whether 
the start tree of A is already constructed. If not, we construct it. Then the current 
input symbol is compared with the leaves of the start tree of A. If it matches with 
one of the leaves, the production numbers found on the path from the leaf to the 
root (in the reverse order) are applied in the subsequent activations of analyzer 
procedures of other nonterminals without consulting the current input symbol, 
until all these production numbers are consumed. If there is no match, but one of 
the leaves is (A), we know that A produces the empty string and this is the only 
possible correct choice in this context. Hence we use the production numbers on 
the path from this leaf to the root as before. If there is no match and no (A) leaf, 
we report a syntax error. When all the production numbers have been consumed, 
the parser switches its "mode" and starts to process the right-hand side of the last 
selected rule in the normal way. 

Here we will not discuss the construction of the start trees in detail (see [Kos 89]), 
but instead we show how to write the analyzer procedures. For that purpose we 
use some notations: 

Primary Starters (A) = {/ in VT\ there are productions A',,—X^.., ..., Xk..., 
where £>0 , X0=A, Xk=l}; 

Path(y4, x) = the sequence of numbers associated with the arcs from 
the (leaf) node x to the root in the start tree of A, in the 
reverse order; 

Variants (A) = the number of alternative productions for the nonter-
minal A; 

RhsLength(/i, /') = the number of terminal and nonterminal occurrences on 
the right-hand side of A's production /; 

Rhsltem(/i, i,j) = the /th terminal or nonterminal occurrence on the right-
hand side of A's production /; 

Sym(A, i,j) = the terminal or nonterminal symbol corresponding to 
Rhsltem(y4, i,j). 

Further, we use the following procedures that are assumed to be provided by a 
general support module called MLI: 

procedure Rule(): Integer; 
var ProdNumber: Integer; 
begin 

ProdNumber: = Head (LeftCorners); 
LeftCorners: = Tail (LeftCorners); 
if LeftCorners is empty then Mode: = Examine; end; 
return ProdNumber; 

«nd Rule; 
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procedure Scan(f: Token); 
begin 

if t is in the current input position then 
advance the input pointer past token /; 

else SyntaxError; 
end; 

end Start; 

For each nonterminal A we construct procedure Create as follows (the choice of the 
name will become understandable later), to be included in the module of the non-
terminal: 

procedure Create; 
begin 

if MLI.Mode=MLI.Examine then 
if there is no start tree for A then construct the start tree of A end; 
if there is terminal t such that 

a) t is in the current input position, and 
b) t is a leaf node of the start tree of A 

then 
if / belongs to Primary Starters (A) then 

advance the input position past t\ 
end; 

MLI.LeftCorners: = Path (A,t); 
else 

if there is (A) in the leaves of the start tree of A then 
MLI.LeftCorners : = Path (A, (A)) 

else 
MLI.SyntaxError; 

end; 
end; 

MLI.Mode: = MLI.Parsing; 
end; 
case MLI.RuIe() of 

[for i in 1..'Variants (A): 
i: [for j in l..RhsLength(v4, /): 

[i/RhsItem(/i, i,j) is terminal and 1: 
[fe/ S = Sym(A, / , j ) : MLI.Scan(S);]] 

[i/RhsItem(yi, /,./) is nonterminal: 
[let 5=Sym(^, i,j): ¿'.Create;]]]] 

end; 
end Create; 

Here LeftCorners and Mode are global variables provided by the general support 
module MLI, initially Mode = Examine. Note that we pay no attention to error 
recovery. Traditional error recovery techniques are in general not applicable, because 
there is no global grammar information that could be used e.g. to skip tokens after 
an error. 
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A modular recursive descent parser has some interesting properties. The fact 
that we make a default move leading to empty derivation implies that even some 
non-LL(l) grammars can be parsed succesfully. For example, the classical dangling 
else problem is solved simply by parsing according to the productions 

If Statement -• " i f" Expr "then" Statement ElsePart 
Else Part—"else" Statement | 

which makes the grammar ambiguous. In this case the parser will always try to 
recognize a non-empty else part for the innermost preceding " i f" instead of an 
empty one, if possible. 

Another interesting feature is due to the fact that there is no global scanner, 
but the scanner is distributed in the start trees. This leads to "syntax-directed" 
scanning: only those tokens are considered in the scanner that are possible in the 
syntactic context. For example, consider the well-known Pascal subrange problem: 
the scanning of a subrange definition, say "1...10", fails because the principle of 
maximal length forces the scanner to expext a real constant after reading "1.". 
The problem does not appear in our method because a real constant cannot start 
a subrange and will not be considered at all. 

Our method introduces also some new problems. Note that in principle the 
LL(l)-ness of the grammar is never known in advance, when the parsing begins 
(indeed, as shown above, the grammar need not be LL(1) in some cases.) Since only 
those parts of the grammar are examined that are actually used in analyzing a parti-
cular input, the LL(l)-ness cannot be decided at all. The method guarantees a correct 
parse for all LL(1) grammars, and the parser cannot accept an invalid input for any 
grammar, but it can a) produce a correct parse for some non-LL(l) grammars and 
b) report a syntactic error for a correct input of some non-LL(l) grammars. Problem 
b) is of course unpleasent: it would be more appropriate to report a grammar error 
than a syntactic error. Although most of the non-LL(l) cases must be eliminated 
during parsing in order to construct the start trees in a sensible way, some cases 
remain undetected. For a discussion, see [Kos89]. 

The syntax-directed scanning scheme implies certain problems, too. Because the 
scanner is distributed in the start trees, there may be conflicts between the tokens 
that are not known by the scanning process. For example, it is in general impossible 
to prevent a keyword belonging to one part of the grammar to be interpreted as an 
identifier when processing another part. Our method supports the convention that 
keywords are not reserved symbols but, can be used e.g. as identifiers, as long as the 
left context determines uniquely the identity of the token. 

The method described above has been implemented and some preliminary 
experiments have been carried out [Kos89]. The results show — somewhat surpris-
ingly — that a modular scanner/parser is as fast as a. traditional recursive descent 
one, reaching the speed of 300 000 tokens/min. It turns out that in practice the con-
struction of start trees takes very little time: only for very small programs a difference 
in the running time was observed, when compared to a traditional recursive descent 
parser. The start trees tend to be rather small: for a subset of Pascal the average 
depth of the start trees was less than 2, and the average number of leaves was 2.7. 

It is interesting to note that the behaviour of the modular parser is sensitive to 
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the properties of the grammar, and even to the properties of a particular input. If the 
grammar is "modular" in the sense that it consists of several relatively independent 
subgrammars, and only one or some of them are typically used in one input text, 
the start trees need to be constructed only for a small part of the grammar. 

4. Construction of an abstract representation 

We consider a program as a set of interrelated objects that, when put into a 
particular environment, behaves in a certain way implied by the language semantics. 
Consequently, there are two kinds of concepts involved in language implementation: 
program concepts that have more or less obvious concrete counterparts in the syntax 
of the language, and environmental concepts that are not represented in the program 
text, but belong to the "abstract machine" that executes the program. Our intention 
is to view both kinds of concepts in the object-oriented setting; correspondingly, 
instead of concepts we will speak of program classes and environmental classes. The 
program classes will be implemented by regarding nonterminals as classes, and by 
adding certain parts into the nonterminal modules constructed in Section 3. We 
shall use the term nonterminal class as a synonym for program class. The environ-
mental classes could be provided by some general implementation support module 
(like MLI, see Section 3), or they could be implemented by additional modules; 
we use the latter approach in the sequel. The connection between these two class 
categories is established by the fact that some nonterminal classes are considered as 
subclasses of the environmental classes. 

Let us first consider the problem of constructing an abstract representation of a 
program. To establish a sensible class hierarchy for the classes represented by non-
terminal symbols we require that the syntactic specification is given in a certain form. 

A context-free grammar is structured1 if for each nonterminal A, either 

(i) there is only one production that has A on the left-hand side, or 
(ii) all the productions that have A on the left-hand side are chain productions; 

but not both. Further, we say that a grammar is well-structured, if it has the following 
properties: 

(i) it is structured; 
(ii) it is reduced and non-circular; 

(iii) there is no nonterminal A such that the only production having A on the 
left-hand side is a chain production; 

(iv) each nonterminal appears on the right-hand side of a chain production at 
most once. 

The basic idea is to interpret chain productions as presentations of class hier-
archies. This is a natural interpretation: the fact that a nonterminal A has the 
productions A—B1, ..., A—Bk is just another way of saying that a Br is an A, ..., 

1 This grammar form has been used (independently) by Jürgen Uhl [Uhl 86]. However, he 
used this form for establishing equivalence relations between nonterminals rather than class hierar-
chies. We adopt his term ("strukturierte Grammatik"). 
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a Bk is an A. A production that is not a chain production expresses only the consti-
tuent parts of a concept that is "basic" in the sense that it does not have subclasses, 
whereas a chain production A-+B expresses the relation "B is a subclass of A". 

We say that the nonterminals having only chain productions are superclass 
nonterminals, and the nonterminals having no chain productions are basic nonter-
minals. The properties listed above for well-structuredness guarantee that 

(a) each nonterminal is either a superclass nonterminal or a basic nonterminal, 
but not both; 

(b) there are no needless or circular classes; 
(c) there are no identical classes; 
(d) the class structure is purely hierarchical (i.e. there is no multi-inheritance). 

The properties (a), (b), (c) ,and (d) are implied by (i), (ii), (iii), and (iv), respecti-
vely. In the following we assume that a grammar is well-structured. Note that the 
well-structuredness of a grammar is easy to check using well-known techniques, 
and that an arbitrary context-free grammar can be automatically transformed into 
a well-structured one in a straightforward way, without affecting the essential pro-
perties of the grammar (like the generated language or the parsing properties'); 
this requires only the introduction of some new nonterminals and possibly some 
renaming of the nonterminals. Also note that although class nonterminals cannot be 
circular they can be (and often are) recursive: there is no reason why a class non-
terminal could not appear on the right-hand side of a production of one of its sub-
class basic nonterminals. The reader is invited to confirm that no nonterminal can 
appear both on the left-hand side and on right-hand side of some production (i.e. 
there are no directly recursive nonterminals). 

Basically, the existance of an instance of a basic nonterminal in a syntax tree 
implies the existance of an object of the class corresponding to the nonterminal. In 
contrast, an instance of a superclass nonterminal merely establishes a new class level 
for an object that corresponds to the basic nonterminal instance somewhere below 
the superclass nonterminal. 

To express classes in a program, we assume an Oberon-like [Wir88] type exten-
sion facility2: a record type may be extended with additional fields to create a new 
record type (subclass) that is upwards compatible with the original record type 
(superclass). Type extension is given as 

type T = record (U)... fields... end; 

where U is the superclass type that is extended with the new fields, yielding the sub-
class type T. As in Oberon, if a record type is given in the definition part of a module, 
it can be extended in the implementation part; this is only a means to introduce 
"invisible" fields for a visible record type. This minor feature turns out to be very 
useful in our method. 

Consider the nonterminal modules constructed following the method described 
in the previous chapter. For each nonterminal module we specify a record type that 
provides all the local data for objects of the nonterminal class; we call this the instance 

2 The new object-oriented extension of Oberon [MTG 89] might have been even more suitable 
for our purposes; but we stick to a presentation language that is close to Oberon because we assume 
it is widely known, 
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type of the nonterminal. If thé nonterminal has a superclass, this type is defined as 
an extension of the corresponding type in the module of the (immediate) superclass 
nonterminal. We will modify the "Create" procedure introduced in Section 2 so 
that it will return as its value a reference to the instance object. In the case of a super-
class nonterminal the reference-, to be .returned is provided directly by a call of a 
"Create" procedure of a subclass nonterminal; in the case of a basic nonterminal 
the instance object is explicitly created. 

In an abstract representation of a program, certain fields of the instance type 
refer to objects whose (instance) type is provided by the modules of the constituent 
nonterminals. These fields can bp.declared only in the. body of the module: the fact 
that nonterminals may be recursive prohibits thè déclaration of these fields in the 
definition part (otherwise there would be circular importing between the definition 
parts). This is natural also because these fields are internal knowledge of the objects 
that should be used only by the methods of the corresponding class (i.e. by the 
procedures of the module). However, the instance type itself must be declared in 
the definition part of the module^ because it is needed by other modules. This con-
tradiction can be nicely solved using the Oberon-like feature which allows the adding 
of new "invisible" fields in the module body into a record given in the definition part. 

In addition to the special notations introduced in Section 3, we use the following 
notation : 

Super (A) denotes the immediate superclass nonterminal of A, if it exists; 
otherwise A ; 

In the following we give a scheme for generating à nonterminal module together 
with the parts that are needed for constructing an abstract representation of the 
program. 

definition NontName; 
import MLI 

D/NontName has a superclass: , [let S=Super (NontName): 5]]; 
type Class=pointer to InstanceType; 
type Instance Type=record 

[i/NontName has a superclass : 
([let S=Super (NontName): S. InstanceType])] 

end; 

var Descriptor: MLI.DescriptorType; 
procedure Prepare; 
procedure Create(): Class; 

end NontName; • • • • - . 

module NontName; 
- import MLI 

[for N in {A | there is a production.NontName— ... A ...}: ,N]; 
« • [t/NontName is a basic nonterminal : 

type InstanceType=record 
' - • [for j in /..RhsLength(NontName, / ) : 

: [if Rhsltem(NontName, 7,y) is nonterminal: 
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[let Y=Sym (NontName, l,j), Z =j: 
comp_Z_Y: Y. Class;]]] 

end;] 

* procedure Prepare; 
for constructing the start tree, see Section 3.... 

end Prepare; 
procedure Create0: Class; 

var NewObj: Class; 
begin 

[if NontName is a superclass nonterminal: 
if MLI.Mode = MLI.Examine then 

... as in Section 3 ... 
end; 

case MLI.Rule() of 
[for i in /..Variants(NontName): 

[let X = Sym (NontName,/, 1): 
i: return AXreateO;]] 

end;] 

[if NontName is a basic nonterminal: 
New (NewObj); 
[for jin 7..RhsLength (NontName,7): 

[j/RhsItem(NontName, 1,j) is terminal: 
, [let t = Sym (NontName, l,j): MLI.Scan (/);]] 

- [i/RhsItem(NontName,J,j) is nonterminal: 
[let Y = Sym (NontName,7,y), Z =j: 

NewObj ~.comp_Z_ Y:= 7.Create();]]] 
return NewObj;] 

end Create; 
end NontName; 

Note that we have slightly modified the parsing scheme presented in Section 3 
to make use of the well-structuredness of the grammar. Since a basic nonterminal 
has only one syntactic alternative, there is no need for a case statement and for the 
preceding if statement in the Create procedure. Hence these statements can be omit-
ted, provided that the arcs corresponding to the productions of basic nonterminals 
are removed from the start trees as well. 

The above scheme produces a structure which is exactly the abstract syntax 
tree of the program. However, we are aiming at a more elaborated structure that 
would be more amenable to further processing. For this purpose we need new en-
vironmental classes. 

As an example, suppose that we have an environmental class providing the 
abstract concept of a general list. To be able to conveniently specify the sequential 
execution of a statement list we would like to represent a statement list as a list 
rather than as a tree structure. Hence, we say that the nonterminal class "State-
mentList" is a subclass of the environmental list class. Consequently, the nonterminal 
class that gives the element of the list ("Statement") must be a subclass of another 
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environmental class that gives the abstract concept of a list element. Since these 
environmental classes are obviously closely related, they are provided by the same 
module: 

definition List; 
type List=record end; (* only invisible fields *) 
type Elem=record end; 
type ListClass=pointer to List; 
type ElemClass=pointer to Elem; 
procedure CreateList(): ListClass; 
procedure Insert(L: ListClass; E: ElemClass); 
... other procedures ... 

end List; 

We make use of these classes in the instance types of StatementList, 
type InstanceType=record (List.List) end; 

and Statement, 

type InstanceType=record (List.Elem) end; 

Note that in principle the environmental superclasses are treated in the same 
,way as nonterminal superclasses. However, in StatementList there are no (invisible) 
fields of the instance type that would contribute to the abstract representation; the 
structure of a statement list is implicitly accessible through the operations provided 
by the list module. An element of a list (Statement) is created normally using New 
in the creation operation of the basic nonterminal (e.g. If Statement), and then inserted 
into the list using the appropriate list operation. In contrast, a list (StatementList) 
must be created using directly the creation operation provided by module List 
because this requires certain initializing actions that cannot be given in the nonter-
minal module. 

Note that the class hierarchy must be consistent in the sense that all the instances 
of a nonterminal class X have the same class levels, independently of the context. 
The class levels of the objects do not depend on the syntactic context, but only on 
the existance of certain chain productions. Hence, even though X is not produced 
by its superclass nonterminal Y in a particular context, the object created for the 
instance of X has a F-level. This holds for environmental, superclasses as well: for 
example, a statement has to be a list element in every context, even though it is (syn-
tactically) not an element of a statement list. 

Since we regard a list element as a superclass of a statement, this must be true 
for every instance of a statement: the class hierarchy must be consistent in this sense. 
Hence a statement should always appear in a list of statements. 

Let us consider a more complicated example, the implementation of name en-
vironments (i.e. symbol tables). Again we may assume the existance of an additional 
module providing certain environmental superclasses. For example, we could have: 

definition NameEnv; 
import ... ; 
type Decl= record name: String; end; 
type Region=record ... end; 
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type DeclClass=pointer to Decl; 
type RegionClass=pointer to Region; 
procedure CreateRegion (): RegionClass; 
procedure DeleteRegion(X: RegionClass); 

end NameEnv; 

Suppose that we have the grammar fragment 

Declaration = VariableDeclaration|TypeDeclaration|... 
VariableDeclaration = "var"... _ 
TypeDeclaration = "type"... 

Nonterminal Declaration (or its instance type) should then be a subclass of 
Decl, and the nonterminals generating visibility regions like modules or blocks 
should be subclasses of Region; VariableDeclaration and TypeDeclaration are 
subclasses of Declaration as usual. The creation operation of VariableDeclaration 
(a basic nonterminal) creates a new object in the normal way, and then inserts it to 
the region using an appropriate operation provided by NameEnv. The creation 
operation of a region nonterminal (say, Block) also creates the region object using 
New, but it must also apply other operations provided by NameEnv to "enter" and 
"exit" the region. 

It should be noted that above we have only sketched the basic guidelines that 
could be followed in the implementation. The details depend on the source language, 
and it is possible that even the basic principles may have to be adjusted to fit a par-
ticular language. 

5. Semantics 

The (dynamic) semantics of a language is essentially more irregular than the 
parts discussed previously. Hence it is difficult to develop techniques that would be 
generally applicable. The basic principle, however, should be that the dynamic 
semantics of the instances of nonterminal classes should be based on the methods 
of the classes. We illustrate this by an example. 

Consider the following fragment of a language: 

Statement—AssStatement|If Statement!... 
AssStatement—VariableDenotation :=" Expression 
If Statement—"if" Expression "then" Statement 

Here Statement is a superclass nonterminal, while AssStatement and If Statement 
are basic nonterminals. Each statement has the property that it can be executed; 
hence a semantic field of the instance type of Statement provides a procedure (method) 
for executing a statement object. 

definition Statement; 
import MLI; 
type Class=pointer of InstanceType; 
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type StatEx=procedure(X: Class); 
type InstanceType=record 

execute: StatEx; 
end; 

end Statement; 

Module Statement does not provide any value for field "execute"; using the 
object-oriented terminology this is a virtual method of the class Statement. The 
value of "execute" is given at the lower level where the kind of the statement is 
known: 

definition IfStatement; 
import MLI, Statement; 
type InstanceType=record (Statement.InstanceType) end; 
type Class=pointer to InstanceType; 
procedure Create(): Class; 

end IfStatement; 
module IfStatement; 

inport MLI, Statement, Expression; 
ty pe InstanceType=record 

comp_l_Expression: Expression.Class; 
comp_ 2_ Statement: Statement .Class; 

end; 

procedure ExecuteIf(S: Statement.Class); 
begin 

with S: Class do 
if S".comp_l .Expression ~.evaluate()=i (* true *) 
then S *.comp_ 2 _ Statement ".execute 

end 
end Executelf; 
procedure Create(): Class; 

var NewObj: Class; 
begin 

New (NewObj); 
NewObj ".execute :=Executelf; (* determine the execution method *) 
Scan ("if"); 
NewObjcomp_ 1 .Expression : = Expression.Create(); 
Scan ("then"); 
NewObj ~.comp_2_ Statement: = Statement. Create(); 
return NewObj; 

end Create; 

end IfStatement; 

In this way every creation of a statement, instance, carried out by the basic 
statement nonterminals like IfStatement, must assign an appropriate value for the 
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execution operation. Hence, when the execute-field of a statement object is called, 
the actual routine will depend on the kind of the statement. We have followed here 
the Oberon conventions which require that the actual procedure has the same para-
meter types as the virtual one; therefore If Statement's parameter has to be of type 
Statement. Class (and not Class which would be more natural). Explicit subclass 
checking (with statement) guarantees that the parameter statement is really an if 
statement. 

6. Discussion 

The starting point of this work has been the observation that so far the modula-
rization of language implementation software has been based on very implemen-
tation-oriented thinking. Implementation aspects have always had deep effect on the 
way we design and view programming languages. We argue that the conventional 
modularization technique which treats the source language as a black box has led 
to the view that languages are in principle indivisable, and that it is not sensible to 
try to reuse parts of existing language implementation software in the development 
of other languages. It is characteristic that programming languages are often regarded 
as a means to communicate with a computer, as a "formal language", suggesting 
a close relationship with natural languages. However, programming languages are 
not like natural languages: they are most of all technical tools to build systems. 
Like other complex industrial tools they should be composed of relatively specialized 
parts that can nevertheless be used as such in many kinds of system building tools. 
This would give us the same benefits that are now regarded as self-evident in other 
engineering branches: new production (i.e. programming) systems could be rapidly 
developed for different purposes using existing building blocks, old systems could 
be modernized by replacing certain parts with more advanced parts, and system 
maintenance would be easy because the system consists of small modules with clean 
interfaces. 
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