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Decision problems arising from knapsack 
transformations 

Arto Salomaa* 

Abstract 

The transformations of knapsack vectors by modular multiplications give 
rise to various intriguing decidability questions. While the most important 
applications of the resulting algorithms belong to cryptanalysis, the algo-
rithms are certainly of interest on their own right. The basic problem we 
are considering is whether or not a given vector is obtained from a super-
increasing vector by one or several modular multiplications. Various formu-
lations of this problem, as well as various other problems connected with it, 
will also be discussed. Some interesting problems remain open. 

1 Introduction. Connection with cryptography 
It is well known that the knapsack problem is NP-complete. It is an especially lucid 
example of an NP- complete problem - easily explainable even for a layman. We 
are given a vector B = (6 j , . . . , bn) consisting of distinct positive integers, as well 
as another positive integer a. If possible, we have to find a subset of the set (6 i , . . . 
, £>„} such that the elements in this subset sum up to a. Equivalently, we have to 
find a column vector C consisting of 0's and l's such that BC = a. 

Knapsack vectors B can be used to encrypt messages as follows. A message is 
divided into blocks C consisting of n bits. Such a block is encrypted as the number 
BC. Even if one knows the vector B, decryption still amounts to solving the NP-
complete knapsack problem. However, decryption is equally difficult for the legal 
recipient of the message and an illegal eavesdropper, usually called a cryptanalyst. 
To obtain a public-key cryptosystem, the legal recipient must be given some secret 
trapdoor information about the publicized vector B. In the earliest public-key 
cryptosystem, [l], this is done in terms of super-increasing vectors. 

A vector A = ( o i , . . . , an) is termed super-increasing iff each entry in A exceeds 
the sum of the preceding entries. The resulting knapsack problems (A, a) are easy 
and can be solved as follows by just scanning A once from right to left. Thus, 
we want to determine a bit vector C = ( c i , . . . , cn)T such that AC = a. Clearly, 
cn = 1 iff a > an. (If we do not include an in the sum, we cannot reach a because 
E^Tj1 a,- < a„.) Next we compare o n _i with a — an or a, depending whether 
cn = 1 or cn = 0. And so forth, until we reach a^. As a consequence we observe 
that every knapsack problem (A, a), where A is super-increasing, possesses at most 
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one solution. This is a property of knapsack vectors referred to as injectivity in the 
sequel. 

A super-increasing knapsack vector A can be scrambled by modular multipli-
cations. One chooses a multiplier t and modulus m and reduces, for each t, the 
product tai modulo m. The resulting vector B = (61,. . . , 6„) is publicized. For 
technical reasons, it is assumed that the greatest common division (i, m) = 1 and 
that m > £ r = i a». Consequently, t possesses an inverse t - 1 = u (mod m). The 
pair (t, m) constitutes the trapdoor information known to the legal recipient who 
can form the superincreasing A and decrypt a cryptotext fi by using A and the 
smallest positive remainder a of u/3 modulo m. More details and examples can be 
found in [2] and [3]. 

A cryptanalyst has to solve the knapsack problem determined by A' and a' 
that looks like an arbitrary knapsack problem. However, it only looks like it be-
cause very few knapsack vectors are reachable by a modular multiplication from a 
superincreasing vector. Indeed, Shamir, [5], gave an algorithm working in random 
polynomial time for finding a super-increasing vector A' (not necessarily the same 
as the original A) such that the given B results from A' by a modular multiplica-
tion. A deterministic polynomial-time algorithm, based on different considerations, 
was given in [4]. 

The present paper discusses decision problems and algorithms arising in this 
set-up. In what follows, the interconnections with cryptography will not any more 
be important. All definitions and results will be given in terms of ordered n-tuples 
of positive integers. The exposition is self-contained. A brief outline of the contents 
of the paper follows. 

In Section 2, the basic definitions and notations are given. They include also 
concepts needed for our technical apparatus. Section 2 contains also some basic 
results. Our technical tools will be developed in Sections 3 and 4 which include 
also illustrative examples. 

By definition, a vector B is super-reachable iff B results from some super-
increasing vector by a modular multiplication. The two algorithms given in Section 
5 decide whether or not the given vector is super-reachable and, in the positive case, 
produce the corresponding multiplier and modulus. Consequences, related decision 
problems and modifications are discussed in Section 6. Section 7 deals with a 
variant, where also permutations of given vectors are taken into account. 

A vector is hyper-reachable iff it results from some super-increasing vector by 
a sequence of modular multiplications. The wellknown example presented in the 
basic paper [lj starts with the super-increasing vector A = (5,10,20). Using the 
multiplier 17 and modulus 47, we obtain A' = (38,29,11). Another multiplier 3 and 
modulus 89 are applied to A', yielding B = (25,87,33). Thus, B is hyper-reachable. 
It is easy to show that B cannot be reached from A by one modular multiplication. 
However, B is still super-reachable. It results, for instance, from (2,3,66) using the 
multiplier 62 and modulus 99. (This result is obtained by the initial part of the 
algorithm presented in Section 5.) 

It is shown in Section 5 that there are properly hyper-reachable vectors, that 
is, hyper-reachable vectors which are not super-readiable. Two algorithms for 
hyper-reachability with a bounded number of modular multiplications are given 
in Section 8. Section 8 also discusses some other decision problems dealing with 
hyper-reachability. The concluding Section 9 contains some open problems. 
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2 Definitions and notations 
An ordered n-tuple of distinct positive integers A = (a i , . . . , an), n > 3, is referred 
to as a knapsack vector of dimension n. A knapsack vector A is increasing (resp. 
super-increasing) iff 

i-1 
ay > ay_i (resp. ay > ^ O j ) 

t=i 
holds for all j = 2,..., n. Clearly, every super-increasing vector is inreasing. For a 
knapsack vector A, we define 

max A = max {ay | 1 < j < n}. 

For a positive number x, we denote by [x] the integer part of x, that is, the 
greatest integer < x. For integers x and m > 2, we denote by (x, mod m) the least 
nonnegative remainder of x modulo m. Clearly, 

(x, mod m) = x — [x/m] • m 

This equation will be often written in the form 

x = (x, mod m) + [x/m] • m. (1) 

We now define two different notions of modular multiplication. Consider a 
knapsack vector A, an integer m > max A and a positive integer t < m such that 
the greatest common divisor (t, m) = 1. If B = (6 i , . . . , 6„) is a vector such that 

bi = (tai, modm), for t = 1 , . . . , n, 

we write 
A - + B . (2) 

(t,m) 

The integers t and m are referred to as the multiplier and the modulus, respectively. 
Since every knapsack vector A satisfies max A > 3, we have always m > 4. The 

condition t < m is no loss of generality because if t > m, we can subtract [t/m] • m 
from t without affecting the result of modular multiplication. The equation t = m 
is not possible because (t, m) = 1. The latter condition guarantees also that t 
possesses an inverse t - 1 = u such that 

iu = 1 (mod m) 

and 1 < tx < m. Since clearly m > max B, we have also 

B - ^ A . (3) 
(u,m) 

We now come to the other notion of modular multiplication. It means simply 
the strengthening of our previous notion, where we make the additional assumption 
that m > o,-. If this condition is satisfied and (2) holds, we write 

A —• B. (4) 
(M,t,m) 

Observe that now a condition analogous to (3) does not necessarily hold because 
we cannot conclude that m > bi. Clearly, (4) implies (2) but not vice versa. 
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The vector B is (A, t, m)-reachable (resp. {A,t, m)-super-reachable) iff (2) holds 
and A is increasing (resp. (4) holds and A is super-increasing). B is super-reachable 
iff B is (A, t, m)-8uper-reachable, for some triple (A, t, m). 

Observe that a notion of reachability, defined analogously to that of super-
reachability, does not make much sense because apparently every vector would be 
reachable. 

Let r > 1 be an integer. A knapsack-vector B is r-hyper-reachable iff there is a 
sequence of vectors Ao, A i , . . . , Ar = B such that Ao is super-increasing and, for 
each t = 0 , . . . , r — 1, there are t, m such that 

A, —» A,-+i. 
(M,t,m) 

Observe that t and m may be different for different values of t. The notions of 
1-hyper-reachability and super-reachability coincide. 

In the Introduction the vector B = (25,87,33) was defined in way which showed 
that it is 2-hyper-reachable. It was also observed that B is, in fact, super-reachable. 
Similarly, the derivation chains 

and 

i1-2> 4) ,«77*J5'2'4), JTi J1'10'8) = Bl 
(M, 5,8) (AI,5,12) 

(2,4,7) —» (14,4,1) —• (2,12,3) —• (4,1,6) = jB2 

show that the vectors Bi and B2 are 2-hyper-reachable and 3-hyper-reachable, 
respectively. It will be seen in Example 2 of Section 5 that B2 is super-reachable,' 
whereas B± is not super-reachable. 

We would like to emphasize that all our examples only illustrate some points in 
the theory and are, therefore, "small". Cryptographic ally interesting vectors would 
have to be much bigger, say n = 200. 

A vector is hyper-reachable iff it is r-hyper-reachable, for some r. We now 
define a notion that enables us to construct easily examples of non-hyper-reachable 
vectors. 

A knapsack vector A = (a i , . . . , a „ ) is infective iff the function f(C) = AC, 
defined for n-dimensional bit column vectors C, is injective. Equivalently, the 
injectivity of A means that, for every a, the knapsack problem determined by A 
and a possesses at most one solution. 

Theorem 1 Every hyper-reachable vector is injective. Hence, every super-
reachable vector is injective. 

Proof. The theorem is a consequence of the following two facts (i) and (ii). 
(i) Every super-increasing vector A is injective. Indeed, assume that AC = AC' 

holds for some bit column vectors C and C'. Then the last components of C and C' 
coincide, because if one of c„ and c'n equals 0 and the other equals 1, the numbers 
AC and AC' cannot be the same. Similarly we conclude by descending induction 
that, for all t = 1 , . . . , n, c,- = Consequently, C = C'. 

(ii) The relation (4) preserves injectivity. Assume the contrary: A is injective 
and there are two distinct vectors C and C' such that BC = BC'. We obtain by 
(4) 

B —• A, 
(u,m) 
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where u is the inverse of t modulo m. This implies that uBC = uBC' and, con-
sequently, AC = AC' (modm). Since m > Oj, we conclude that AC = AC', 
contradicting the injectivity of A. • 

Theorem 1 shows that if a knapsack vector is not injective, it cannot be hyper-
reachable. For instance, every vector, where some component equals the sum of 
some other components, is noninjective. We now come to notions that are quite 
essential in the subsequent proofs. 

Consider a knapsack vector A = (01 , . . . , o„), an integer m > max A and posi-
tive integer t < m such that (t, m) = 1. The growing sequence associated with the 
triple (A, t, m) is the sequence of triples (A(&), t,m+ kt), k = 0 ,1 ,2 , . . . , where 

A(k) = (ai + k • [ io i /m] , . . . , a„ + k • [tan/m\). 

Thus, the growing sequence associated with (A, t, m) begins with (A, t, m). The 
terms multiplier and modulus refer also to the numbers t and m + kt in the triple 
(A(k),t,m + kt). 

For instance, if A = (1,2,3),t = 4, m = 5, then the growing sequence begins 
with the triples 

((1, 2, 3), 4,5), ((1,3,5), 4,9) and ((1,4,7), 4,13). 

If A = (1,4,7), t = 3, m = 8, then the growing sequence is 

((1,4 + k, 7 + 2k), 3,8 + 3Jfc), A: = 0,1, 2 , . . . . 

As the third example, take A = (1,5,6), t = 7, m = 8. Then the associated growing 
sequence is 

((1,5 + 4k, 6 + 5k), 7,8 + 7k), k = 0 ,1 ,2 , . . . . 
A number t, 2 < t < n, is termed a violation point in a knapsack vector A iff 
a,- < E ' l . j ay. Thus, the tth componenet of A violates the requirement of A being 
super-increasing. If A is increasing, every violation point t in A satisfies t > 3. 

The goal of a triple (A, t, m) (defined as above) is the first triple (A(k), t, m+kt) 
in the growing sequence such that A(k) is super-increasing and m + kt is greater 
than the sum of the components of A (A;), provided such triples exist. Clearly, a 
triple can be its own goal and some triples have no goal. In particular, if A is not 
increasing, then (A, t, m) cannot possess a goal. This follows because a,- > a,+ i 
implies that [taj/m] > [taj+i/m] and consequently, for all k, 

ai + A; • \tai/m} > a,+i + k • [iaj+i/m]. 

Returning to the three examples considered above, t = 3 is a violation point in 
the initial vector of the first and third example. In the second example the initial 
vector, as well as all vectors in the growing sequence are super-increasing. The 
goal in the first example is the third triple in the growing sequence, although in 
the first triple neither the vector is super-increasing nor the modulus big enough. 
The sequences in the second and third examples possess no goals. In the second 
example the modulus will never become big enough. The same holds true for the 
third example, although the violation point t = 3 in the initial vector is "rescued" 
already by the second vector (1,9,11). (The formal definition of a rescuer will be 
given below.) 

The following more general result concerning super-reachable vectors can be 
established already at this stage. 
Theorem 2 The vector (t,» —l,t — 2 , . . . ,i—j), i—j > 1, is super-reachable exactly 
in case if both j = 2 and i > 4. 
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Proof. If j < 2, the vector is not at all a knapsack vector. If j > 2, then the vector 
is not injective and hence, by Theorem 1, cannot be super-reachable. The same 
conclusion can be made if j = 2 and i = 3, because (3,2,1) is not injective. If j = 2 
and t > 4, we have 

(1,3,5) — . ( » , » • 2 ) . (5) 
(AF,T,2« + 1) 

If j = 2 and t = 4, we have 

^ ' V ^ s / 4 ' 3 ^ 
In this case (5) does not hold because the modulus is too small but we may use the 
second triple in the growing sequence. • 

We define finally a notion in some sense dual to that of a growing sequence. 
Let A, B, t, m be such that (2) is satisfied, t < maxB and m > 2 max B. Then the 
diminishing sequence associated with the triple (A, t, m) is the sequence of triples 

(A(-lfc), t,m- kt), 0 <k<s, 

where s is the smallest integer such that m — st < 2 max B and the vectors 
A(—k) are defined by descending induction as follows. A(—0) = A. Assume that 
A(k) = (di,..., dn) has been defined, and that we still have m — kt > 2 max B. 
(By the choice of m, this condition holds for k = 0.) Then 

A(-k - 1) = (dx - [tdi/(m - At)], ...,dn- \tdn/(m - At)]). 

Observe that t < m — st. Diminishing sequences are always finite, whereas growing 
sequences are infinite. However, in the sequel only finite initial segments of growing 
sequences will be of interest. 

3 Fundamental lemmas I 
We will now develop the technical tools needed. As will be seen, most of the 
technical apparatus deals with growing and diminishing sequences. We begin with 
properties of growing sequences. In Lemmas 1-3, the notation A, t, m and A(k) is 
the same as in the definition of a growing sequence. 

Lemma 1 If A is increasing or super-increasing, then each vector in the growing 
sequence associated with (A,t,m) is increasing or super-increasing, respectively. 

Proof. The inequality a»_i < a< implies the inequality [ia^-i/m] < [ta;/m]. Hence, 
if A is increasing then so is every A(&). 

Assume, next, that 

t - i 

J'=I Consequently, 
« - i ¿-1 
5 > a y / m ] < [ ( t £ a y ) / m ] < [toi/m]. 
i=l ]=i 

This implies that, whenever A is super-increasing, then so is every A(k). 



Decision problems arising from knapsack transformations 425 

Lemma 2 Assume that A —• B holds for some B. Then A(k) —• B holds 
(t,m) V (t,m+fct) 

for all k. If B is (A,t,m)-reachable fresp. (A. t,m)-super-reachable), then, for all 
k,B is also (A(k),t,m+kt)-reachable (resp. (A(k),t,m+ kt)-super-reachable). 

Proof. Denoting B = (6 i , . . . , 6n), we infer by the assumption: 

bi = (tai, modm), for 1 < t < n. 

Clearly, (t, m + kt) = 1. By (1), for all k, 

t(ai + k • [toi/m]) = bi + [tcii/m] • m + [toj/m] • kt = 6,- + [ioj/mJ(m + kt). 

Since by the definition of bi we have bi < m + kt, we conclude that 

(t(aj + k • [ia,/m]), mod (m + kt)) = bi. 

Therefore, 
A(k) • B. (6) 

By Lemma 1, A(k) is increasing if A is and hence, by (6), the claim concerning 
reachability follows. 

Assume that B is (A, t, m)-super-reachable. By Lemma 1, each A (A:) is super-
increasing. Moreover, n 

<H < m. 
i=l 

This implies that 
n n 

+ k[tai/m\) < m + ^2,k • [tai/m] < m + k\t(ai + ... + an)/m] 
»=1 »=i 

< m + k - [t] = m + kt. 
Consequently, B is (A(k), t, m + fct)-super-reachable. • 

It is an immediate consequence of Lemma 2 that every super-reachable vector 
can be obtained from infinitely many super-increasing vectors by modular multip-
lication with a big enough modulus. The special case, where \tOi/rn\ = 0 for all t, 
can be easily handled separately. 

We now investigate the question of which triples (A, t, m) possess goals. Recall 
that every violation point t of A satisfies, by definition, 

» - l 

i=i 
Assume that also 

[iai/m] + . . . + [iaj_i/m] < [ia</m]. (8) 
(Observe that (7) and (8) are by no means contradictory.) Then the smallest integer 
x such that 

»- l » - i 
Y^ ay + * Y y t a i ! m 1 < a< + z • [toi/m] (9) 
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is called the rescuer of t. Explicitly, 
t - i »-1 

* = i ( ( E a i ) - «vifaM - E f t a i / m ] ) i + 1 -
3=1 3=1 

By (7) and (8), x is a positive integer. 
If (8) holds for every violation point t, then the rescuer of A is defined to be 

the maximum of the rescuers of all violation points t. 
We consider, next, the situation where the modulus is not big enough: 

n 
m < Y < H - (10) 

•=i 

Assume that also n 
5>Oi/m] < t. (11) 
»=i 

Then the smallest integer y such that 
n n 

I T " » ' ^ H K ' / H < " » + ! / * ( 1 2 ) 
i=l t=l 

is called the rescuer of m. Explicitly, 

» = i ( ( E « i ) - » » ) / ( * - ¿ [ « « . - / H i i + i -
«=i »=i 

We infer by (10) and i l l ) that the rescuer of m is a positive integer. It is important 
to notice that if (9) (resp. (12)) holds for some x (resp. y) then it holds for all 
integers > x (resp. > y) as well. This means that if i ' is rescued by fc', that is, t' is 
not a violation point in A(k'), then t' is not a violation point in any A(k), k > k'. 
Hence, if we have to rescue several numbers (possibly including m), then we may 
go further in the growing sequence until all of them have been rescued (if ever). 
For the sake of completeness, we say that 0 is the rescuer of t (resp. m) if (7) resp. 
(10)) does not hold. 

Lemma 3 A triple (A,t, m) possesses a goal iff (8J holds whenever (7) holds and, 
moreover, (ll) holds in case (10) holds. If these conditions are satisfied, the goal 
is (A(ko),t,m+ k(,t), where ko is the maximum of the rescuers of A and m. 

Proof. If ko is defined as in the statement of the lemma, then A(k0) is super-
increasing (because it has no violation points) and m + kot is greater than the sum 
of the components of A(fco). The definition of ko guarantees that we obtain the 
smallest number satisfying these conditions. On the other hand, if some t satisfies 

Шbut in (8) we have > instead of <, then i is a violation point in every A(k). 
nilarly, if (10) holds but ( l l ) does not hold, then for all k, 

n 
YA« + fc[tOi/m]) > m + kt. 
»=l 
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Hence, the modulus is too small in every triple of the growing sequence. • 
We now give some illustrations. The examples are given in terms of tables, 

where A, t, m, B and the goal are listed. Here B is the result of modular multipli-
cation (that is, the vector satisfying (2)). By the second sentence of Lemma 3, the 
goal gives items showing that B is super-reachable. If no goal exists, we use the 
abbreviations NR(t = »') and NR(m) to mean that a violation point t = »' or too 
small a modulus m does not possess a rescuer (that is, (8) or (11) is not satisfied). 
In some examples there may be several such failures. The existence of one failure 
already shows that there is no goal. 
Example 1 We begin with some vectors considered above in Section 2. 

A t m B Goal 
(1,2,3) 4 5 (4,3,2) k = 2, (1,4,7),4,13 
(1,4,7) 3 8 (3,4,5) NR (m):0 + 1 + 2 > 3 
(1,5,6) 7 8 (7,3,2) k = 1 rescuer of t = 3, NR (m) 
(1,3,5) 4 9 (4,3,2) k= 1, (1,4,7),4,13 

We continue with some other illustrations. Different cases concerning which 
numbers can be rescued will be included. 

A t m B Goal 
(1,3,6) 3 7 (3,2,4) NR (m) 
(2,3,4) 5 6 (4,3,2) NR (i = 3), NR (m) 
(1,2,3) 5 6 (5,4,3) fc = l , (1,3,5),5,11 
(1,5,12) 8 13 (8,1,5) NR (m) 
(1,2,10) 8 15 (8,1,5) Own goal 

(1,8,13,36,57) 87 200 (87,96,131,132,159) k = 2,(1,14,23,66,105),87,374 
(1,34,67) 97 100 (97,98,99) k = 3,(1,130,259,),97,391 

(1,15,29,44) 93 100 (93,95,97,92) ifc = 2,(1,41,81,124),93,286 
(2,3,5,8) 4 9 (8,3,2,5) NR (i = 4), NR (m), 

k — 1 rescuer of t = 3. 

4 Fundamental lemmas II 
The first lemma in this section deals with an interplay between the multiplier and 
the modulus. We then discuss properties of diminishing sequences. Finally, growing 
and diminishing sequences are tied together. 

Lemma 4 Assume that max B < t < m and 

A—• B (resp. A —• B) (13) (t,m) V (M,t,m) ' V ' 

holds. Then the items A',t' < max B and m! defined below satisfy 

A! —» B' (resp. A' —> B'). (14) 
( t ' ,m') V (M ' , t ' ,m ' ) ' V ' 

If B is super-reachable, then B is (A',t',m')- super-reachable with t' < max B. 
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Proof. Assume that in (13) max B <t < m. We define another triple (Ai, ti, mj ) 
such that ti < t and (14) holds with (A', f , m') replaced by (Ai, tit mi). (14) with 
t1 < max B is then established by repeating this construction as many times as 
necessary. 

Our definition interchanges the multiplier and the modulus as follows: 

mi =t,ti- ( - m , modi), Aj = ( [ tai /m], . . . , [tan/m]). 

Clearly, ti < t and (t i ,mi) = 1. By (l) and our assumption (13) we obtain, for 
1 < t < n, 

ti[taj/m] = bi — tai = bi (modi). 
Since bi < max B <t, we may write further 

(ti[taj/m], modi) = 6,-. 

Corresponding to the "resp."-statement in parentheses in (13) and (14), we still 
have to show that if m exceeds the sum of the components of A, then t exceeds the 
sum of the components of Ai. But this is clear. If m > then also 

n n 

t > E t a i / m ^ ]D t a i / m i -
•=1 t = l 

To prove the last sentence of Lemma 4, we show that if A is super-increasing then 
so is Ai. If A is super-increasing, we have for 2 < * < n, 

t - i 
y^ taj/m > tdi/m. 
J'=I 

(The original inequality is multiplied by t/m.) Hence, 

¿ - 1 
X > a y / m ] < [tai/m]. (15) 
3=1 

Assume that we have equality in (15). Then 

<-i 
^^m[iay/m] = m[ioi/m], 
j ' = i 

Applying again (1) we obtain 

« - i 
^(ioy - b}) = tdi - bi 
3 = 1 

and, hence, 

¿ - 1 « - l 

3 = 1 3 = 1 
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The coefficient of t on the right side is positive and, consequently, 
»-1 

t < bi — ^ bj < bi < maxB, 
J'=I 

which contradicts the assumption t > max B. This implies that we must have strict 
inequality in (15). Hence, Ai is super-increasing. • 

As an illustration of the technique of Lemma 4, observe first that the vector 
(7,3,2) is ((7,15,38), 73, 84)-super- reachable. Here the multiplier 73 is much too 
big. The technique yields, successively, the following triples. 

((6,13,33), 62,73), ((5,11,28), 51,62), 

((4,9,23), 40,51), ((3,7,18), 29,40), 

((2,5,13), 18,29), ((1,3,8), 7,18). 
The vector (7,3,2) is super-reachable with respect to all of these triples. In the last 
triple the multiplier is sufficiently small. 

Similarly, the vector (46,45,40,30) is ((4,5,10,20), 49,50)-super-reachable. It is 
also super-reachable for each of the triples 

((3,4,9,19),48,49), ((2,3,8,18),47,48), ((1,2,7,17), 46,47). 

In case of the ((2,5,8,17),32,33)-super-reachability of the vector (31,28,25,16) only 
one interchange between multiplier and modulus makes the new multiplier suffici-
ently small. The vector (31,28,25,16) is also ((1,4,7,16),31,32)- super-reachable. 

In the following lemma we use the same notation as in the definition of dimi-
nishing sequences. 

Lemma 5 Every triple (A(—k),t, m— kt), 0 < k < s, in the diminishing sequence 
associated with the triple (A, t, m) satisfies 

A(-k) B. (16) 

Moreover, if A is increasing, then so is every vector A(—k), 0 < k < s. 

ace by induction on k. For k — 0, (16) h 
quence. Assume that (16) holds and we 

m — kt > 2 max 5 . (17) 

Proof. We prove the first sentence by induction on k. For k — 0, (16) holds by the 
definition of the diminishing sequence. Assume that (16) holds and we still have 

We will show that 
A(-k-l) —• B. (18) 

(i,m-(fc+l)t) 
Denote A(-Jb) = (d i , . . . , dn). Then the ith component of A[—k — 1), 1 < %< n, is 

di - [tdi/(m- Art)]. 

Multiplying this by t and using (1) and (16), we obtain 

tdi - t[tdi/(m - A;t)] = bi + (m - kt)\tdi/(m - A:i)] - t[tdi/[m - Jfct)] = 

= bi + ( m - (k + l)t)[idj/(m — Art)] = &i(modm - (A;+ l)t). 
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By (17) and the assumption t < max B made in the definition of the diminishing 
sequence, 

m- (Jfc+ l)f > max B > bi. 
This implies that 

(t[di - [tdi/[m - to)]), mod m — (k + l)t) = 6< 

and, consequently, (18) holds. 
The second sentence of Lemma 5 is established also by induction on k. Assume 

that A = A(—0) is increasing. We make the inductive hypothesis that = 
(di...., dn) is increasing and (17) holds. Denote A(—k — l ) = ( e i , . . . , en). Because 
of (17) ana the inequality t < max B, we obtain 

m — kt> 2t. (19) 

Consider now an arbitrary t, 1 < t < n — 1. Since A(—k) is increasing, 

¿,•+1 = di + a for some a > 1. 

Assume first that a > 1. Then 

ei+i = di + a- [t(di + a)/m- ibt)] > di + a - (1 + [id,/(m - Jfct)] + [ta/(m - Jfci)]) 

= ei + (a - 1) - [ i a / ( m - kt)} > ei. 
Here the first inequality follows because always [x + y] < [x] + [y] + 1, and the 
second because, by (19), 

[ta/(m - kt)} < ta/(m - kt) < a/2. 

Assume, secondly, that a = 1. In this case [ta/(m — fct)] = 0. If 

[t(di + 1 )/(m - kt)\ = \tdi/(m - to)), 

we obtain ej+i > ê . Hence, suppose that 

[t{di + 1 )/(m - Ai)] = \tdi/(m - to)] + 1. (20) 

(By the above estimate for e^+i there are no other possibilities. (20) would imply 
that e,+ i = Cj.) Denote the right side of (20) by /J + 1. Hence, 

(m - kt)P <tdi<{m- kt)(0 + 1) < t(di + 1). 

Assume that tdi < (m - kt)(0 + |). Hence, by (19), 

tdk + t < (m - kt){/3 + i) + t = (m - kt){0 + 1) + t - < (m - kt){0 + 1), 

L 2, 

a contradiction. Hence, tdi > (m- kt)(/3 + i ) . But now, by (16), 
bi = tdi ~ P{m - kt) > (m - to)/2. 

This implies that m-kt < 26,- < 2 maxB, contradicting (17). This shows that (20) 
cannot hold. • 
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It is important to note that certain properties preserved by the growing sequ-
ences are not preserved by the diminishing sequences. A may be super-increasing 
although the other vectors in the diminishing sequence are not. For instance, choose 

A = (1,14,23,66,105), t = 87, m = 374, 

implying that B = (87,96,131,132,159) and, hence t < maxB and m > 2 max B. 
Now 

A ( - l ) = (1,11,18,51,81), 
which is not super-increasing. Similarly, we see that 

( ^ ' V W 4 ' 3 ' 2 ) 
but when we go to the first triple in the diminishing sequence, we observe that not 

(1.3,5) (4,3,2) 
(M,4,9) 

because 9 = 1 + 3 + 5. Thus, the M-relation is not preserved. In the second triple 
((1,2,3),4,5,) of the same diminishing sequence neither is the M-relation satisfied 
nor is the vector super-increasing. Such negative results are natural in view of the 
following lemma and reflect the fact that some properties are rescued from a certain 
point on in the growing sequence. The same properties are lost at this point in the 
diminishing sequence. 

In the statement of the following lemma, the notation A,t,m,s, B is the same 
as in the definition of the diminishing sequence. 
Lemma 6 Assume that (A(—k), t,m— kt), 0 < k < s, is the diminishing sequence 
associated with the triple (A, t, m). Denote A(—s) = C. Consider the initial segment 

(iC(k), t,m-st + kt), 0 <k<s, 

of the growing sequence associated with the triple (C = C(0),t, m— si). Then, for 
each k such that 0 < k < s, 

C(k) = A ( - ( s - A:)). (21) 
Proof. Our intention is to use induction on k. For this purpose, it is useful to 
denote 

A( - (a -k)) = (ak,..., ak), C(k) = (ck, ...,ck), 
for 0 < k < s. Clearly, A(—(s — s)) = ( o i , . . . , o„) = A. We consider an arbitrary k 
and i in their respective ranges. To simplify notation, we write ak = af and ck = ck. 
By the definitions of growing and diminishing sequences, 

ck+1 = ck + [ico/a] and afc+i = afc + [tafc+i/(a + (jfc + 1jtj]| (22) 

where a = m — st. We have to establish ck = ak, for all k with 0 < k < s, in order 
to establish (21). By the choice of C(0), we have a0 = c°. Using (22), we show that 
c1 = a1. Thus, we have to prove that 

[to/a] = [ta.1 /[a + t)], (23) 

where we denote c° = o° = a. By Lemmas 2 and 5, 

ta1 = tc1 and, hence, a1 = c1 (moda + í). 
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Because a0 = c°, we infer that 

[to/a] = [ta1 /[a +1)] (moda + t ) . (24) 

(24) can hold without (23) holding only in case that the absolute value of the 
difference between the two bracket expressions is a positive multiple of a + t. We 
prove that this is impossible by showing that both of the bracket expressions (which 
clearly are nonnegative) are less than a + t. Since a > maxC(O) = max A(—a) > 
a, we obtain 

[ta/a\ <t <a + t. 

The bracket expression on the right side of (24) is estimated by repeated use of the 
principle [z] < x, yielding when we denote t/(a + t) = x 

[ta1/(a + t)l < ta1/{a + t)= -^—{a + [ta1/{a + t)]) 
Oc •+• v 

a -+- t a +1 

<a{x + x2 + ... + xp) + x^a1 

< o/( 1 - x) + xP+V = a + at/a + x^a1 

< a + t + xp+1a1. 

This holds for arbitrarily large p, which means that the term xp+lal can be made 
arbitrarily small. Consequently, 

[ta1/(a + t)] < a + t. 

By (24), (23) holds. We have shown that a1 = c1. 
The inductive step from ak = ck to a f c + 1 = c f c + 1 is now very easy. We consider 

only the initial segment of the diminishing sequence to the triple (A(—(a — k)), t, m— 
(a — A;)t). We start the growing sequence from this triple. Also now we have to 
establish (23), where now a = m — (a — k)t, a = ak = ck anda1 = a f c + 1 . The proof 
is exactly the same as above. This completes the induction and, hence, (21) holds. 

5 Super-reachability 
We are now in the position to establish one of our main results. 

Theorem 3 A knapsack vector B is super-reachable iff B is (A,t,m)-reachable, 
where t < m a x B , m < 2maxB and the triple (A, t, m) possesses a goal. 

Proof. We already have developed all the necessary technical apparatus. The " i P -
part follows by Lemma 2 and the definition of the goal. Lemma 3 gives a simple 
method for deciding whether or not a given triple possesses a goal. 

For the "only if"-part, assume that B is super-reachable. By Lemma 4, B 
is (A, t, m)-super-reachable with t < maxB. If m < 2 maxB, we are finished. 
Otherwise, we form the diminishing sequence 

(A(-fc) , t, m - kt), 0 <k <s, 
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where m — st < 2 max B. Since A is increasing, we conclude, by Lemma 5, that B 
is (A(—s), t, m — st)-reachable and, by Lemma 6, that the triple (A(—s), t,m — st) 
possesses a goal. • 

The algorithm due to Theorem 3 can be described as follows. Given B, choose 
max B < m < 2 max B and u < mwith(u, m) = 1. Check whether the vector A 
satisfying 

B —• A 
(u,m) 

is increasing and u - 1 = t < maxB. If not, choose another pair (u, m). Else check 
whether the triple [A, t, m) possesses a goal. If not, choose another pair (u, m). 
Otherwise, B is super-increasing. The goal also gives a super-increasing vector, 
multiplier and modulus showing this. 

The time complexity of the algorithm is estimated in [4] . Complexity in terms 
of max B is at most cubic. Complexity in terms of n depends on the upper bound 
for max B in terms of n. Such upper bounds are given, for instance, in [1] and 
[5]. They are always arbitrary and leave out most of the instances, whereas the 
algorithm of Theorem 3 works independently of any bounds, for max B. Reductions 
in the estimates can possibly be made by a more detailed analysis of the number 
of successful pairs (u, m). 

Example 2 We now give some illustrations of the algorithm of Theorem 3. 
Again, for the sake of readability, the illustrations are very small in size. We 
consider first the vectors (1,10,8) and (4,1,6) shown 2- and 3-hyper-reachable in 
Section 2. Consider first the vector (4,1,6). The pairs (u, m) to be investigated are 
listed in the following table. 

m 12 11 10 9 8 7 
u 5,7,11 2,3,...,10 3,7,9 2,4,5,7,8 3,5,7 2,3,4,5,6 

The next table shows the actual application of the algorithm. The leftmost column 
lists all the pairs (u, m) which might lead to success, that is, u - 1 = t < maxB = 6 
(inverse is taken modulo m), and the vector A obtained from B = (4,1,6) by 
modular multiplication due to (u, m) is increasing. The items t and A are listed 
in the next two columns. If A is not super- increasing or m < oi + o2 + 03, we 
investigate whether or not the violation point »' (here only t' = 3 is possible) and 
the modulus m can be rescued. If they can, the last column indicates the value of 
k for which the goal is reached in the growing sequence associated with the triple 
(A, t, m). The last column also indicates the three items of the goal. If at least one 
of the numbers cannot be rescued, we use the abbreviations NR(t = *') and NR(m) 
as before. 

u, m t = u - 1 A Goal 
3,11 4 (1,3,7) k = 1, (1,4,9),4,15 
9,11 5 (3,9,10) NR(i = 3), NR(m) 
5,8 5 (4,5,6) NR(i = 3), NR(m) 
2,7 4 (1,2,5) k = 2, (1,4,9),4,15 

It is interesting to note that in both cases leading to success we obtain the same 
triple ((1,4,9),4,15). Thus, this triple can be visualized as the minimal or prime 
triple for which (4,1,6) is super-reachable. More specifically, whenever (4,1,6) is 
(A, t, m)-super-reachable, then t > 4 and m > 15. This follows because the algo-
rithm would produce any smaller values of t and m. Of course, m can be made 
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arbitrarily large in the growing sequence. Also t can be made larger by applying 
an argument similar to that used in Lemma 4 in the reverse order. 

The vector (4,1,6) = B shows also that it is in general not sufficient to investi-
gate candidates m < 2maxB, without taking into account the growing sequence. 
If this would be done for (4,1,6), we would never find the solution. However, it is 
possible to obtain the following general result. 

Theorem 4 A knapsack vector B is super-reachable iff B is (A, t,m')-super-
reachable where t < max B and m' < 2 max5(1 + max B). 

Proof. The upper bound for t is obtained by Lemma 4 exactly as before. To obtain 
an upper bound for the modulus, we have to deduce an upper bound for the moduli 
m + kt in the initial segment of the growing sequence consisting of triples up to 
the goal. We know that t < max B and m < 2 max B. Since a goal is reached, 
the difference between the sum of the components of the vector and the modulus 
decreases at least by one in every step from a triple to the next triple in the growing 
sequence. This holds true also as regards the difference defined by any violation 
point. The goal is reached when all of these differences are negative. Hence, the goal 
is reached latest in m (= the original modulus) steps, implying that k < 2 max B. 
Consequently, rri < 2 max B + (2 max B) maxB. • 

The statement of Theorem 4 is simpler than that of Theorem 3. However, the 
resulting algorithm is considerably less efficient, as shown even by examples of small 
size. 

Example 3 Consider now the vector (1,10,8), shown 2-hyper-reachable in Sec-
tion 2. We have to consider moduli m < 20. For each m, we must have u < m and 
(u, m) = 1. The following table of pairs (u, m) that may lead to success is obtained 
exactly as in Example 2. 

u, m t = u - 1 A Goal 
7,20 3 (7,10,16) NR (i = 3), NR (m 
9,20 9 (9,10,12) NR (» = 3), NR (m 

'2,17 9 (2,3,16) NR (m) 
6,17 3 (6,9,14) NR (»' = 3), NR (m 
5,14 3 (5,8,12) NR (i = 3), NR (m 
3,13 9 (3,4,11) NR (m) 
4,11 3 (4,7,10) NR (»' = 3), NR (m 
5,11 9 (5,6,7) NR (i = 3), NR (m 

We conclude that (1,10,8) is not super-reachable. Hence, we have established the 
following result. 

Theorem 5 There are 2-hyper-reachable knapsack vectors that are not super-
reachable. 

It is an open problem whether or not r-hyper-reachable vectors form a strictly 
increasing hierarchy with r increasing. Other examples of strictly 2-hyper-reachable 
vectors are easy to construct. 

Example 4 We now give the table for each permutation of the vector (2,3,4). 
In each case only values m < 8 have to be considered. 

(2,3,4): No candidates (u, m) 



Decision problems arising from knapsack transformations 435 

u, m t -= u" 1 A Goal 
(3,4,2): 3,8 3 (1,4,6) NR (m) 

2,5 3 (1,3,4) k = 1 rescues t = 3, NR (m) 
(4,2,3): 2,7 4 (1,4,6) NR (m) 
(2,4,3): 4,7 2 (1,2,5) k = 2, (1,2,7),2,11 

3,5 2 (1,2,4) k = 3, (1,2,7), 2,11 
(3,2,4): (5,7) 3 (1,3,6) NR (m) 
(4,3,2) (4,5) 4 (1,2,3) k = 2, (1,4,7),4,13 

The study of (4,3,2) is interesting because it shows that we cannot reject non-
injective candidates A in spite of Theorem 1. This is due to the fact that injectivity 
can be gained later on in the growing sequence. 

We now investigate similarly all permutations of the vector (1,2,4). 
(1,2,4): super-increasing 

u, m t = u~1 A Goal 
(1,4,2): 3,8 3 (3,4,6) NR (»' = 3), NR (m) 

2,5 3 (2,3,4) NR (t = 3), NR (m) 
(2,1,4): 5,7 3 (3,5,6) NR (i = 3), NR (m) 
(2,4,1): 4,7 2 (1,2,4) k = 1, (1,2,5),2,9 

3,5 2 (1,2,3) k = 2, (1,2,5),2,9 
(4,1,2): 2,7 4 (1,2,4) k= 1, (1,3,6),4,11 
(4,2,1): 4,5 4 (1,3,4) k = 1 rescues t = 3, NR (m) 

Summarizing we obtain the following result. 

Theorem 6 Consider knapsack vectors with all components < 4. Exactly the fol-
lowing ones are super-reachable: 

(2,4,3), (4,3,2), (1,2,4), (2,4,1), (4,1,2) 

Proof. By Theorem 1, no permutation of any of the vectors (1,3,4), (1,2,3), (1,2,3,4) 
can be super-reachable. The remaining cases were classified in Example 4. • 

6 Consequences and modifications 
Several other decidability results can be obtained using our basic technique of 
growing and diminishing sequences. We mention a minimization result concerning 
the multiplier and the modulus. 

Theorem 7 Assume that B is super-reachable. Then the smallest m (resp. the 
smallest t) such that B is (A, t,m)-super-reachable for some A and t (resp. A and 
m) is effectively computable. 

Proof. By Theorem 3 or Theorem 4, some triple (A, t, m) is obtained. A straight-
forward way of minimizing the modulus would be a systematic search through all 
values m' < m. For each m', it suffices to test the finitely many triples (A', f', m'), 
where t' < m' and the sum of the components of the super-increasing A' is less 
than m'. However, a much more efficient algorithm (running in time at most cubic 
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in terms of max B) is obtained by Theorem 3: the smallest modulus can be fo-
und from the triples produced by Theorem 3. The same holds true as regards the 
smallest multiplier t. We have presented several examples, where it is necessary 
to go into the growing sequence in order to find the smallest modulus, as well as 
examples, where the smallest multiplier is considerably less than max B. • 

A consequence of Theorem 3, apparent also in the examples above, is that 
a vector B is not super-reachable if there are no candidates (A,t ,m ) , where A 
is increasing, t = u~1 < max B, m < 2 max B and A results from B by modu-
lar multiplication using u and m. The special case, where B itself is increasing 
but not super-increasing, is interesting. Considering small examples, one is temp-
ted to conjecture that growing sequences do not at all come into use, that is, 
one may restrict the attention to vectors A reachable from B by modular mul-
tiplication using u and m. However, the following example shows that this con-

jecture is false. Choose B = (87,96,131,132,159), m = 200andn = 23. Then 
t = 87 and A = (1, 8,13, 36, 57), which is not super-increasing. However, the triple 
(A, t, m) possesses the goal 

((1,14,23,66,105), 87, 374), 
reached for k = 2. Here 374 > 2 max B. 

The following result can be obtained along these lines. 
Theorem 8 If B = (61,62,63) is increasing and super-reachable, then B is 
(A, t,m)-super-reachable, for some t < maxB,m < 2maxJ5. 
Proof. There must be an increasing A such that 

B —• A 
(u,T7l) 

where m < 2 max B, t = u~1 < max B. Suppose that no such A is super-increasing. 
Consider an arbitrary A = (oi, a2,03). Hence, 3 is a violation point: a3 < ai + 02. 
This implies that ta3 < ta\ + ta2. Denote tai = bi + ctim,i = 1,2,3. (Hence, 
[toi/m] = a,-.) We obtain 

63 + a 3 m < 61 -I- 62 + ( a i + Q2)m. 

If now <23 > ai + 0:2, we obtain further 

63 + m < 63 + (a3 - ai - 02)»^ < 61 + 62 + (ai + a2 - oc3)m + (a 3 - a x — a 2 )m = 

= &i + 62 < 61 + m. 
Consequently, 63 < 61, which contradicts the assumption of B being increasing. 
This implies that a3 < ai + 012, which shows that the triple (A, t, m) possesses no 
goal. Since A was arbitrary, we conclude that B is not super-reachable, contrary 
to the assumption. • 

It was seen above that the result of Theorem 8 does not hold true if the number 
n of the components of the vectors equals 5. It is an open problem whether or not 
the result holds for n = 4. 

Our final example in this section is of a somewhat different nature. 
Example 5 Shamir's algorithm (see [5] or [2]) is based on the assumption that 

the given vector B is super-reachable. Tne algorithm usually produces an interval 
such that, whenever the number u/m written in lowest terms lies in this interval, 
then B is (A, t, m)-super-reachable, t = u - 1 and 

B —> A. 
( u , m ) 
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Without explaining any details of Shamir's algorithm, we show by a couple of 
examples how one can go back to the algorithm of Theorem 3. 

Consider the vector B = (7,3,2). We get an open interval (5/7, 3/4). The 
number 8/11 in this interval yields A = (1,2,5). This sows that B is (A, 7,11)-
super-reachable. Here both 7 and 11 are within the limits of Theorem 3 and, thus, 
the result is obtained by the "first part" of our algorithm, where one does not use 
growing sequences. The number 41/56 in this interval yields A = (7,11, 26). Since 
41 is its own inverse, B is ((7,ll,26),41,56)-super-reachable. The multiplier 41 is, 
however, too big to be reached by the algorithm of Theorem 3. Using Lemma 4, 
we get successively the following triples: 

((5, 8,19), 26,41), ((3,5,12), 11,26), ((l, 2,5), 7,11). 

Here the last triple (in fact, the same as the one obtained for 8/11) falls within the 
size limits of Theorem 3. 

As regards the number 61/84 from the interval in question, the procedure is 
slightly different. The inverse of 61 is 73 and, hence, B is ((7,15,38),73,84)-super-
reachable. Again, the multiplier is too big. Lemma 4 yields, in succession, the 
triples 

((6,13,33), 62,73), ((5,11,28), 51,62), 

((4,9,23), 40,51), ((3,7,18), 29,40), 

((2, 5,13), 18,29), ((1,3,8), 7,18). 
In the last triple the multiplier t = 7 satisfies t < max 5 . In fact, we already carried 
out the computation this far after Lemma 4. However, m > 2 maxB and cannot 
be obtained in the first part of the algorithm. Taking one step in the diminishing 
sequence we obtain our old friend ((1,2,5),7,11), which completes our argument. 

In the example considered in [2], 

B = (43,129,215,473,903,302,561,1165,697,1523) 

is the vector to be analyzed. Shamir's algorithm produces the interval (1/43, 
36/1547). Choosing u = 37 and m = 1590, we get the number 37/1590 in this 
interval, as well as the vector 

A = (1,3,5,11,21,44,87,175,349,701) 

which is super-increasing. Now u - 1 = t = 43 and, thus, both t and u lie within 
the bounds of the first part of the algorithm of Theorem 3. In fact, the solution 
obtained equals the one used by the cryptosystem designer in [2] . 

Consider next u = 72 and m = 3095. We get the vector 

A = (1, 3, 5,11, 21, 79,157,315,664,1331). 

Also now i = 43 but m > 2 max B. When we go two steps back in the diminishing 
sequence, we get the triple 

((1, 3, 5,11,21, 77,153,307,646,1295), 43,3009). 

Now also m is within the size limits. 
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7 Permutations 
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For a cryptanalyst it is certainly sufficient to find a permutation of a publicized 
vector B that is super-reachable. When such a permutation is known, cryptanalysis 
works as before - only the inverse permutation has to be applied to the plaintext 
bit vectors. 

Let us call a vector B permutation-super-reachable iff some permutation of B is 
super-reachable. For instance, it was seen in Example 3 that (1,10,8) is not super-
reachable. Clearly, it is permutation-super-reachable. By our theory it is easy to 
see that every injective (01,02,03) is permutation-super-reachable. The following 
result is established exactly as Theorem 1. 

Theorem 9 Every permutation-super-reachable vector is injective. 

Permutations were investigated already in Example 4. The following example is of 
a similar nature. 

Example 6 We use the same notation as in Example 4 to classify the permu-
tations of (3,4,5). 

u, m t = u" 1 A Goal 
(3,4,5): 3,8 3 (1.4,7) NR (m) 
(3,5,4): 7,10 3 (1,5,8) NR (m) 

5,7 3 (1,4,6) NR (m) 
(4,3,5): 5,9 2 (2,6,7) NR (»' = 3), NR (m) 

7,9 4 (1,3,8) NR (m) 
4,7 2 (2,5,6) NR (t' = 3), NR (m) 

(4,5,3): 2.7 4 (1,3,6) NR (m) 
(5,3,4): 2,9 5 (1,6,8) NR (m) 

3,7 5 (1,2,5) k=2, (1,4,11),5,17 
(5,4,3): 5,8 5 (1,4,7) NR (m) 

5,6 5 (1,2,3) k= 1, (1,3,5),5, 11 

Thus, only (5,3,4) and (5,4,3) are super-reachable. 

8 Hyper-reachability 
Various decidability results and polynomial-time algorithms concerning hyper-
reachability can be obtained using the techniques developed above. We mention 
here some such results. All of them concern r-hyper-reachability for a fixed or boun-
ded r. This is basically due to the fact that a characterization of hyper-reachability 
is missing. Do the r-hyper-reachable sets of vectors form an infinite hierarchy (when 
r is growing)? It is conceivable that, for some target vectors B, the "derivation 
chain" is arbitrarily long with irregular fluctuations in the sizes of the intermediate 
vectors and moduli. 

The following Theorems 10-12 correspond to Theorems 3,4 and 7, respectively. 

Theorem 10 It is decidable of a given knapsack vector B and positive integer r 
whether or not B is r-hyper-reachable. 
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Proof. Consider first the case r = 2. Then B is 2-hyper-reachable iff there exist 
t, m, t', m', C and a super-increasing A such that 

A —• C —• B. (25) 
(M,t',m') (Af,t,m) 

The method of Theorem 3 is now applicable with the exception that we cannot 
use Lemma 4 in connection with C. The construction leading from (13) to (14) 
is valid but does not necessarily preserve the super-reachability of the vectors in-
volved. In (25) C is super-reachable, whereas the vector obtained form C by the 
construction of Lemma 4 might not be super-reachable. However, the strict sepa-
ration t < max B, m > 2 maxB is needed only in (19) to prove that diminishing 
sequences preserve the property of being increasing. We do not need this property 
in connection with C. The proofs of the Lemmas 2,3 (where the goal is defined 
only for m), 5 (where the requirement t < max JB is omitted from the definition of 
a diminishing sequence) and 6 remain valid. 

We proceed as follows. For arbitrary u < m < 2 maxB, we form the vector 
E = (e i , . . . , en) such that 

B — E. 
(u,m) 

(E need not be increasing and not necessarily u - 1 = t < maxB.) If m > e,-, 
the vector E qualifies as a candidate for C. Otherwise, we test by Lemma 3 
whether or not the modulus can be rescued in the growing sequence associated 
with (jE,t,m). If it can, then the resulting vector E' qualifies as a candidate for 
C. Then all candidates are obtained according to Theorem 3. If originally in (25) 
m > 2 max 5 , a modulus of the right size is obtained in the diminishing sequence. 
The result need not be super-reachable because the original C is recovered in the 
growing sequence. 

The case of a general r is now obvious by induction. Assuming the validity of the 
assertion for a fixed r, to test (r + l)-hyper-reachability we first form intermediate 
candidates exactly as above. The only difference is that we are now dealing with 
candidates for r-hyper-reachability rather than for super-reachability. 

Theorem 11 A vector B is r-hyper-reachable iff it is r-hyper-reachable for a 
chain of modular multiplications, where each multiplier and modulus is less than 
(max B)3'. 

Proof. We replace the upper bound 2maxB(l+maxB) in Theorem 4 by the much 
ruder upper bound (max5) 3 . Theorem 11 now follows because always the com-
ponents of the vectors are smaller than the modulus. 

Theorem 12 Assume that B is r-hyper-reachable. Then the smallest m such that 
the r-hyper-reachability of B can be shown using only moduli < m is effectively 
computable. 

Proof. One can use either the algorithm described in Theorem 10 or the more 
simply stated but less efficient algorithm due to Theorem 11. • 

The part of Theorem 7 dealing with multipliers cannot be generalized by this 
technique. This is due to the fact that Lemma 4 cannot be applied in case of r-
hyper-reachability. It is conceivable that a smaller t will work with a big increase 
in m. 

It is clear that, for a fixed r, the algorithms due to Theorems 10-12 work in 
polynomial time (with respect to max B), where the degree of the polynomial 
depends on r. 

Our final result is an immediate consequence of Theorem 10. 
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Theorem 13 If B is known to be hyper-reachable, then the smallest r such that B 
is r-hyper-reachable can be effectively computed. 

9 Conclusion 
The techniques developed here seem to be applicable to a great variety of to-
pics dealing with knapsacks. We have mentioned above many open problems. In 
our estimation, the following are the most important among them, (i) Present 
criteria, other than Theorem 1, for constructing classes of vectors that are not 
super-reachable (resp. not r-hyper-reachable, not hyper-reachable), (ii) Do the 
r-hyper-reachable vectors form a strictly increasing hierarchy? (iii) Decidability of 
hyper-reachability? 
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