Product hierarchies of automata and homomorphic simulation

P. Dömösi * Z. Ésik ^{†‡}

Abstract

A ν_i -product is a network of automata such that each automaton is fed back to at most *i* of the component automata. We show that the ν_i -hierachy is proper with respect to homomorphic simulation.

For all notions and notations not defined here, see [2], [3] or [6]. An automaton $A = (A, X, \delta)$ is a finite automaton with state set A, input set X and transition $\delta : A \times X \to A$. The transition is also used in the extended sense, i.e. as a function $\delta : A \times X^* \to A$ where X^* is the free monoid of all words over X.

Let $\mathbf{A} = \mathbf{A}_1 \times \ldots \times \mathbf{A}_n(X, \varphi)$ be a general product (or g-product) of automata $\mathbf{A}_j = (A_j, X_j, \delta_j), \ j = 1, \ldots, n, \ n \ge 1$. A function

$$\gamma:\{1,\ldots,n\}\to 2^{\{1,\ldots,n\}}$$

is a neighbourhood function of A if each feedback function φ_j is independent of the actual state of any component A_k with $k \notin \gamma(j)$. Thus the concept of a general product with a neighbourhood function is essentially the same as the automata networks of [7]. A general product A with a neighbourhood function satisfying $\operatorname{card}(\gamma(j)) \leq i$ for all $j = 1, \ldots, n$, where i is a fixed positive integer, is referred to a ν_i -product, cf. [4]. An $\alpha_0 - \nu_i$ -product is a ν_i -product which is also an α_0 -product (i.e. loop-free product).

Let $\mathbf{A} = (A, X, \delta)$ and $\mathbf{B} = (B, Y, \delta')$ be automata. We say that A homomorphically simulates B if there are $A' \subseteq A$ and mappings $h_1 : A' \to B$ and $h_2 : Y \to X^*$ such that h_1 is onto, moreover, $\delta(a, h_2(y)) \in A'$ and

$$h_1(\delta(a, h_2(y))) = \delta'(h_1(a), y)$$

4

for all $a \in A'$ and $y \in Y$. The function h_2 will be used also in the extended sense, i.e. as a monoid homomorphism $Y^* \to X^*$. Thus A homomorphically simulates B if and only if the transformation monoid corresponding to B is covered by the transformation monoid corresponding to A, cf. [5]. If X = Y and B is a homomorphic image of a subautomaton of A then B is homomorphically realized by A, cf. [6].

[•]L. Kossuth University, Mathematical Institute, Debrecen, Egyetem tér 1, H-4032

[†]A. József University, Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720

[‡]This research of the second author was carried out with the assistance of the Alexander von Humboldt Foundation.

Let K be a class of automata and let β refer to one of the above particular cases of the g-product. If an automaton A is homomorphically realized (simulated) by a β -product of automata from K then we write $\mathbf{A} \in HSP_{\beta}(K)$ ($\mathbf{A} \in HS^*P_{\beta}(K)$).

Now let $n \ge 1$ be an integer and let $C_n = (C_n, \{x\}, \delta_n)$ with $C_n = \{0, \ldots, n-1\}$ and $\delta_n(i, x) = i + 1 \mod n$, for all $i \in C_n$. Thus C_n is a counter with length n. Let $\mathbf{E} = (E, \{x, y\}, \delta_0)$ be an elevator, so that $E = \{0, 1\}, \delta_0(0, x) = 0$ and $\delta_0(0, y) = \delta_0(1, x) = \delta_0(1, y) = 1$. We set

$$K = \{\mathbf{E}\} \cup \{\mathbf{C}_p | p > 1 \text{ is a prime}\}$$

and prove that there exists an automaton $\mathbf{M} \in HSP_{\alpha_0-\nu_{i+1}}(K)$ which does not belong to $HS^*P_{\nu_i}(K)$, where $i \geq 1$ is any fixed integer.

Let m be the product of the first i + 1 prime numbers. We define $\mathbf{M} = (M, \{x, y\}, \delta')$ with $M = \{0, \ldots, m\}$ and

$$\delta^{i}(j, x) = \begin{cases} j+1 \mod m & \text{if } j = 0, \dots, m-1 \\ m & \text{if } j = m \end{cases}$$
$$\delta^{i}(j, y) = \begin{cases} j+1 \mod m & \text{if } j = 1, \dots, m-1 \\ m & \text{if } j = 0 \text{ or } j = m. \end{cases}$$

Proof that $\mathbf{M} \notin HS^*P_{\nu_i}(K)$. Assume to the contrary that a ν_i -product with neighbourhood function γ

$$\mathbf{A} = (A, X, \delta) = \mathbf{A}_1 \times \ldots \times \mathbf{A}_n(X, \varphi)$$

of automata form K homomorphically simulates M. We may suppose that n is minimal with this property, i.e., if B is a ν_i -product of automata from K which homomorphically simulates M, then the number of factors of B is at least n. Let $A' \subseteq A$ and let $h_1 : A' \to M$, $h_2 : \{x, y\} \to X^*$ be mappings such that h_1 is onto and

$$\delta'(h_1(a), z) = h_1(\delta(a, h_2(z)))$$

for all $a \in A'$ and z = x, y, where it is assumed that $\delta(a, h_2(z)) \in A'$. We may choose A' and the functions h_1 and h_2 such that card(A') is minimal.

Let us partition A' as $A' = A_0 \cup A_1$ where $A_0 = h_1^{-1}(M - \{m\})$ and $A_1 = h_1^{-1}(m)$. If $a \in A_0$ and $b \in A'$ then, by the minimality of card(A'), there is a word $u \in \{x, y\}^*$ with $\delta(a, h_2(u)) = b$. Therefore, if $pr_j(a_0) = 1$ and $A_j = E$ for some j = 1, ..., n and $a_0 \in A_0$, then $pr_j(a) = 1$ for all $a \in A'$. (Of course, pr_j denotes the j-th projection.) But then we can get rid of the j-th component obtaining a ν_i -product of n-1 factors that homomorphically simulates M. Since this contradicts the minimality of n we have $pr_j(a) = 0$ for all $a \in A_0$ and $j \in \{1, ..., n\}$ with $A_j = E$. By the construction of A and the minimality of card(A') it is easy to see that for every $a \in A_1$ there exists $j \in \{1, ..., n\}$ with $pr_j(a) = 1$ and $A_j = E$.

Now let $a \in h_1^{-1}(0)$ be a fixed state. We have $\delta(a, h_2(y)) \in A_1$, so that $pr_j(\delta(a, h_2(y))) = 1$ and $A_j = E$ for some $j \in \{1, \ldots, n\}$. Let $\gamma(j) = \{j_1, \ldots, j_t\}$, $t \leq i$. For $s = 1, \ldots, t$, define $r_s = p$ if $A_j = C_p$ and $r_s = 1$ if $A_j = E$. Let r be the product of the integers r_s . It is clear that m is not a divisor of r. Thus, for $u = h_2(x)$, $\delta(a, u^r) = b \in h_1^{-1}(q)$ with $q \in \{1, \ldots, m-1\}$. Since $pr_{j_s}(b) = pr_{j_s}(a)$ for all $s = 1, \ldots, t$, it follows that $pr_j(\delta(b, h_2(y))) = 1$, which contradicts $\delta(b, h_2(y)) \in A_0$.

÷

Proof that $\mathbf{M} \in HSP_{\alpha_0-\nu_{i+1}}(K)$. For each $j = 1, \ldots, i+1$, let p_j denote the *j*-th prime number. We construct an $\alpha_0 - \nu_{i+1}$ -product

$$\mathbf{A} = \mathbf{C}_{p_1} \times \ldots \times \mathbf{C}_{p_{i+1}} \times \mathbf{E}(\{x, y\}, \varphi)$$

with

$$\varphi_j(k_1,\ldots k_{i+1},k,z) = \begin{cases} y & \text{if } k_1 = \ldots = k_{i+1} = 0, j = i+2 \text{ and } z = y \\ x & \text{otherwise.} \end{cases}$$

It is straightforward to show that A maps homomorphically onto M.

Theorem 1 The v_i -hierarchy is proper with respect to both homomorphic simulation and homomorphic realization. There exists a class K with the following properties, where $i \ge 1$ is any integer:

(i) $HSP_{\nu_{i}}(K) \subset HSP_{\nu_{i+1}}(K)$, (ii) $HS^{*}P_{\nu_{i}}(K) \subset HS^{*}P_{\nu_{i+1}}(K)$, (iii) $HSP_{\alpha_{0}-\nu_{i}}(K) \subset HSP_{\alpha_{0}-\nu_{i+1}}(K)$, (iv) $HS^{*}P_{\alpha_{0}-\nu_{i}}(K) \subset HS^{*}P_{\alpha_{0}-\nu_{i+1}}(K)$.

Remarks. For the class K exhibited in the proof we even have $HSP_{\alpha_0}(K) = HSP_g(K)$. Consequently

$$HSP_{\nu_i}(K) \subset HSP_{\alpha_0}(K) \text{ and } HS^*P_{\nu_i}(K) \subset HS^*P_{\alpha_0}(K)$$

hold, too. One might wish to modify the definition of homomorphic simulation by requiring that only nonempty words occur in the range of function h_2 . Our result holds with the same proof for this notion or homomorphic simulation, too. Part i) has been already proved in [2] and part ii) in [1]. Nevertheless the class K given above is considerably simpler than that in [1] or [2].

References

- Dömösi, P., Products of automata and homomorphic simulation, Papers on Automata and Languages, K. Marx Univ. of Economics, Dept. of Math., Budapest, submitted.
- [2] Dömösi, P., and Ésik, Z., On the hierarchy of ν_i -products of automata, Acta Cybernet., 8(1988), 253-257.
- [3] Dömösi, P., and Ésik, Z., On homomorphic simulation of automata by α_0 -products, Acta Cybernet., 8(1988), 315-323.
- [4] Dömösi, P. and Imreh, B., On ν_i -products of automata, Acta Cybernet., 6(1983), pp. 149-162.
- [5] Eilenberg, S., Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.
- [6] Gécseg, F., Products of Automata, Springer-Verlag, Berlin, 1986.
- [7] Tchuente, M., Computation on finite networks of automata, in: C. Choffrut (Ed.), Automata Networks, LNCS 316, Springer-Verlag, Berlin, 1986, 53-67.

(Received June 16, 1989)