
Uniform approach to parameter
transmission mechanisms, coercions,
optional parameters and patterns*

MATTI JOKINEN

Computer Center
University of Turku
SF—20500 Turku

Finland

Abstract

The formal parameter part of a procedure can be regarded as a mapping from the set of argu-
ments into the set of environments. If environments and environment-valued functions are treated
as first-class objects, a number of useful linguistic features can be constructed from a small set of
elementary building blocks; such features include the most parameter transmission mechanisms,
implicit conversions, conditional clauses based on pattern matching, and optional, repeatable and
variable-type parameters.

1. Introduction

Programming languages use numerous variants of mappings of the general
form 5—V, where S is a finite set of character strings and V is the universe of data
objects. Such mappings can be divided into three main categories:

• Evaluation environments bind the free identifiers of programs into data objects.
Although they are defined by declarations embedded in the program text, they
tend to belong to the meta universe outside the domain of data objects. Most
programming languages provide no method of identifying them by name or
referring to them as entities.

• Packages are used as library modules, and their components are mostly types
and procedures. They are often used for information hiding. They are typical
second-class objects which may have names but must be completely defined at
compile time.

• Records are designed for storing runtime data. In most modern programming
languages they are first-class objects which can be created and modified at
runtime.

The distinction between the three concepts makes implementation simpler, but
conceptually it is more or less arbitrary. Advantages of a uniform approach are
obvious [1, 4, 9]. The idea of combining the concepts is not new: Simula classes
[2] are used in all three roles.

* Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11,1989.

224 M. Jokinen

2. Language

Records, packages and evaluation environments are treated uniformly in this
paper and they are all called environments. We shall design a programming language
that uses environments extensively as first-class objects. Details of syntax and seman-
tics are of minor interest here, and the language will not be defined rigorously; it is
solely a tool for discussing various cases where environment-valued functions prove
to be useful.

2.1. Environments

An environment can be created with a clause

{ell'~*'e12

where etJs are arbitrary expressions. Clauses e1 and e2 can be evaluated in any order
or interleaved; this allows some extra freedom in optimization. Each ea must evaluate
to a string. The resulting environment binds the strings to the values of expressions
ei2. Standard procedure select can be used to find the value of an identifier in an en-
vironment. The value of select [e, x] is the value bound to string x in environment e.
Both operands can be arbitrarily complex expressions. Procedure econcat con-
catenates two or more environments. Clause econcaifa, ..., e„] returns an environ-
ment that contains the combination of bindings from environments ex, ...,e„. If
an identifier is bound in more than one eh its value is taken from the last one. An
environment can also be used in a clause

with ex do e2

where clause e1 evaluates to an environment. The value of this clause is the value
of e2, whose free identifiers are bound as in the environment yielded by e1. The
whole program is implicitly embedded in an environment that contains the definitions
of standard identifiers.

2.2. Procedures

The definition of a procedure usually looks something like

p = proctor/!, ...,x„:t„)e

where e is the body of the procedure. The call of this procedure is written as

P(eu..., e„)

where the result of clause et is of type /,-. In the simplest case the effect of the call is
that the body e of p is evaluated in an environment in which each is bound to
the value of et. But in many programming languages parameter transmission is
more complicated. The values may undergo various conversions before they are
bound to formals. Parts of the data objects may be copied. Sometimes the conversion
process may involve more than a single formal-actual pair and the number of actuals;
may be different from the number of formals. There may be optional parameters
which get certain default values if omitted in the call, or a single actual may define
the values of several formals, as conformant array parameters in Pascal [6]. Implicit

Uniform Approach to Parameter Transmission Mechanisms 225

actions allow a more compact notation and their proper use may thereby improve
readability. Unfortunately the rules are usually built into the language, and although
modern languages allow the definition of application-specific types they rarely [8]
provide any way to extend implicit actions to user-defined types.

The FEXPR feature of Lisp [7] is one method to give the programmer more
control over the actual parameters. The list of actual parameters is passed as such
and can be freely manipulated in the called routine. The method relies on the represen-
tation of programs as list structures and the existence of a user-callable EVAL
function. Another approach to handle optional, repeatable and variable-type para-
meters has been suggested by Ford and Hansche [3] and Prasad [5]. Their methods
include syntax extensions to specify formal and/or actual parameters with such
properties, and special statements or standard functions to test the existence of
optional parameters, the number of repeatable parameters and the actual type of
variable-type parameters. These mechanisms, unlike the FEXPR feature, were
designed as extensions to strongly typed languages.

If parameters are passed by value, the call is equivalent to the following with-
clciUSC *

with {"Xi'Wx,. . . , W „ } do e.

Thus the formal parameter part (jq: tx, ..., x„: /„) can be regarded as a function
that maps the argument tuple into an environment. Since environments are first-class
objects, it is natural to consider also the formal parameter part as an ordinary pro-
cedure. Any environment-valued procedure can then be freely used as a formal
parameter part of another procedure. A procedure object is created with a clause

proc ¿i=>e2

where e1 is an arbitrary clause that evaluates to an environment-valued procedure
(from now on all such procedures will be called formals).

It is convenient to reduce multi-argument procedures into single-argument
procedures by treating the argument list as a tuple. A tuple object is created with
a clause [elt ..., en]. A one-element tuple is not identical with its element. Expressions
et can be evaluated in an arbitrary order, or interleaved. Procedures with no para-
meters formally take an empty tuple as an argument. Procedure invocations are
written as

eie2

where clause e1 evaluates to a procedure and e2 evaluates to its argument. If the value
of e1 is proc f=>b, the invocation is equivalent to with fe2 do b. For convenience,
certain operators will be written in their familiar infix or postfix notation. For examp-
le, we shall write x:=y instead of :=[x, y].

2.3 Basic formal generators

The language must contain a set of standard formals, or formal generators, as
elementary building blocks for user-defined procedures. We shall first introduce a
procedure named atomf, which generates "atomic" formals. It accepts as an ar-
gument a 2-tuple [i, t], where s is a string and t is a type. The value of the clause

atomf [s,t]

226 M. Jokinen

is a procedure that maps an object x (of type /) into an environment that binds s to x.

, r{I>-<-A-}, if JC is of type /.
atomf[s,t] x = |a|,ort otherwise

If x is not of type /, the call causes a failure, a termination without any result, repre-
sented by the clause abort. Failures can be trapped in case-clauses, as will be seen
later; untrapped failures are propagated to upper-level clauses. Note that s may
be an arbitrary string-valued expression, and it is the value of s (rather than the
identifier s) that becomes bound in the environment. For example,

atomf["n", int] 4 = { 'V '~4} .

To make formals look more familiar, the following sugared syntax is defined
for calls of atomf:

x:t = atomf [x, /].

For tuple arguments we first introduce a procedure, denoted by nullf, that
accepts an empty tuple as its argument and returns an empty environment. Thus

nullf [] = { }
nullf x = abort, if x J* [].

Next we introduce a procedure, denoted by fconcat, that maps 2-tuples of formals
to formals. The value of the clause fconcat[fx, f2] is a formal that accepts as its
argument a nonempty tuple whose first element is accepted by the formal fx and
whose tail is accepted by the formal f2. The result of the concatenated formal is an
environment which is constructed by combining the environments yielded by fx
and f2.

fconcat[/i,/2][eu en] = econcat [(A <?j),f2[e2, ...,<?„]]
fconcat[fuf2][] = abort
fconcat [fx, f2JX = abort, if JC is not a tuple.

For convenience, we shall often use an additional formal generator tuplef, which
can be defined in terms of nullf and fconcat:

tuplef [] = nullf
tuplef [fx, f2, ...,/„] = fconcat [fx, tuplef [f 2 , ...,/„]].

2.4. Types

Since type checks occur at runtime, there must be a sensible action taken when
a type check fails. A failing type check is defined equivalent to the execution of
abort. In the examples to follow we will use standard types int, real, string, anyenv,
any tuple, any and type, and type constructors ref, union, tuple and Type reft
is the type of pointers to /-typed cells. Type union[t1, ...,/„] is a coalesced union of
types tx, ..., /„. The value space of a union type is the set-theoretic union of the
value spaces of component types. Type tuple * ..., /„] is the type of tuples [xl5 ..., x„],
where jc,- is of type /¡. Clause /—« denotes the type of functions with domain / and
range u. Identifier anyenv denotes the type of all environments, anytuple denotes the
union of all tuple types and any denotes the union of all (nonunion) types. Identifier
type denotes the type of all types (including ox excluding type).

Uniform Approach to Parameter Transmission Mechanisms 227

Union types (either the union constructor or any) are essential to the expressive
power of the abstraction mechanism. Other types are more or less optional, replace-
able by each other, or required only in specific examples.

2.5. Case-clause

Many modern languages have union types and a conditional clause that allows
a safe access to the contents of a union. Such a clause will be needed in all the examples
below. The syntax and semantics of the clause can be defined elegantly with gene-
ralized formals. The syntax is

case ein/1=>e1, ...,/„=>e„else/n+1=>en+1

where the values of clauses / i to / n + 1 are formals. The else-part is optional. The
clause is evaluated by first evaluating the clause e and then invoking formals fx
to f„ (in an unspecified order) using the value of e as the argument. If the invoked
formal / f returns an environment, the clause et is evaluated in that environment
and the value of et becomes the value of the case-clause. If f{ fails, the next formal
is tried. If all the formals / i to /„ fail, the optional formal fn+l is invoked and
the clause e„+1 is evaluated in the resulting environment. If / n + 1 fails, or if there
is no else-part, the case-clause fails.

3. Applications

S.I. Implicit type conversions

As a simple example, let us define a generator for formals that accept either a
real or an integer as their actual argument and convert it into a real in the latter
case. Standard procedure inttoreal performs the conversion explicitly.

intreal = proc("id": string)=>
proc (' V : union [int, real])=>

(id: real) (case * in ("/•": real)=>r,
("n": int)=>inttoreal n)

Here the case-clause is used to compute the argument of (id: real). Type union [int, real]
could be replaced with the type any. Formal intreal[x] would normally be used in
definitions of arithmetic functions. However, atomf[x, real] could be used in cases
where an integer argument makes no sense. For example, assume that we need a
procedure that computes the integral of a given function / over a closed interval
[a, b] in the accuracy eps. The header of the procedure might look like this:

proc tuplef ["f": real-* real,
intreal "a",
intreal "6",
"eps": real]^ ...

As an analogous but more specialized example, let us define a generator for
formals that accept as an argument a month represented either as an integer or as a
string:

4 Acia Cyberaetica IX/3

228 M. Jokinen

proc("id": string)=>
proc (' V : union [int, string\)=>

(id: int) (case x in
"«": int=>

if n < 1 or n> 12 then abort else n,
"s": strings-

its =" January" then 1
else if s=" February" then 2

else if s=" December" then 12
else abort)

3.2. Parameter transmission mechanisms

Transmission mechanisms are closely related to types. If the type system of the
language is rich enough, transmission by various mechanisms can be reduced to
transmission of various types of data [10]. Call by reference is equivalent to trans-
mission of a parameter of type ref t. Call by name is equivalent to transmission of
a parameter of type void—t, where void=tuple[]. Call by need is equivalent to
transmission of a recipe, an object of type ref union [i, void^t]. However, the pro-
grammer may still want to think in terms of transmission mechanisms rather than
in terms of types. To make the underlining type system transparent, an argument
should undergo an implicit type conversion when it is transmitted further by a
different method.

We shall first define two auxiliary procedures. Rep-value generates procedures
that compute, values of recipes:

rep-value=proc ("t": type)=>
proc ("x": ref union [f, void— t])=>

case xt in
("/': t)=>y,
("/": void-t)=>(with {z~~/[]} do (x:=z\ z)).

- Here Jtt denotes the contents of the cell pointed to by x. Components of the serial
clause (x:=z; z) are evaluated from left to right, and the value of the clause is the
value of the last component. The other auxiliary procedure repdefs just generates
two shorthand notations, rep and u:

rcpdefs=vroc("t": type)=>
{'rep"*— ref union [i, void— /],
"«"•-»union [/, void— t, ref t, rcp]\.

Call by value, name, need and reference, and all the required conversions, can
now be defined with the following procedures:

value=j>roc tuplef["id": string, "t"; type]=>
' " with repdefs t do

proc("x": u)=>

Uniform Approach to Parameter Transmission Mechanisms 229

{/i/i—case x in ("y": t)=>y,
("/>": ref t)=>p\,
("/": void^t)^f[],
("r": rcp)=>rcp-value t r)

name=proc tuplef["id": string, "/": type]=>
with rcpdefs t do

procf'jt": u)=>
{/i/i-«-case x in ("y": i)=KProc nullf=>y),

(V : ref /)=Kproc nullf=>p\),
("/": void+t)^f,
("/•": rc/>)=>(proc nullf=>-rcp-value t r)}

«m/=proc tuplef["id": string, "t": type\=>
with rcpdefs t do

proc('V: u)=>
{/¿•-•case x in ("/': t)=>new rep y,

("p": ref t)=>n?w rep (/>t),
("/": void-*t)=> lew rep f ,
("r": rcp)=*r}

where clause (new rep e) allocates a new cell of type rep, initializes its contents to
e and returns a pointer to the cell.

reference = proc tuplef["id": string, "t": type]=>
with rcpdefs t do

procf'*": u)=>
{W>-»case x in ("7": t)=>new t y,

("/?": ref t)=>p,
("/": void^t)^new t (/[]),
("/•": rcp)=>new t {rep-value t /•)}.

Call by result cannot be implemented in this way because it involves implicit
actions at the termination rather than at the start of the called procedure.

3.3. Procedures with varying number of parameters

Procedures with optional parameters can be constructed by treating the list of
arguments as a tuple. One possibility is to define a fixed number of normal arguments
and bind the rest of the argument tuple to one identifier. For example, in the following
formal the length of the fixed part is one:

fconcat["head" : t, "tail" : anytuple]

Another possibility is to define optional arguments that receive default values if
omitted in the call. The following procedure takes a list L of 5-tuples [name, type,
default- value] and returns a formal that accepts a tuple A whose i"1 element corre-
sponds to the ith element of the tuple L. The length of A may be smaller than the
length of L, in which case the missing elements are given default values from L.

4*

230 M. Jokinen

optlist=proc ("L": anytupte)=>
case L in

nullf=>nullf,
fconcat[tuplef[" name" : string, "t": type, "default": any],

"tail" : anytuple]=>
proc ("A": anytuple)=>

case A in
nullf=>defaults L,
fconcat["x": t, "rest": any tuple] =>

econcat[(name: t) x, optlist tail rest]

where

defaults=proc ("L": anytuple)=>
case L in

nullf^Q,
fconcat[tuplef["name": string, "/": /v/je, "default": any],

"tail": anytuple]=>
econcat[(name: t) default, defaults tail].

If there are many optional parameters, it is more convenient to identify them
by name than by position. In the list of actual arguments, an optional argument is
specified as a (sub)tuple [name, value] in the argument list. The following procedure
takes the specification of optional arguments in the same form as above, but the
resulting formal accepts a list of 2-tuples in an arbitrary order:

optset = proc ("L": any tuple)
prcc ("T": anytuple)=>econcat [defaults L, values [types L, J]].

Procedure types computes an environment that maps the names of the formal argu-
ments to their types. This environment is used in the other auxiliary procedure to
check the types of actual arguments :

types=proc ("L": anytuple)=>
case L in

nullfs{},
fconcat[tuplef["name": string, "/": type, "default": any],

"tail": anytuple\=>
econcat[(name: type) t, types tail]

values=proc tuplef["ttable" : anyenv, "T": anytuple]=>
case T in

mllf=>{),
fconcat [tuplef["name" : string, "value" : any],

"tail": anytuple]=>
econcat[(name: select[ttable, name])value, values[ttable, /a//]]

Uniform Approach to Parameter Transmission Mechanisms 231

3.4. Patterns

In recent years it has become popular to write the formal parameter part as a
pattern. A pattern is a data structure in which certain elements denote variables to
be bound in an invocation. Patterns can be easily defined in our system. Below is a
generator for patterns of possibly nested tuples. Variables are denoted by strings
that begin with a capital letter.

pattern=froc ("/>"): any)=>
case p in

nullf=>nullf,
('V': string)^i[lls'/ and s[l]s'Z'

then (s: any)
else (proc("t": string)=>

if s=t then {} else abort),
fconcat["head": any, "tail": anytuple]=>

fconcat [pattern head, pattern tail]
For example, the value of the clause

pattern ["/", ["X", "Y"], ["g'\ "Z"]]
is a formal that accepts all tuples that can be constructed by replacing "X", " Y" and
"Z" with any objects in the tuple " / " , ["Z", "Y"], "Z"]]. Patterns for other
data types can be defined in an analogous way.

In a more realistic program the types of the variables would be included in
patterns and the formal generator would take care of multiple occurrences of a
variable. A quotation mechanism is also desirable to permit arbitrary constant
terms in patterns (for example, strings beginning with a capital letter). These features
can be defined in the language without difficulty.

4. Implementation

The programming language designed in the preceding sections is based on late
binding and runtime type checks. That is typical of interpreted languages, and the
reader may wonder whether the ideas presented in this paper are of any use in com-
piled languages where efficiency is considered more important. Fortunately the
quality of the code can be greatly improved with relatively simple optimization
methods.

General environments can be represented as association lists, hash tables, .
binary trees, or combinations of these (and possibly other) structures. However,
in the special case in which the bound identifiers are known at compile time, an
environment can be represented exactly like a conventional record: the components
of the environment can be stored in consecutive memory locations and the value
of an identifier is found by adding a static offset of the base address of the environ-
ment. A single-element environment {x~~v} is represented exactly as the object v.
Assume that in an invocation (p e) the value of p is completely known at compile
time and defined by

p = (proc (x: t) =>u)

232 M. Jokinen

If, in addition, x is a string constant and e is guaranteed to be of type t, the environ-
ment produced by the formal can be used as the lower part of the activation record
of a procedure as in conventional languages and the invocation can be translated
into the instruction sequence

code(e)\ jsub(u)

where code(e) evaluates e and leaves its value on the top of the stack, and jsub(u)
saves the program counter and transfers control to the body u of the procedure.

Next assume that p is defined by . '
P = (proc tuplef[fu ...,/„] => u)

where each / , is completely known at compile time, et is known to be of type suitable
as an argument for fh and the result of ft is a mini-environment where
x,s are string constants and x ^ x j whenever i ^ j . The invocation can now be trans-
lated into the instruction sequence

codee,); ...; code(f„ e„)\ jsub(y).

Procedure calls involving more complicated formals can usually be optimized
with partial evaluation. From the semantics of the language the following evaluation
rules can be derived:

1. Clause (proc ex=>e^)e3 can, by definition, be reduced to (with et e3 do e2).
2. Clause (if true then eY else e2) reduces to elt and (if false then ex else e2)

reduces to e2.
3. Clause (case e in f ^ ^ x , ...,/„ =>e„ else fn+x=>en+1) reduces to (with f e

do e,), where f is the first such formal that {f e) does not fail. If all in-
vocations (f e) fail, the case-clause reduces to (e; abort). In the latter case
the clause e can be eliminated if the compiler can conclude that e has no side
effect. Note that the actual value of the clause e need not be known.

4. Clause (with ..., do e) can, under certain conditions, be
reduced by substituting the occurrences of xt with et in e; the substituted
e replaces the with-clause. This reduction rule can always be applied if
clauses et have no side effects. But even if et does have a side effect, the sub-
stitution is legal if X; occurs in e exactly once. If left to right evaluation is
to be guaranteed, an additional constraint is be required: identifier xt can
be replaced by et in e only if there is no subclause in e that precedes the
occurrence of xt and may have a side effect. This additional constraint is
actually satisfied in most cases that occur in practice, but the compiler may
have difficulties in verifying it. The rule becomes simpler and more general
if the requirement of left-to-right evaluation is relaxed.

5. The first component of a serial clause (et; e^ can be moved into the front
of a structured clause in the following cases:

[•••> (er, e2), ...]
proc (ex; e2)=>e3
(ei> e2)e3
e3 (ei5 ei)
{...(ex;e2)~~e3,...}
{...e3~~(ex; e2), ...}

Uniform Approach to Parameter Transmission Mechanisms 233

with (et; e2) do e3
if (ei'i ei) then ea else et
case (<?j; e2) in en=>e;12, ...

The reader is encouraged to apply the rules to the formals defined in the preceding
section.

Rules 1 and 4 together may lead to a nonterminating sequence of reductions.
Since compilers have difficulties in recognizing the diverging clauses, it is probably
better to let the programmer specify which clauses shall be evaluated at compile
time. Abstract formals could then be regarded as sophisticated macros rather than
ordinary procedures.

Acknowledgments
®

The author wants to thank Reino Kurki-Suonio and Robert Johnson for their
helpful comments.

References

[1] BURSTALL R . and LAMPSON B . W . , 'A kernel language for abstract data types' and modules,
Proceedings of the International Symposium on Semantics of Data Types, Sophia-Antipolis,
France, 1—50 (1984).

[2] D A H L O - J . , MYRHAUG B . and NYGAARD K . , Common Base Language, Norwegian Computing
Centre (1970).

[3] FORD G . and HANSCHE B . , 'Optional, repeatable and varying type parameters', SIGPLAN
Notices 17:2, 41—48 (1982).

[4] GELENTER D . , JAGANNATHAN S . and LONDON T . , 'Environments as first class objects', Proceed-
ings of the 14th conference on Principles of Programming Languages, Munich, West Germany,
98—110(1987).

[5] PRASAD V. R . , 'Variable number of parameters in typed languages', Software—Pratice &
Experience, 10, 507—517 (1980).

[6] Specification for Computer Programming Language Pascal, International Organization for
Standardization, Switzerland (1983).

[7] STOYAN H., Lisp-programmierhandbuch, Akademie-Verlag, Berlin (1978).
[8] STROUSTRUP B . , C + 4- Programming Language, Addison-Wesley (1986).
[9] WEGNER P . , 'On the unification of data and program abstraction in Ada', Proceedings of the

10th conference on Principles of Programming Languages, Austin, Texas, 257—264 (1 9 8 3) .
[1 0] VAN WIJNGAARDEN A . et al., Revised Report on the Algorithmic Language Algol 68, Springer-

, Verlag (1976).

