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Abstract 

This paper presents a transputer-based multiprocessor system, Hathi—2, and the programming 
environment being developed for this system. Hathi—2 is mainly programmed in the language 
Occam, and thus the programming environment is based on the Occam model of parallelism and 
communication. The programming environment gives the user an abstraction of the physical struc-
ture of the multiprocessor system. The user sees the multiprocessor system as a pool of resources 
(processors and communication links), which are allocated to the users program and connected 
to the topology described by the program structure. The environment is implemented on a Sun 
graphical workstation. 

1. Introduction 

This paper describes the design of a graphical programming environment for a 
transputerbased multiprocesor system. The programming environment consists of 
a number of program development tools integrated under a common graphical user 
interface. 

The Hathi-2 multiprocessor system was designed and built in a joint project 
between the Department of Computer Science at Abo Akademi and the Technical 
Research Center of Finland (VTT/TKO) in Oulu. As a part of the project, a number 
of application programs have been implemented on Hathi-2. The experiences 
gained from the applications show that more sophisticated program development 
tools are needed for multiprocessor systems of this kind. At present, programming 
multiprocessor systems is considered more difficult than programming sequential 
computer system. This is mainly due to the lack of programming tools available 
for use in the design and debugging of parallel programs. 

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages 
and Software Tools, Szeged, Hungary, August 8—11, 1989. 
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A parallel program for a MIMD-type multiprocessor system is normally de-
signed as a number of independent sequential processes, which communicate with 
each other by sending and receiving messages through point-to-point commuication 
channels. When writing a parallel program, the logical process network is first desig-
ned. The logical process network describes the structure of the processes in the 
program and their interconnections through logical communication channels. The 
processes are written and tested separately, until the programmer is confident in 
their behaviour. After this, the programmer decides how these processes are placed 
on physical processors and executed in parallel. Two steps are required to do this: 
first, one must describe how the processes are placed on physical processors and 
what communication links connecting these are needed, and second, the multi-
processor system has to be connected (reconfigured) into this topology. 

Both these steps involve a substantial amount of work for the programmer and 
introduce an additional source of errors. When the programmer has written a parallel 
program, he wants to experiment with different processor interconnection topologies 
and process placement schemes and make the program as well balanced and effective 
as possible. This is done by monitoring the execution of the parallel program and 
identifying the bottlenecks of the program. Information about the utilization of the 
physical resources used by the program during execution is gathered and presented 
to the user. The bottlenecks in a parallel program are usually caused by either over-
loaded physical communication channe!s or by processors which are allocated 
too much computation. In the ideal case, all physical resource? have an evenly 
distributed utilization, and no bottlenecks exist in the program. To remove an 
identified bottleneck, the programmer has to change the logical process network, 
the placement of the logical processes on the physical processes or the interconnec-
tion structure of the physical processors. Often all these are changed simultaneously, 
and the programmer has to place the logical processes onto the physical structure 
again, and the design cycle is repeated. 

To identify and remove logical errors in a parallel program, the programmer 
wants to observe the logical behaviour of the program during execution. In a parallel 
program, this can be done by using algorithm animation techniques, in which the 
program execution is presented to the user in a graphical way as an animation of 
the execution. Traditional methods for program debugging (traces, breakpoints 
etc.) can not generally be used, as there is no global control of the system. 

Thus, the programming cycle for parallel programs consists of designing the 
logical process network and the processes, reconfiguring the pysical process network 
into a suitable topology, mapping the logical process structure onto the physical 
processor network, debuging and correcting logical programming errors and moni-
toring the execution of the program to identify bottlenecks, which often leads to 
changes in the logical program structure, and so the cycle is repeated. 

At present, the programmer has to do all these steps manually. Clearly, some 
of these steps could be done automatically by a set of programming tools. The 
programming environment presented in this paper gives the user this type of utili-
ties, by providing an integrated set of tools for mapping a process structure onto 
a physical processor network, monitoring the resource utilization of an executed 
program and animating the logical behaviour of a program. The presented program-
ming environment provides the user with an abstract view of the multiprocessor 
system by hiding the physical interconnection structure of the system from the user. 
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The paper is organized as follows: the architecture of the Hathi—2 system is 
presented in Section 2. In Section 3 we give a short description of the programming 
language Occam. In Section 4 we describe the programming environment and finally, 
in Section 5 we describe the future developments of the presented programming 
environment. 

2. The Hathi-2 Multiprocessor System 

Hathi-2 is a reconfigurable general purpose multiprocessor system consisting 
of 100 32-bit IMS T800 transputers [Inml], 25 16-bit IMS T212 transputers and 
25 IMS C004 crossbar switches. The system can be characterized as a loosely coupled 
MIMD multiprocessor, with a reconfigurable distributed interconnection network 
and a modular design. A more detailed description of the Hathi-2 architecture 
and its use can be found in [AsBaMa], [AsMa] and [Peh]. The distributed switching 
network is described in [Âij]. 

Hathi-2 consists of 25 identical boards, each containing four T800 transputers, 
one T212 transputer and one 32 link crossbar switch. The T800 transputers are 
connected pairwise to each other via one of the four communication links. The 
three remaining links are connected to the crossbar switch (see Fig. 1). Three links 
from each switch are used as I/O links, i.e., to connect users host computers and 
peripheral units to the system. The remaining 16 links from the crossbar switch are 
used to form a statical torus connection between the boards in the Hathi-2 system, 
thus forming the distributed switching network. 

Figure I. Hathi-2 board architecture 

The C004 crossbar switch is controlled by the T212 transputer via a control 
link. One link on the T212 is connected to the crossbar switch and can be connected 
via the switch to any other transputer link. The two remaining links on the T212 
(links 0 and 1) are used to connect the T212 transputers into a ring, thus forming 
the distributed control system. 

The crossbar switches on the Hathi-2 boards are connected to each other in 
a static torus connection by connecting each pair of neighbouring boards to each 

8» 



294 M. Aspnás, R. J. R. Back 

Figure 2. Hathi-2 board connections 

other with four links (see Fig. 2). The crossbar switches form a distributed switching 
network connecting the communication links of the T800 transputers, which enables 
the system to be reconfigured by software. 

Hathi-2 is used as a back-end computing resource. The user edits, compiles 
and links his programs on a host computer, i.e., a Sun workstation. The program 
can then be loaded on to the multiprocessor system and executed. 

The Hathi-2 system can be shared between a number of simultaneous users 
by paritioning it into several smaller independent multiprocessor systems (see Fig. 3). 
All users are allocated a separate partition which is independent of all other parti-
tions. A user has full control over his own partition, but can not interfere with other 
users. 

The T212 transputers are connected to each other in a ring, thus forming a 
separate control system which controls the switching network (see Fig. 4). The control 
system is totally independent from the rest of the system. The only connection between 
the user and the control system is via a link connecting one T212 transputer to the 

Figure 3. Partitioning the system 
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users host computer. The user can request system services by sending commands 
to the control system via this link. 

The control system has two main tasks: to control the distributed switching 
network and to monitor the activities in the system. The Hathi-2 architecture 
contains hardware dedicated to monitoring the resource utilization in the system. 
The monitoring hardware consist of a CPU load meter which measures the CPU 
utilization by observing the bus activity and a FIFO buffer connecting all T800 
transputers on a board to the controlling T212 transputer. The FIFO buffer can be 
used for sending reports about resource utilization from the T800 to the T212 without 
affecting the communication links. 

The control system also contains an interrupt subsystem implemented using 
the transputers EVENT interrupt. A processor in the control system can send an 
interrupt signal to all processors in the same partition. This interrupt is used in the 
monitoring system to generate a synchronizing signal which divides the time into 
short time intervals. The CPU and link utilization are measured for each interval 
and reported to the user. 

3. The Occam programming language 

Occam [Inm2], [JoGo] is a high-level programming language based on the 
CSP language [Hoa]. An Occam program consists of a number of sequential proces-
ses, which communicate with each other via unidirectional channels using synchro-
nous message passing. 

A channel connects two processes, of which one acts as a sender and the other 
as a receiver. A process sends a message M via a channel c with an output statement 
clM, and the receiving process inputs a message from the channel to a local variable 
with an input statement clM. A process can wait for input from a number of channels 
at the same time, using an ALT construct. The sending process can not choose 
between different communication alternatives, but commits itself to a communica-
tion when it executes an output statement. Communication is synchronous, i.e., 
the process which first executes a communication statement remains waiting until its 
communication partner executes a corresponding communication statement. 

Parallelism is expressed in occam by the PAR construct, which specifies that 
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PAR 
SEQ 

X:=5 
c ! X 

SEQ 
c ? Y 
Y Y * 2 

Figure 5. Communicating processes in Occam 

two or more processes are executed in parallel. Sequential execution is specified 
with the SEQ construct. Scope is expressed in Occam by indentation. In the example 
in Figure 5, two processes communicate with each other via a channel c. 

More than one process can be executed simultaneously on one transputer. The 
transputer divides its time between processes using a simple round-robin scheduler, 
which is built into the transputer hardware. Communication between processes 
executed on the same transputer is implemented through memory locations. 

To execute a program with real parallelism on more than one transputers the 
programmer has to describe on which transputers the processes are to be executed 
and which communication links are used for communication between the processes. 
This is done by an Occam-like configuration language. The example in Figure 6 
describes a ring of three processors, each executing a process Calculate. The processes 
communicate with each other by inputting from link 3 and sending on link 2. The 
user thus has to explicitly describe on which processor each process is executed and 
which communication links are used for communication between the processes. 
This means that the user has to have detailed knowledge about the hardware structure 
of the multiprocessor system. 

CHAN OF INT CO. C l . C2: 

„ SC PROC Calculate (CHAN O F INT From.previou8. To.next) 

PLACED PAR 

PROCESSOR 0 T 8 
PLACE CO A T 2 Hnk2out 
PLACE C2 A T 7 : - BnlOln 
Calculate (C2. CO) 

PROCESSOR 1 T 8 
PLACE CO A T 7 : - Hnk3In 
PLACE C I A T 2 Onttout 
Calculate (CO. C I ) 

PROCESSOR 2 T8 
PLACE C1 A T 7 : - 0nk3ln 
PLACE C2 A T 2 Dnttout 
Calculate ( C l . C2) 

9 
1 

9 3 ? 0 1 2 

Figure 6. Placing processes on processors 
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4. The programming environment 

The programming environment developed for the Hathi-2 multiprocessor 
system , is designed by integrating a number of tools and utilities under a graphical 
user interface. The approach taken has been to use as much as possible of already 
existing software, i.e., editors, compilers, configurers, network loaders and debuggers. 
This is possible, because the Hathi-2 architecture is fully software compatible with 
Inmos transputer products. 

The utilities that have been developed for Hathi-2 in the project are based on 
the specific hardware characteristics of the system and are not directly portable to 
other architectures. These tools include a utility wich allows the user to reconfigure 
the topology of the system, a monitoring utility which is used for monitoring the 
utilization of the resources of the system, and an animation tool which is used to 
visualize the execution of a parallel program. 

The goal of this work is to make the multiprocessor system easier to use for the 
programmers by building a user-friendly graphical interface to the tools, and to 
hide the physical structure of the multiprocessor system from the programmer. 
The user should be able to construct a parallel program for the Hathi-2 system 
entirely within the programming environment. The whole cycle of editing a program, 
compiling, loading the program onto a number of processors and executing it, 
debugging the program and monitoring the performance of the program can be 
carried out within the programming environment. 

4.1. The user interface 

The user interface of the programming environment is based on a hierarchical 
graph editor. The user describes the process structure of a distributed program by 
drawing a graphical representation of the processes and their interconnections. The 
graph representing a parallel program consists of a number of nodes and arcs, the 
nodes representing processes and the arcs representing communication channels 
between the processes. A node in the process graph is associated either with a sub-
graph or directly with the code of the process. The source code describing a process 
can be edited by selecting the node representing the process by clicking on it with 
the mouse. This will bring up the Occam folding editor, and the code of the process 
can be edited in the normal way. 

The processes in the process graph are grouped together to form tasks. A task 
is a separately compiled unit of code (in Occam called a SC), which is executed on 
one processor and usually consists of a number of parallel communicating processes. 
The processes constituting a task are executed on one transputer using the trans-
puters timeslicing scheduler. Thus, the process graph is condensed into a task graph, 
which determines the physical structure of the processor network on which the 
program is to be executed. In Figure 7 is an example of a process graph, which is 
condensed into a task graph using four processors connected into a pipeline. The 
physical communication links connecting processors are drawn with fat lines, and 
are always bidirectional (consisting of two unidirectional links). 

The utilities in the programming environment use the information about the 
distributed program contained in the process graph, the source code of the processes 
and the grouping of the processes into tasks. The editor used is a stand-alone 
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Figure 7. A process graph partitioned into a task graph 

Occam folding editor. Similarly, the compiler, the configurer, the network loader 
and the debugger are the stand-alone Occam program development tools from 
Inmos. When the user invokes one of these tools by selecting an apropriate entry from 
a menu in the user interface or by clicking on a node in the process graph, this is 
translated to a corresponding Unix call which activates one of these utilities. 

4.2. The mapping utility 

The mapping utility developed for Hathi-2 automatically maps a task graph 
onto the transputers in Hathi-2 and establishes the needed link connections between 
the transputers. The input from the user to the mapping utility consists of the task 
graph of the distributed program. As output, it generates the configuration statements 
needed by the Occam configurer to place this program structure onto a physical 
topology. The mapping utility also generates the commands needed by the recon-
figuration software to connect the transputers into the topology described by the 
task graph. 

The mapping utility makes it possible to hide the physical structure of Hathi-2 
from the user. The user does not have to explicitly specify which of the four links on a 
transputer should be used for communication with other processors. This is a very 
useful feature when writing parallel programs, since the design of the configuration 
statements is considered to be difficult and very error-prone. The mapping of the 
processor graph onto the physical structure of Hathi-2 is done by a simulated 
annealing algorithm [Bok]. 

It is possible to find processor structures that cannot be mapped to the hardware 
structure of the multiprocessor system. First, not all graphs can be established on a 
transputer network, because a transputer has only four links. One example of this 
is a 5-dimensional hypercube, which requires a node degree of five. Second, the 
architecture of the distributed switching network in Hathi-2 imposes some limi-
tations on which graphs can be established. The main limiting factor here is that 
there are only four links available.between every pair of neighboring boards,in the 
static torus interboard connection. Finally, the algorithm used in the mapping utility 
does not guarantee that a mapping of a graph to the structure of Hathi-2 is found. 
However, the mapping algorithm has proved to work well in practice for a large 
class of problems. 
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4.3. The monitoring utility 

The monitoring utility is used for monitoring the utilization of the resources 
in the multiprocessor system during program execution. It is used for finding bottle-
necks in parallel programs executing on the system, and to provide information 
about the load balance of the programs. Monitoring is done by observing the CPU 
and link activity in the transputer network. The monitoring software is based on the 
monitoring hardware built into the Hathi-2 architecture, which makes it possible 
to monitor the system without introducing any substantial overhead on the main 
computation. 

Monitoring data, i.e., data about CPU and link utilization on the transputers 
executing the monitored program, is gathered by the transputers in the control 
system. This data is sent through the control system to the users host computer, 
where it is stored in a file and presented to the user. 

The time during which monitoring is done is divided into short time intervals 
(typically 100 to 500 milliseconds), and for each interval the monitoring system 
records the percentual utilization of the CPU, the number of bytes transmitted 
over a link and the time a process has spent waiting for a communication to take 
place. 

The monitoring data is presented to the user as the average percentual utilization 
of the CPUs and links during an interval. The presentation is based on the task graph 
of the distributed program. For each transputer, its percentual CPU utilization is 
presented as a number written inside the node representing the transputer in the 
graph. Similarly, the percentual utilization of each link is written above the arc 
representing the link in the graph. In Figure 8 there is an example of how the results 
from a monitored program is presented to the user. 

1 A 1 
) 

< r ( ) 
7 6 % 

Figure 8. Presentation of monitoring data 

The user can control the length of the time interval. Monitoring data is sampled 
with a fixed interval during program execution, but the data can be presented with 
any interval longer than this. If the user wants to see the result of the monitoring in 
an interval longer than the sampling interval, the mean values from a sufficient 
number of sampling intervals are calculated. The user can browse through the moni-
toring data both backwards and forwards in time. Normally, the first time a program 
is monitored, the user wants to view the result using a rather large timestep, to get 
an overall picture of the behaviour of the program. The user can later examine the 
execution of the program more closely, using a smaller time interval. 
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4.4. The animation utility 

A program animation is a graphical visualization of the execution of a program 
[Sol]. Program animation is used as a high-level debugging tool, which gives the 
programmer an understanding of how his program behaves during execution. This 
is especially important for parallel programs, as it is very difficult to get a picture 
of the overall behaviour of a program executing on a large number of processors. 

Animation of parallel programs on the Hathi-2 system is implemented using 
the same hardware features as the monitoring system, i.e. the FIFO buffers. In the 
animation system, the data sent from the transputers to the control system contain 
information that controls the graphical animation of the executed program. This 
data is interpreted as graphical commands, which are executed by an animation 
process and which result in a graphical illustration of the program execution. 

The animation is done by inserting commands into the animated processes, 
which send messages about their present state of execution to the animation process. 
The animation process receives these messages and translates them into graphical 
commands that update the screen. The user has to specify on which points in the 
execution the state of the program should be reported. The user also has to describe 
how each state should be represented in the animated picture. This is done by a 
graphical tool, which allows the user to draw the pictures of which the animation 
consists. 

The execution of the animated program must also be slowed down, so that the 
user has time to register the updates on the screen. The program is slowed down 
uniformly, without affecting the logical behaviour of the program. This is implemen-
ted using the synchronization mechanism in Hathi-2. All processes are forced to 
wait for a synchronization signal, which is sent from the control system. 

5. Conclusions and future work 

This report describes work in progress in the Millipede project at Abo Akademi. 
The tools that have been described have already been implemented and are now 
beeing separately tested arid evaluated. The design of the graphical user interface 
which integrates the tools into a programming environment has recently started and 
is scheduled to be ready in the last quarter this year. After that, the environment 
will be evaluated and any possible further improvements and features will be consi-
dered. 

Several components of the environment will be developed further. The routing 
algorithm used by the reconfiguration software for establishing link connections 
between processors through the distributed switching network will be developed 
[ShenI]. Also the mapping algorithm which is used for mapping a task graph to a 
physical configuration of Hath-2 will be improved by investigating different types 
of heuristic algorithms [Shen2], [Shen3], Finally, the graphical user interface will be 
developed, based on the experiences of the users. The goal is to make the environ-
ment as simple as possible to use for the programmers. 
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