
A Programming Environment for a Transputer-Based
Multiprocessor System*

M . ASPNÄS a n d R . J . R . BACK

Abo Akademi University, Department of Computer Science
Lemminkäisenkatu 14, SF—20520 Turku, Finland

Abstract

This paper presents a transputer-based multiprocessor system, Hathi—2, and the programming
environment being developed for this system. Hathi—2 is mainly programmed in the language
Occam, and thus the programming environment is based on the Occam model of parallelism and
communication. The programming environment gives the user an abstraction of the physical struc-
ture of the multiprocessor system. The user sees the multiprocessor system as a pool of resources
(processors and communication links), which are allocated to the users program and connected
to the topology described by the program structure. The environment is implemented on a Sun
graphical workstation.

1. Introduction

This paper describes the design of a graphical programming environment for a
transputerbased multiprocesor system. The programming environment consists of
a number of program development tools integrated under a common graphical user
interface.

The Hathi-2 multiprocessor system was designed and built in a joint project
between the Department of Computer Science at Abo Akademi and the Technical
Research Center of Finland (VTT/TKO) in Oulu. As a part of the project, a number
of application programs have been implemented on Hathi-2. The experiences
gained from the applications show that more sophisticated program development
tools are needed for multiprocessor systems of this kind. At present, programming
multiprocessor systems is considered more difficult than programming sequential
computer system. This is mainly due to the lack of programming tools available
for use in the design and debugging of parallel programs.

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

8 Acta Cybernetics DC/3

292 M. Aspnás, R. J. R. Back

A parallel program for a MIMD-type multiprocessor system is normally de-
signed as a number of independent sequential processes, which communicate with
each other by sending and receiving messages through point-to-point commuication
channels. When writing a parallel program, the logical process network is first desig-
ned. The logical process network describes the structure of the processes in the
program and their interconnections through logical communication channels. The
processes are written and tested separately, until the programmer is confident in
their behaviour. After this, the programmer decides how these processes are placed
on physical processors and executed in parallel. Two steps are required to do this:
first, one must describe how the processes are placed on physical processors and
what communication links connecting these are needed, and second, the multi-
processor system has to be connected (reconfigured) into this topology.

Both these steps involve a substantial amount of work for the programmer and
introduce an additional source of errors. When the programmer has written a parallel
program, he wants to experiment with different processor interconnection topologies
and process placement schemes and make the program as well balanced and effective
as possible. This is done by monitoring the execution of the parallel program and
identifying the bottlenecks of the program. Information about the utilization of the
physical resources used by the program during execution is gathered and presented
to the user. The bottlenecks in a parallel program are usually caused by either over-
loaded physical communication channe!s or by processors which are allocated
too much computation. In the ideal case, all physical resource? have an evenly
distributed utilization, and no bottlenecks exist in the program. To remove an
identified bottleneck, the programmer has to change the logical process network,
the placement of the logical processes on the physical processes or the interconnec-
tion structure of the physical processors. Often all these are changed simultaneously,
and the programmer has to place the logical processes onto the physical structure
again, and the design cycle is repeated.

To identify and remove logical errors in a parallel program, the programmer
wants to observe the logical behaviour of the program during execution. In a parallel
program, this can be done by using algorithm animation techniques, in which the
program execution is presented to the user in a graphical way as an animation of
the execution. Traditional methods for program debugging (traces, breakpoints
etc.) can not generally be used, as there is no global control of the system.

Thus, the programming cycle for parallel programs consists of designing the
logical process network and the processes, reconfiguring the pysical process network
into a suitable topology, mapping the logical process structure onto the physical
processor network, debuging and correcting logical programming errors and moni-
toring the execution of the program to identify bottlenecks, which often leads to
changes in the logical program structure, and so the cycle is repeated.

At present, the programmer has to do all these steps manually. Clearly, some
of these steps could be done automatically by a set of programming tools. The
programming environment presented in this paper gives the user this type of utili-
ties, by providing an integrated set of tools for mapping a process structure onto
a physical processor network, monitoring the resource utilization of an executed
program and animating the logical behaviour of a program. The presented program-
ming environment provides the user with an abstract view of the multiprocessor
system by hiding the physical interconnection structure of the system from the user.

A Programming Environment for a Multiprocessor System 293

The paper is organized as follows: the architecture of the Hathi—2 system is
presented in Section 2. In Section 3 we give a short description of the programming
language Occam. In Section 4 we describe the programming environment and finally,
in Section 5 we describe the future developments of the presented programming
environment.

2. The Hathi-2 Multiprocessor System

Hathi-2 is a reconfigurable general purpose multiprocessor system consisting
of 100 32-bit IMS T800 transputers [Inml], 25 16-bit IMS T212 transputers and
25 IMS C004 crossbar switches. The system can be characterized as a loosely coupled
MIMD multiprocessor, with a reconfigurable distributed interconnection network
and a modular design. A more detailed description of the Hathi-2 architecture
and its use can be found in [AsBaMa], [AsMa] and [Peh]. The distributed switching
network is described in [Âij].

Hathi-2 consists of 25 identical boards, each containing four T800 transputers,
one T212 transputer and one 32 link crossbar switch. The T800 transputers are
connected pairwise to each other via one of the four communication links. The
three remaining links are connected to the crossbar switch (see Fig. 1). Three links
from each switch are used as I/O links, i.e., to connect users host computers and
peripheral units to the system. The remaining 16 links from the crossbar switch are
used to form a statical torus connection between the boards in the Hathi-2 system,
thus forming the distributed switching network.

Figure I. Hathi-2 board architecture

The C004 crossbar switch is controlled by the T212 transputer via a control
link. One link on the T212 is connected to the crossbar switch and can be connected
via the switch to any other transputer link. The two remaining links on the T212
(links 0 and 1) are used to connect the T212 transputers into a ring, thus forming
the distributed control system.

The crossbar switches on the Hathi-2 boards are connected to each other in
a static torus connection by connecting each pair of neighbouring boards to each

8»

294 M. Aspnás, R. J. R. Back

Figure 2. Hathi-2 board connections

other with four links (see Fig. 2). The crossbar switches form a distributed switching
network connecting the communication links of the T800 transputers, which enables
the system to be reconfigured by software.

Hathi-2 is used as a back-end computing resource. The user edits, compiles
and links his programs on a host computer, i.e., a Sun workstation. The program
can then be loaded on to the multiprocessor system and executed.

The Hathi-2 system can be shared between a number of simultaneous users
by paritioning it into several smaller independent multiprocessor systems (see Fig. 3).
All users are allocated a separate partition which is independent of all other parti-
tions. A user has full control over his own partition, but can not interfere with other
users.

The T212 transputers are connected to each other in a ring, thus forming a
separate control system which controls the switching network (see Fig. 4). The control
system is totally independent from the rest of the system. The only connection between
the user and the control system is via a link connecting one T212 transputer to the

Figure 3. Partitioning the system

A Programming Environment for a Multiprocessor System 295

users host computer. The user can request system services by sending commands
to the control system via this link.

The control system has two main tasks: to control the distributed switching
network and to monitor the activities in the system. The Hathi-2 architecture
contains hardware dedicated to monitoring the resource utilization in the system.
The monitoring hardware consist of a CPU load meter which measures the CPU
utilization by observing the bus activity and a FIFO buffer connecting all T800
transputers on a board to the controlling T212 transputer. The FIFO buffer can be
used for sending reports about resource utilization from the T800 to the T212 without
affecting the communication links.

The control system also contains an interrupt subsystem implemented using
the transputers EVENT interrupt. A processor in the control system can send an
interrupt signal to all processors in the same partition. This interrupt is used in the
monitoring system to generate a synchronizing signal which divides the time into
short time intervals. The CPU and link utilization are measured for each interval
and reported to the user.

3. The Occam programming language

Occam [Inm2], [JoGo] is a high-level programming language based on the
CSP language [Hoa]. An Occam program consists of a number of sequential proces-
ses, which communicate with each other via unidirectional channels using synchro-
nous message passing.

A channel connects two processes, of which one acts as a sender and the other
as a receiver. A process sends a message M via a channel c with an output statement
clM, and the receiving process inputs a message from the channel to a local variable
with an input statement clM. A process can wait for input from a number of channels
at the same time, using an ALT construct. The sending process can not choose
between different communication alternatives, but commits itself to a communica-
tion when it executes an output statement. Communication is synchronous, i.e.,
the process which first executes a communication statement remains waiting until its
communication partner executes a corresponding communication statement.

Parallelism is expressed in occam by the PAR construct, which specifies that

296 M. Aspnás, R. J. R. Back

PAR
SEQ

X:=5
c ! X

SEQ
c ? Y
Y Y * 2

Figure 5. Communicating processes in Occam

two or more processes are executed in parallel. Sequential execution is specified
with the SEQ construct. Scope is expressed in Occam by indentation. In the example
in Figure 5, two processes communicate with each other via a channel c.

More than one process can be executed simultaneously on one transputer. The
transputer divides its time between processes using a simple round-robin scheduler,
which is built into the transputer hardware. Communication between processes
executed on the same transputer is implemented through memory locations.

To execute a program with real parallelism on more than one transputers the
programmer has to describe on which transputers the processes are to be executed
and which communication links are used for communication between the processes.
This is done by an Occam-like configuration language. The example in Figure 6
describes a ring of three processors, each executing a process Calculate. The processes
communicate with each other by inputting from link 3 and sending on link 2. The
user thus has to explicitly describe on which processor each process is executed and
which communication links are used for communication between the processes.
This means that the user has to have detailed knowledge about the hardware structure
of the multiprocessor system.

CHAN OF INT CO. C l . C2:

„ SC PROC Calculate (CHAN O F INT From.previou8. To.next)

PLACED PAR

PROCESSOR 0 T 8
PLACE CO A T 2 Hnk2out
PLACE C2 A T 7 : - BnlOln
Calculate (C2. CO)

PROCESSOR 1 T 8
PLACE CO A T 7 : - Hnk3In
PLACE C I A T 2 Onttout
Calculate (CO. C I)

PROCESSOR 2 T8
PLACE C1 A T 7 : - 0nk3ln
PLACE C2 A T 2 Dnttout
Calculate (C l . C2)

9
1

9 3 ? 0 1 2

Figure 6. Placing processes on processors

A Programming Environment for a Multiprocessor System 297

4. The programming environment

The programming environment developed for the Hathi-2 multiprocessor
system , is designed by integrating a number of tools and utilities under a graphical
user interface. The approach taken has been to use as much as possible of already
existing software, i.e., editors, compilers, configurers, network loaders and debuggers.
This is possible, because the Hathi-2 architecture is fully software compatible with
Inmos transputer products.

The utilities that have been developed for Hathi-2 in the project are based on
the specific hardware characteristics of the system and are not directly portable to
other architectures. These tools include a utility wich allows the user to reconfigure
the topology of the system, a monitoring utility which is used for monitoring the
utilization of the resources of the system, and an animation tool which is used to
visualize the execution of a parallel program.

The goal of this work is to make the multiprocessor system easier to use for the
programmers by building a user-friendly graphical interface to the tools, and to
hide the physical structure of the multiprocessor system from the programmer.
The user should be able to construct a parallel program for the Hathi-2 system
entirely within the programming environment. The whole cycle of editing a program,
compiling, loading the program onto a number of processors and executing it,
debugging the program and monitoring the performance of the program can be
carried out within the programming environment.

4.1. The user interface

The user interface of the programming environment is based on a hierarchical
graph editor. The user describes the process structure of a distributed program by
drawing a graphical representation of the processes and their interconnections. The
graph representing a parallel program consists of a number of nodes and arcs, the
nodes representing processes and the arcs representing communication channels
between the processes. A node in the process graph is associated either with a sub-
graph or directly with the code of the process. The source code describing a process
can be edited by selecting the node representing the process by clicking on it with
the mouse. This will bring up the Occam folding editor, and the code of the process
can be edited in the normal way.

The processes in the process graph are grouped together to form tasks. A task
is a separately compiled unit of code (in Occam called a SC), which is executed on
one processor and usually consists of a number of parallel communicating processes.
The processes constituting a task are executed on one transputer using the trans-
puters timeslicing scheduler. Thus, the process graph is condensed into a task graph,
which determines the physical structure of the processor network on which the
program is to be executed. In Figure 7 is an example of a process graph, which is
condensed into a task graph using four processors connected into a pipeline. The
physical communication links connecting processors are drawn with fat lines, and
are always bidirectional (consisting of two unidirectional links).

The utilities in the programming environment use the information about the
distributed program contained in the process graph, the source code of the processes
and the grouping of the processes into tasks. The editor used is a stand-alone

298 M. Aspnás, R. J. R. Back

> - • 0
Router

^ P r o c e s s 2 ^

Figure 7. A process graph partitioned into a task graph

Occam folding editor. Similarly, the compiler, the configurer, the network loader
and the debugger are the stand-alone Occam program development tools from
Inmos. When the user invokes one of these tools by selecting an apropriate entry from
a menu in the user interface or by clicking on a node in the process graph, this is
translated to a corresponding Unix call which activates one of these utilities.

4.2. The mapping utility

The mapping utility developed for Hathi-2 automatically maps a task graph
onto the transputers in Hathi-2 and establishes the needed link connections between
the transputers. The input from the user to the mapping utility consists of the task
graph of the distributed program. As output, it generates the configuration statements
needed by the Occam configurer to place this program structure onto a physical
topology. The mapping utility also generates the commands needed by the recon-
figuration software to connect the transputers into the topology described by the
task graph.

The mapping utility makes it possible to hide the physical structure of Hathi-2
from the user. The user does not have to explicitly specify which of the four links on a
transputer should be used for communication with other processors. This is a very
useful feature when writing parallel programs, since the design of the configuration
statements is considered to be difficult and very error-prone. The mapping of the
processor graph onto the physical structure of Hathi-2 is done by a simulated
annealing algorithm [Bok].

It is possible to find processor structures that cannot be mapped to the hardware
structure of the multiprocessor system. First, not all graphs can be established on a
transputer network, because a transputer has only four links. One example of this
is a 5-dimensional hypercube, which requires a node degree of five. Second, the
architecture of the distributed switching network in Hathi-2 imposes some limi-
tations on which graphs can be established. The main limiting factor here is that
there are only four links available.between every pair of neighboring boards,in the
static torus interboard connection. Finally, the algorithm used in the mapping utility
does not guarantee that a mapping of a graph to the structure of Hathi-2 is found.
However, the mapping algorithm has proved to work well in practice for a large
class of problems.

A Programming Environment for a Multiprocessor System 299

4.3. The monitoring utility

The monitoring utility is used for monitoring the utilization of the resources
in the multiprocessor system during program execution. It is used for finding bottle-
necks in parallel programs executing on the system, and to provide information
about the load balance of the programs. Monitoring is done by observing the CPU
and link activity in the transputer network. The monitoring software is based on the
monitoring hardware built into the Hathi-2 architecture, which makes it possible
to monitor the system without introducing any substantial overhead on the main
computation.

Monitoring data, i.e., data about CPU and link utilization on the transputers
executing the monitored program, is gathered by the transputers in the control
system. This data is sent through the control system to the users host computer,
where it is stored in a file and presented to the user.

The time during which monitoring is done is divided into short time intervals
(typically 100 to 500 milliseconds), and for each interval the monitoring system
records the percentual utilization of the CPU, the number of bytes transmitted
over a link and the time a process has spent waiting for a communication to take
place.

The monitoring data is presented to the user as the average percentual utilization
of the CPUs and links during an interval. The presentation is based on the task graph
of the distributed program. For each transputer, its percentual CPU utilization is
presented as a number written inside the node representing the transputer in the
graph. Similarly, the percentual utilization of each link is written above the arc
representing the link in the graph. In Figure 8 there is an example of how the results
from a monitored program is presented to the user.

1 A 1
)

< r ()
7 6 %

Figure 8. Presentation of monitoring data

The user can control the length of the time interval. Monitoring data is sampled
with a fixed interval during program execution, but the data can be presented with
any interval longer than this. If the user wants to see the result of the monitoring in
an interval longer than the sampling interval, the mean values from a sufficient
number of sampling intervals are calculated. The user can browse through the moni-
toring data both backwards and forwards in time. Normally, the first time a program
is monitored, the user wants to view the result using a rather large timestep, to get
an overall picture of the behaviour of the program. The user can later examine the
execution of the program more closely, using a smaller time interval.

300 M. Aspnás, R. J. R. Back

4.4. The animation utility

A program animation is a graphical visualization of the execution of a program
[Sol]. Program animation is used as a high-level debugging tool, which gives the
programmer an understanding of how his program behaves during execution. This
is especially important for parallel programs, as it is very difficult to get a picture
of the overall behaviour of a program executing on a large number of processors.

Animation of parallel programs on the Hathi-2 system is implemented using
the same hardware features as the monitoring system, i.e. the FIFO buffers. In the
animation system, the data sent from the transputers to the control system contain
information that controls the graphical animation of the executed program. This
data is interpreted as graphical commands, which are executed by an animation
process and which result in a graphical illustration of the program execution.

The animation is done by inserting commands into the animated processes,
which send messages about their present state of execution to the animation process.
The animation process receives these messages and translates them into graphical
commands that update the screen. The user has to specify on which points in the
execution the state of the program should be reported. The user also has to describe
how each state should be represented in the animated picture. This is done by a
graphical tool, which allows the user to draw the pictures of which the animation
consists.

The execution of the animated program must also be slowed down, so that the
user has time to register the updates on the screen. The program is slowed down
uniformly, without affecting the logical behaviour of the program. This is implemen-
ted using the synchronization mechanism in Hathi-2. All processes are forced to
wait for a synchronization signal, which is sent from the control system.

5. Conclusions and future work

This report describes work in progress in the Millipede project at Abo Akademi.
The tools that have been described have already been implemented and are now
beeing separately tested arid evaluated. The design of the graphical user interface
which integrates the tools into a programming environment has recently started and
is scheduled to be ready in the last quarter this year. After that, the environment
will be evaluated and any possible further improvements and features will be consi-
dered.

Several components of the environment will be developed further. The routing
algorithm used by the reconfiguration software for establishing link connections
between processors through the distributed switching network will be developed
[ShenI]. Also the mapping algorithm which is used for mapping a task graph to a
physical configuration of Hath-2 will be improved by investigating different types
of heuristic algorithms [Shen2], [Shen3], Finally, the graphical user interface will be
developed, based on the experiences of the users. The goal is to make the environ-
ment as simple as possible to use for the programmers.

A Programming Environment for a Multiprocessor System 301

Acknowledgements

The Hathi-2 multiprocessor system was designed and built in the Hathi pro-
ject, which was financed by TEKES, The Academy of Finland, Abo Akademi and
VTT. Part of the work has been done in the FINSOFT III research program, finan-
ced by TEKES. The authors also wish to thank Kaisa Sere for comments on the
paper.

References

[AsBaMa] M. ASPNAS, R. J. R. BACK, T - E . MALEN, The Hathi-2 Multiprocessor System, Reports
on Computer Science, Ser. A, No. 80, Abo Akademi, 1989.

[AsMa] M. ASPNAS, T-E. MALEN, Hathi-2 Users Guide, version 1.0, Reports on Computer
Science, Ser. B, No. 6, Abo Akademi, 1989.

[Ber] F. BERMAN, Experience with an Automatic Solution to the Mapping Problem, in The
Characteristics of Parallel Algorithms, Jamisson, Gannon and Douglas (ed.), MIT
Press, 1987.

[Bok] S. BOKHARI, On the Mapping Problem, IEEE Transactions on Computers, C-30, no. 3
(March, 1981), pp. 207—214.

[CrMa] P. CROL and G. MANSON, Configuration Tools for a Transputer Workstation, in Applying
Transputer Based Parallel Machines, A. Bakkers (ed.), Proceedings of the 10th Occam
User Group Tecnical Meeting, Enschede, Netherlands, IOS, 1989.

[EkMa] P. EKLUND, T - E . MALEN, Block Placement in Switching Networks, Proc. CONPAR-88,
Manchester, Great Britain, Cambridge University Press, 1988, pp. 289—295.

[EMMM] J. EUDES, F. MENNETEAU, L. MUGWANEZA and T. MUNTEAN, PDS: Advanced Program
Development System for Transputer Based Machines, in Applying Transputer Based
Parallel Machines, A. Bakkers (ed.), Proceedings of the 10th Occam User Group Tecnical
Meeting, Enschede, Netherlands, IOS, 1989.

[Hoa] C. A. R. HOARE, Communicating Sequential Processes, Communications of the ACM,
21, 8 (Aug. 1978), pp. 666—677.

[Inmll Inmos Limited, Transputer Reference Manual, Prentice-Hall, 1988.
[Inm2] Inmos Limited, Occam 2 Refernce Manual, Prentice-Hall, 1988.
[JoGo] G. JONES and M. GOLDSMITH, Programming in Occam 2, Prentice-Hall, 1988.
[Peh] K. PEHKONEN, A Dynamically Reconfigurable Parallel Computer Hathi-2, Licentiate

thesis, University of Oulu, Department of Electrical Engineering, 1989.
[Shenl] H. SHEN, Fast Path-disjoint Routing in Transputer Networks, to appear in Proc. First

Finnish—Hungarian Workshop on Programming Languages and Software Tools,
Szeged, Hungary, 1989.

[Shen2] H. SHEN, Mapping Parallel Programs onto Transputer Networks, to appear in Proc.
Australian Transputer and OCCAM User Group Conference, Melbourne, Australia,
1989.

[Shen3] H. SHEN, Self-adjusting Mapping: A Heuristic Mapping Algorithm for Mapping Parallel
Programs onto Transputer Networks, to appear in Proc. 11th Occam User Group
Technical Meeting, Edinburgh, Great Britain, 1989.

[Sol] U. SOLIN, Animation Techniques for Parallel Agorithms, Proc. International Conf. on
Parallel Processing and Applications, 23—25. 9. 1987, L'Aquila, Italy.

[Aij] T. AIJANEN, Distributed Interconnection of a Reconfigurable Multicomputer System,
Microprocessing and Microprogramming, 3—1988, pp. 243—246.

