Product hierarchies of automata and homomorphic simulation

P. Dömösi * Z. Ésik ${ }^{\ddagger}$

Abstract

A ν_{i}-product is a network of automata such that each automaton is fed back to at most i of the component automata. We show that the ν_{i}-hierachy is proper with respect to homomorphic simulation.

For all notions and notations not defined here, see [2], [3] or [6]. An automaton $\mathrm{A}=(A, X, \delta)$ is a finite automaton with state set A, input set X and transition $\delta: A \times X \rightarrow A$. The transition is also used in the extended sense, i.e. as a function $\delta: A \times X^{*} \rightarrow A$ where X^{*} is the free monoid of all words over X.

Let $\mathbf{A}=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)$ be a general product (or g-product) of automata $\mathbf{A}_{j}=\left(A_{j}, X_{j}, \delta_{j}\right), j=1, \ldots, n, n \geq 1$. A function

$$
\gamma:\{1, \ldots, n\} \rightarrow 2^{\{1, \ldots, n\}}
$$

is a neighbourhood function of \mathbf{A} if each feedback function φ_{j} is independent of the actual state of any component \mathbf{A}_{k} with $k \notin \gamma(j)$. Thus the concept of a general product with a neighbourhood function is essentially the same as the automata networks of [7]. A general product A with a neighbourhood function satisfying $\operatorname{card}(\gamma(j)) \leq i$ for all $j=1, \ldots, n$, where i is a fixed positive integer, is referred to a ν_{i}-product, cf. [4]. An $\alpha_{0}-\nu_{i}$-product is a ν_{i}-product which is also an α_{0}-product (i.e. loop-free product).

Let $\mathbf{A}=(A, X, \delta)$ and $\mathbf{B}=\left(B, Y, \delta^{\prime}\right)$ be automata. We say that \mathbf{A} homomorphically simulates B if there are $A^{\prime} \subseteq A$ and mappings $h_{1}: A^{\prime} \rightarrow B$ and $h_{2}: Y \rightarrow X^{*}$ such that h_{1} is onto, moreover, $\delta\left(\bar{a}, h_{2}(y)\right) \in A^{\prime}$ and

$$
h_{1}\left(\delta\left(a, h_{2}(y)\right)\right)=\delta^{\prime}\left(h_{1}(a), y\right)
$$

for all $a \in A^{\prime}$ and $y \in Y$. The function h_{2} will be used also in the extended sense, i.e. as a monoid homomorphism $Y^{*} \rightarrow X^{*}$. Thus A homomorphically simulates B if and only if the transformation monoid corresponding to B is covered by the transformation monoid corresponding to \mathbf{A}, cf. [5]. If $X=Y$ and B is a homomorphic image of a subautomaton of \mathbf{A} then \mathbf{B} is homomorhpically realized by A, cf. [6].

[^0]Let K be a class of automata and let β refer to one of the above particular cases of the g-product. If an automaton \mathbf{A} is homomorphically realized (simulated) by a β-product of automata from K then we write $\mathbf{A} \in H S P_{\beta}(K)\left(\mathbf{A} \in H S^{*} P_{\beta}(K)\right)$.

Now let $n \geq 1$ be an integer and let $C_{n}=\left(C_{n},\{x\}, \delta_{n}\right)$ with $C_{n}=\{0, \ldots, n-1\}$ and $\delta_{n}(i, x)=i+1 \bmod n$, for all $i \in C_{n}$. Thus C_{n} is a counter with length n. Let $\mathbf{E}=\left(E,\{x, y\}, \delta_{0}\right)$ be an elevator, so that $E=\{0,1\}, \delta_{0}(0, x)=0$ and $\delta_{0}(0, y)=\delta_{0}(1, x)=\delta_{0}(1, y)=1$. We set

$$
K=\{\mathbf{E}\} \cup\left\{\mathbf{C}_{p} \mid p>1 \text { is a prime }\right\}
$$

and prove that there exists an automaton $\mathbf{M} \in H S P_{\alpha_{0}-\nu_{i+1}}(K)$ which does not belong to $H S^{*} P_{\nu_{i}}(K)$, where $i \geq 1$ is any fixed integer.

Let m be the product of the first $i+1$ prime numbers. We define $M=$ $\left(M,\{x, y\}, \delta^{\prime}\right)$ with $M=\{0, \ldots, m\}$ and

$$
\begin{aligned}
& \delta^{\prime}(j, x)= \begin{cases}j+1 \bmod m & \text { if } j=0, \ldots, m-1 \\
m & \text { if } j=m\end{cases} \\
& \delta^{\prime}(j, y)= \begin{cases}j+1 \bmod m & \text { if } j=1, \ldots, m-1 \\
m & \text { if } j=0 \text { or } j=m .\end{cases}
\end{aligned}
$$

Proof that $\mathbf{M} \notin H S^{*} P_{\nu_{i}}(K)$. Assume to the contrary that a ν_{i}-product with neighbourhood function γ

$$
\mathbf{A}=(A, X, \delta)=\mathbf{A}_{1} \times \ldots \times \mathbf{A}_{n}(X, \varphi)
$$

of automata form K homomorphically simulates M. We may suppose that n is minimal with this property, i.e., if \mathbf{B} is a ν_{i}-product of automata from K which homomorphically simulates \mathbf{M}, then the number of factors of \mathbf{B} is at least n. Let $A^{\prime} \subseteq A$ and let $h_{1}: A^{\prime} \rightarrow M, h_{2}:\{x, y\} \rightarrow X^{*}$ be mappings such that h_{1} is onto and

$$
\delta^{\prime}\left(h_{1}(a), z\right)=h_{1}\left(\delta\left(a, h_{2}(z)\right)\right)
$$

for all $a \in A^{\prime}$ and $z=x, y$, where it is assumed that $\delta\left(a, h_{2}(z)\right) \in A^{\prime}$. We may choose A^{\prime} and the functions h_{1} and h_{2} such that card $\left(A^{\prime}\right)$ is minimal.

Let us partition A^{\prime} as $A^{\prime}=A_{0} \cup A_{1}$ where $A_{0}=h_{1}^{-1}(M-\{m\})$ and $A_{1}=$ $h_{1}^{-1}(m)$. If $a \in A_{0}$ and $b \in A^{\prime}$ then, by the minimality of $\operatorname{card}\left(A^{\prime}\right)$, there is a word $u \in\{x, y\}^{*}$ with $\delta\left(a, h_{2}(u)\right)=b$. Therefore, if $p r_{j}\left(a_{0}\right)=1$ and $\mathbf{A}_{j}=\mathbf{E}$ for some $j=1, \ldots, n$ and $a_{0} \in A_{0}$, then $\operatorname{pr}_{j}(a)=1$ for all $a \in A^{\prime}$. (Of course, pr_{j} denotes the j-th projection.) But then we can get rid of the j-th component obtaining a ν_{i} product of $n-1$ factors that homomorphically simulates M. Since this contradicts the minimality of n we have $\operatorname{pr}_{j}(a)=0$ for all $a \in A_{0}$ and $j \in\{1, \ldots, n\}$ with $\mathbf{A}_{j}=E$. By the construction of \mathbf{A} and the minimality of $\operatorname{card}\left(A^{\prime}\right)$ it is easy to see that for every $a \in A_{1}$ there exists $j \in\{1, \ldots, n\}$ with $p r_{j}(a)=1$ and $\mathbf{A}_{j}=\mathbf{E}$.

Now let $a \in h_{1}^{-1}(0)$ be a fixed state. We have $\delta\left(a, h_{2}(y)\right) \in A_{1}$, so that $\operatorname{pr}_{j}\left(\delta\left(a, h_{2}(y)\right)\right)=1$ and $\mathbf{A}_{j}=\mathbf{E}$ for some $j \in\{1, \ldots, n\}$. Let $\gamma(j)=\left\{j_{1}, \ldots j_{t}\right\}$, $t \leq i$. For $s=1, \ldots, t$, define $r_{s}=p$ if $A_{j}=C_{p}$ and $r_{s}=1$ if $A_{j}=\mathbf{E}$. Let r be the product of the integers r_{s}. It is clear that m is not a divisor of r. Thus, for $u=h_{2}(x), \delta\left(a, u^{r}\right)=b \in h_{1}^{-1}(q)$ with $q \in\{1, \ldots, m-1\}$. Since $p r_{j_{g}}(b)=p r_{j_{0}}(a)$ for all $s=1, \ldots, t$, it follows that $p r_{j}\left(\delta\left(b, h_{2}(y)\right)\right)=1$, which contradicts $\delta\left(b, h_{2}(y)\right) \in A_{0}$.

Proof that $M \in H S P_{\alpha_{0}-\nu_{i+1}}(K)$. For each $j=1, \ldots, i+1$, let p_{j} denote the j-th prime number. We construct an $\alpha_{0}-\nu_{i+1}$-product

$$
\mathbf{A}=\mathbf{C}_{p_{1}} \times \ldots \times \mathbf{C}_{p_{i+1}} \times \mathbf{E}(\{x, y\}, \varphi)
$$

with

$$
\varphi_{j}\left(k_{1}, \ldots k_{i+1}, k, z\right)= \begin{cases}y & \text { if } k_{1}=\ldots=k_{i+1}=0, j=i+2 \text { and } z=y \\ x & \text { otherwise } .\end{cases}
$$

It is straightforward to show that \mathbf{A} maps homomorphically onto \mathbf{M}.
Theorem 1 The ν_{i}-hierarchy is proper with respect to both homomorphic simulation and homomorphic realization. There exists a class K with the following properties, where $i \geq 1$ is any integer:
(i) $H S P_{\nu_{i}}(K) \subset H S P_{\nu_{i+1}}(K)$,
(ii) $H S^{*} P_{\nu_{i}}(K) \subset H S^{*} P_{\nu_{i+1}}(K)$,
(iii) $H S P_{\alpha_{0}-\nu_{i}}(K) \subset H S P_{\alpha_{0}-\nu_{i+1}}(K)$,
(iv) $H S^{*} P_{\alpha_{0}-\nu_{i}}(K) \subset H S^{*} P_{\alpha_{0}-\nu_{i+1}}(K)$.

Remarks. For the class K exhibited in the proof we even have $H S P_{\alpha_{0}}(K)=$ $H S P_{g}(K)$. Consequently

$$
H S P_{\nu_{i}}(K) \subset H S P_{\alpha_{0}}(K) \text { and } H S^{*} P_{\nu_{i}}(K) \subset H S^{*} P_{\alpha_{0}}(K)
$$

hold, too. One might wish to modify the definition of homomorphic simulation by requiring that only nonempty words occur in the range of function h_{2}. Our result holds with the same proof for this notion or homomorphic simulation, too. Part i) has been already proved in [2] and part ii) in [1]. Nevertheless the class K given above is considerably simpler than that in [1] or [2].

References

[1] Dömösi, P., Products of automata and homomorphic simulation, Papers on Automata and Languages, K. Marx Univ. of Economics, Dept. of Math., Budapest, submitted.
[2] Dömösi, P., and Esik, Z., On the hierarchy of ν_{i}-products of automata, Acta Cybernet., 8(1988), 253-257.
[3] Dömösi, P., and Ésik, Z., On homomorphic simulation of automata by $\alpha_{0^{-}}$ products, Acta Cybernet., 8(1988), 315-323.
[4] Dömösi, P. and Imreh, B., On ν_{i}-products of automata, Acta Cybernet., 6(1983), pp. 149-162.
[5] Eilenberg, S., Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.
[6] Gécseg, F., Products of Automata, Springer-Verlag, Berlin, 1986.
[7] Tchuente, M., Computation on finite networks of automata, in: C. Choffrut (Ed.), Automata Networks, LNCS 316, Springer-Verlag, Berlin, 1986, 53-67.

[^0]: *L. Kossuth University, Mathematical Institute, Debrecen, Egyetem tér 1, H-4032
 ${ }^{\dagger}$ A. József University, Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720
 ${ }^{\ddagger}$ This research of the second author was carried out with the assistance of the Alexander von Humboldt Foundation.

