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Abstract 

The multidimensional vector bin packing problem consists in packing Tri-
dimensional items into a minimum number of m-dimensional bins with unit 
capacity in each of the m dimensions in such a way that the sum of each 
coordinate of the items received by any bin is not larger than one. We improve 
the lower bound of the First-Fit-Decreasing heuristic when m > 5 and odd, 
and prove that this heuristic is optimal when m = 2 if each item has at least 
one coordinate larger than 1/2. Finally, if this last condition holds and m > 3, 
we show that the problem remains NP-hard. 

1 Introduction 
In the multidimensional vector bin packing problem (MDVPP), we are given a list 

L = ( xi,x2,...,xn) 

of n items, where the items are vectors of form 

(si(a:<),s2(a;¿),...,sm(x<)), t = 1,2, . . . , n , • 

with 0 < sy(zt-) < 1, j = 1,2, . . . ,m. Then, the problem is to pack the items 
into a minimum number of bins, of unit capacity in each dimension, in such a way 
that the vector sum of the items received by any bin does not exceed (l, 1 , . . . , 1). 
Since this problem is a generalization of the classical one-dimensional bin packing 
problem, it is clearly NP-hard. 

Garey et al.[l) analyse some heuristics to find an approximate solution to 
MDVPP. Specifically, they provide an exact worst-case bound for the First-Fit (FF) 
heuristic, but only lower and upper bounds for a variant of the First-Fit-Decreasing 
(FFD) method. 

In this note, we improve Garey et al.'s lower bound. Then, for the special case 
where each item has at least one coordinate larger than 1/2, we show that FFD is 
optimal if m = 2 and that the problem remains NP-hard when m > 3. 
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2 Definitions and the lower bound for FFD 
We denote the optimal number of bins for the list L = ( i i , i2» • • • i xn) by OPT(L). 
For a heuristic algorithm A, we denote the number of bins used when applying A 
to L by A(L). Let 

i^(Jfc) = max{A{L)/OPT{L) : OPT(L) = k}. 

The asymptotic worst-case ratio of algorithm A is defined as 

RA = lim sup RA (K). 
fc—oo 

We consider the following generalization of the one-dimensional FFD algorithm. 
Generalized First-Fit-Decreasing heuristic ( 6 F F D ) 

Step 1 Reorder the list L — (xi, x2,..., xn) in such a way that 

S m a x ( z i ) > S m w ( l 2 ) > ' ' ' > S m a x ( l f l ) , 

where smax(ar) - maxJ=1 m 3j ( i ) . 

Step 2 Apply the FF heuristic to the ordered list fas for the one-dimensional case 
(cf.[iD)-

Garey et al. [l] prove that for this heuristic 

For the special cases where 1 < m < 3, they obtain slightly better bounds. Speci-
fically, for m = 1, the exact ratio is 11/9, and for m = 2 or 3, the lower bound is 
m + 11/60. 

We now improve Garey et al.'s bound on RGFFD for m > 5 and odd. 
Lemma 1 For m > 5 and odd, 

RGFFD ^ M H -. -R-T —R. m + 2 m ( m + l ) ( m + 2) 

Proof . We use the following "bad" list (the first part is the same as given in 
Graham et al. [l]). Let A; be an arbitrary positive integer which is a multiple of 
m(m + l)(m + 2). The list L is composed of m regions, the items in region i occur 
in L before the items in region t + 1, 1 < » < m. The items in region t are denoted 
by 

Xi, 1,11,21 • • •,xi,g(i) 

where q(i) = (t + 1)(fc - l ) for 1 < i < m, and q(m) = (m + 2)A;. Furthermore, let 
0 < e < k~*. We define the item coordinates as follows. 
For 1 < t < m, 

if 1 < j < i(k - 1), 

if i(k — 1) < j < q(i), 

«+1 + et, hi i 

i iet' . 
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where Uj = k - [ ^ J , t j j = j + 1 - t'(Jfc - 1) and 

s, (xi j ) = e/m2 for 1 < I < m, I ± i and 1 < j < g(t). 

For the items of the last region, 

si(xmJ) - e/(2 • m2) for 1 < I < m - 1 and 1 < j < q(m), 

and 

m + 1 + m ( m + l ) ( m + 3 ) ^ + 2 » 1 - J - k 

Sm[Xm,j) = < 

m-1 
2 ' 

1 i 1 t :r ¡.m—1 ^ <" 
m + 2 ^ ( m + l ) ( m + 2 ) ( m + 3 ) m + 2 ' U K 2 ^ J ^ K

 2 ' 

. ^ + 3 + m ( m + l ? ( m + 3 ) » ~ ^ + 2 ' i f fc2^1 < J < 9 ( m ) . 

So, specifically, items in the first region have the following sizes: 
s(xi,i) = (1/2 + ke, e/m2 , e/m2,..., e/m2), 
i (« i ,2 ) = (1/2 + (k - 1) • e, e/m2 , e / m 2 , . . . , e/m2), 

*(zi,fc-i) = (1/2 + 2 • e, e/m2 , e / m 2 , . . . , e/m2), 

s(xi,fc) = (1/2 - 2 • e, e/m2 , e / m 2 , . . . , e/m2), 
«(*i,fc+i) = (1/2 - 3 • e, e/m2 , e / m 2 , . . . , e/m2), 

s(si,2(fc-i)) = (1/2 - A: • e, e/m2 , e / m 2 , . . . , e/m2). 
Accordingly, in the i-th region (2 < i < m) (the "big" coordinates are in the i-th 
position): 

s ( x i , i ) = a ( x < i 2 ) = . . . = a(xi , i ) = 

= ( e /m 2 , . . . , e /m2 , ^ - j - + ke, e / m 2 , . . . , e /m2 ) , 

s(Xt,i+l) = s(lj,,+2) = . . . = s(xj,2,') = 

- ( e /m 2 , . . . , e /m2 , ^ - j - + (A; - l)e, e / m 2 , . . . , e/m2) , 

s(x<,(fc-2).+l) = a(Xi,(fc_2)<+2) = • • • = 3(zi,(fc_i)i) = 

= ( e /m 2 , . . . , e/m2 , + 2e, e / m 2 , . . . , e /m2 ) , 
t + l 

s(s,\(fc-i)i+i) = ( e /m 2 , . . . , e/m2 , ^ - 2 • t • e, e / m 2 , . . . , e /m2 ) , 
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s(*i,(fc-i)«'+2) = [s/m2 e/m2, ^ - 3 • t • e, e/m2,..., e/m2). 

a(a:i,(fc-i)(.+i)) = {e/m2 e/m2, ^ - k i e , e/m2,..., e/m2). 
When applying GFFD to our list L, we may also partition the set of bins used 

into m subsets, each bin of subset t containing only items from region t of list L. 
For 1 < % < m — 1, we have (k — 1) bins in subset *, the Z-th bin of them contains 
exactly t items with Sj = ^ - + (£+1 —/)e and one item with Si = t(A:+l —i)e. 
With these items, the bin is full in the t-th dimension. So, we use (m — l)(k — 1) 
bins for the items in the (m — 1) first regions of L, and we can not pack items from 
the later regions in these bins, even if their t-th coordinate is just e/m2. 
Concerning the items in the m-th region, their "large" coordinate is the last one 
and can be of three different types. It is easy to check that all of these items will 
be packed in some bin together with other items, the "large" coordinate of which 
being of the same type. Hence, we use k • m^/m bins for the items with large 
coordinate of the first type, k/(m + l) bins for the items of the second type and 

t ! 
when applying GFFD to £ is 
k • m^-/[m + 2) for the third type. Consequently, the total number of bins used 

( t - 1 ) ( m - 1 ) + t . ( 1 + _ i _ _ m ( m + ; ' ) ( m + 2 ) l 

On the other hand, the optimal packing uses at most k bins. To see this, we 
provide the following packing with k bins. Each bin contains m + 2 items from the 
last region, i.e. (m — 1)/2 items of the first type, one item of the second type and 
(m + 3)/2 items of the third type. With these items, the sum of item sizes at each 
bin is 

,m + 2 m + 2 m + 2 . 
I r t * ~2rrP~e' ~ £)• 

Moreover, each bin contains items from each of the other regions. Specifically: 

• The first bin contains the first t items from each region i (t < m), these are 
the items with size = l / ( t + l ) + k • e. 

• The last bin contains the ((A: — 1)» + l)-th item of each region t < m. 

• Each remaining bin contains t + 1 items from each subset i, i.e. t items with 
size Si = l /(* + 1) - t • e and one item with Si = l / ( t + 1) +1 • (i - 1) • e (for 
an appropriate t). 

Note that for all bins and in each dimension, the capacity used by "large" coordina-
tes is never bigger than 1 — e so that we leave place enough for "small" coordinates. 

In conclusion, for our list L, 

» . „ ( „ • , ) + t ( 1 + _ l _ - m ( m + i i ) ( m + 2 ) ) 1 

, 1 1 m — 1 = m-\ — , 
m + 2 m(m + l ) (m + 2) k 
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which can be made arbitrarily close to 
1 1 

m + m + 2 m(m + l)(m + 2) 

by choosing k large. 
• 

3 The special case 
We study here the MDVPP for lists L = (xx , i2> • • • i XN) such that 

Smaxfci) > 1 / 2 for i = 1, 2, . . . , n. ( l ) 

A. When m = 2, we prove that GFFD is optimal. The idea behind this result 
is that, in such a case, each bin can contain at most two items, a situation which 
also occurs in the classical bin packing when all items have a size larger than 1/3 
and this case is known to be polynomial. 
Lemma 2 If m=2, then for all lists for which (l) holds, G¥¥D(L)=0¥T(L). 
Proof . Assume that the elements in L are ranked by decreasing value of their 
largest coordinate. Furthermore, let L = Li U L2 with L\ = (xi, X2,.. . , xp) and 
¿2 = (yi ,y2 , - - - ,y q ) such that sm a x(x,) = Si(xj), i = l , 2 , . . . , p and sm a x(y,) = 
32 (y«01 * = 1| 2 , . . . , q. Without loss of generality, we may assume that L\C\L2 = 0. 

Now, define a bipartitate graph G = (LI,L2, E) where (x,-, t/y) € E iff s*(xj) + 
sfc(yy) < 1, k = 1,2. Since each bin can contain at most two elements (one from 
¿ i and the other one from L2), the optimal packing of L corresponds to maximum 
matching M* of G. Hence, to prove that GFFD is optimal, we shall show that 
the matching M G F F D corresponding to the GFFD solution is optimal in G, i.e. 
there exists no augmenting path with respect to M G F F D in G (see e.g. Papadimit-
riou and Steiglitz [3]). At the end of this proof, such a heuristic solution and its 
corresponding matching are illustrated by an example. 

To begin with, remark that if xt- e L% and y}- E L2 are both free vertices for 
Mgffd, then (x,-, yA 4. E, for otherwise they would have been put together in a 
bin when applying GFFD. 

Now, assume, by contradiction, that there exists an alternating path with res-
pect to MGFFD- From the above remark, we know that such a path contains more 
that one edge, i.e. at least three edges. Let 

F = (x»I, yy, , Xi,, yy3 , . . ., yy,_!, Xi,, yy,} 
be a minimal alternating path with respect to MGFFD- Hence, and yy, are free 
vertices, ( x^ .yy j € E\MG FFD for A; = 1,2,..., I and (x<i t+1 ,yyj € M G F F D for 
k = 1,2,... ,1 — 1. (see Figure 1 in which the edges of M G F F D are indicated in 
waved lines). Furthermore, we denote by iiK >- x;k the fact that Xih has been 
considered before x^ when applying GFFD (i.e. 3i(x,\) > si(x,-fc)). The same 
notation applies for items in L2. 
Claim. Xifc+l >- nk and yik+l >• yik for k = 1 ,2 , . . . , i — 1. 
Proof . By induction. 

a) k = 1. From the definition of P, (x .^yy j E E \ M G F F D and (yy,,x,-,) E 
MGFFD, i-e- GFFD put y}l and Xj, in the same bin. Since Xj, fits also with yy, in 
a bin, this means that >- n , . 
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Next, if yy, -< yy,, we have that 

si ( z f l ) + si (yy,) < si (x f ,) + si (yy,), 

since Xi, >- Xilt and the right size is bounded above by 1, since (x,-,,yy,) G E; and 

S2(i<i) + s2(yy3) < s2 ) + s2(yyt), 

since yy, -< yy,, and the right size is bounded above by 1, since (a:,-,, yy,) G E. 
Hence yy, -< yy, implies that (z^, yy,) G E, which is impossible. Indeed, if 

(^»UJ/JA) E MGFFD, then P is not minimal. If ( in.yy,) G M G F F D > then P 
contains a cycle. Consequently, yy, >- yy,. 

b) Assume n > Xi, x,-, and yik_l > . . . > - yi7 >- yit. Since y}k_1 

is not free and y]k_l > yJk_, has been matched before yyt_, when using GFFD. 
Because both yyfc_, and yyfc_, could have been matched with , the item 
with which yyk_, has been matched must be such that >- Xik_l. 

Now, as in a), if y}k -< yJk_1, we have that 

ai fan-i ) + s i ( y jJ ^ « l i ^ J + s i (yyJ, 

since Xik >• Xik_l, and the right size is bounded above by 1, since (xik, y]k) G E; 
and 

S2 (Xik_ , ) + S2 (yyfc ) < 32 ) + 32 (yJfc_ , ), 

since y3k -< yyJk_l, and the right size is bounded above by 1, since , y ^ ^ ) G E. 
Hence yyfc -< y]k_l implies that {xik_1,y]k) G E. 

Then, if (^i/t.n yyj G E \ M Q F F D , P is not minimal and if (xt(t_,, y y j G 
MqffDi M g f f d contains two edge incident to z,p_1, which is impossible. Hence, 

This completes the proof of the claim. 
Finally, we know that the free item yy, of P which is also in £2 is such that 

yy, >- yy, _,. This is a contradiction, since, when applying GFFD, we considered it 
before yy,_, and we did not matched it with , though it was possible. 



On the multidimensional vector bin packing 367 

example. 

Example: Consider the following list 

L = ((0.90,0.10), (0.80,0.30), (0.20,0.75), (0.40,0.70), (0.65,0.30), 

(0.60,0.20), (0.05,0.55)). 

When applying heuristic GFFD, we get GFFD(L)=5 and the corresponding bins 
are 

Bi = {(0.90,0.10) (0.05,0.55)}, 
5 2 = {(0.80,0.30)}, 
B3 = {(0.20,0.75) (0.60,0.20)}, 
BA = {(0.40,0.70)}, 
5 6 = {(0.65,0.30)}. 

The graph associated with L is presented in Figure 2 where the edges of the maxi-
mum matching M Q F F D are indicated in waved lines. 

B. When the dimension of the items in a list L is at least three, MDVPP remains 
unfortunately NP-hard even if each item has at least one coordinate larger than 
V2-

To see this, we first define the decision version of the 3-dimensional vector bin 
packing problem for which condition (1) holds (we call it 3-DVPP with sm a x large.) 
3 - D V P P with s m a x large (Pi) 

INSTANCE: A finite set L of 3-dimensional nonnegative integer vectors 

o, = (siioij.saiaij.aaioj)), t = l , 2 , . . . , n . 

A positive integer bin capacity B such that max(si(ai), S2(°«)i «3(0»)) > 5 / 2 for 
t = 1 ,2 , . . . , n, and a positive integer K. 

QUESTION: Is there a partition of L into disjoint sets L\, L2,..., LK such that 
Ea.6Lk < B for j = 1,2,3 and h= 1,2,..., K1 
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Lemma 8 S-DVPP with amax large is NP-complete. 

Proof . Clearly, this problem belongs to NP. To prove it is NP-complete we show 
that NUMERICAL S-DIMENSIONAL MATCHING (which is NP-complete, (cf.[2], 
p.224)) reduces to a special case of our problem where n = 3m and K = m. 

N U M E R I C A L S-DIMENSIONAL M A T C H I N G (P2) 
INSTANCE: Three disjoint sets X, Y and Z, each containing m elements, a 

nonnegative integer size c(a) for each element a € X U Y U Z, and a nonnegative 
integer bound B. 

QUESTION: Can XuYuZbe partitioned inte m disjoint sets Li, ¿2 Lm 
such that each Li contains exactly one element from each set X, Y and Z such that 
for t = 1 ,2 , . . . , m: 

a€Li 
We construct the instance of (Pi) based on the instance of (P2) in the following 
way. 

• For a € X, define si(o) = 25/3 , s2(o) = 0, and 33(o) = c(o)/2. 
• For a e y , define si(a) = 0, s2(a) = 25 /3 , and s3(a) = c(a)/2. 
• For a S Z, define s^a) = 0, a2(a) = 0, and s3(a) = 5 / 2 + c(a)/2. 

Now, consider a nontrivial instance of (P2), i.e. where maxagxuyuz c(a) < B and 
Eaexuyuz c ( a ) = m B • H e n c e . c(a)/2 < B/2 < B for a € X U Y U Z and the 
reduced instance of (P2) is indeed an instance of (PI). 

Assume now that the answer to the reduced instance is yes. Then, since each 
item has at least one coordinate larger than 5 / 2 , each set Li, L2 Lm contains 
at most three items, i.e. at most one from X, one from Y and one from Z. Further, 
n = 3m implies that each set £t-,t = 1,2,. . .m contains exactly three items, say 
H 6 X, yi € Y and Zi&Z. Furthermore, we know that 

as(a:<) + 33(w) + «3(zi) < B for t = 1 ,2 , . . . , m. (2) 
However, 

£ „ ( « ) = c(a)/2 + £ c(a)/2 + £ ( 5 / 2 + c(a)/2) 
aeXUYUZ a€X a€Y a€Z 

= - Y, c(a) + — \Z\= mB/2 + mB/2 = mB. 
2 aeXUYUZ 2 

In consequence, (2) must be satisfied as an equality, i.e. 
B = s3{xi) + s3{yi) + s3(z,) = c(xi)/2 + c{yi)/2 + B/2 + c(z<)/2. 

Hence, c(z,)+c(yj)+c(zj) = 5 . for t = 1 ,2 , . . . , m, and the partition Li, L2)..., Lm 
also provides a yes answer to (P2). 

Conversely, if a partition L\, L2,..., ¿m provides a yes answer to (P2), it follows 
directly from the definition of s, (a), for t = 1,2,3 and a e X U Y U Z that this 
partition also provides a yes answer to (PI) with n = 3m and K = m. 

• 
From Lemma 3, we can immediately conclude that MDVPP with at least one 

coordinate larger that 1/2 is NP-hard for any m > 3. 
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