Language representations starting from fully initial languages

Gh. Paun
S. Vicolov*

Abstract

It is proved that each regular/linear/context-free language is the image of a fully initial regular/linear/context-free language by an inverse homomorphism, as well as the intersection of two regular/linear/context-free fully initial languages, respectively. The converse of the latter assertion is not true for linear and for context-free languages.

1 Fully initial languages

For a context-free grammar $G=\left(V_{N}, V_{T}, S, P\right)$, one usually define the generated language as

$$
L(G)=\left\{x \in V_{T}^{*} \mid S \xlongequal{*} x\right\}
$$

S. Horváth proposed to consider also the fully initial language generated by G, that is

$$
L_{i n}(G)=\left\{x \in V_{T}^{*} \mid A \stackrel{*}{\Longrightarrow} x, A \in V_{N}\right\}
$$

(We denoted V^{*} the free monoid generated by V under the operation of concatenation; the null element of V^{*} is denoted by λ and $|x|$ denotes the length of $x \in V^{*}$. For $U \subseteq V$ and $x \in V^{*}$ we denote by $|x|_{U}$ the length of the string obtained by erasing from x all symbols not in U.)

We denote by REG, LIN, CF the families of regular, linear, context-free languages, respectively, and by FIREG, FILIN, FICF the families of fully initial languages generated by right-linear, linear and context-free grammars, respectively.

The fully initial languages were investigated in a series of papers $[1],[3],[4],[6]$, [8]. In [3] it is proved that FICF is not closed under concatenation, intersection by regular sets and inverse homomorphisms; in fact, the proofs in [3] are true also for the family FILIN. The same nonclosure results hold also for the family FIREG (see [4]). On the other hand, FIX $\subset X$, strict inclusion, for each $X \in\{R E G$, LIN, CF $\}$, [3], [4].

The above quoted results naturally raise the question of representing languages in a family X, X as above, starting from languages in FIX and using suitable operations. One such representation (characterization, in fact) has been done in [6], where it is proved

[^0]Theorem 1 A language $L \subseteq V^{*}$ is in $X, X \in\{$ REG, LIN, CF\}, if and only if there is $L^{\prime} \in$ FIX such that

$$
L=h_{c}\left(L^{\prime} \cap\{c\} V^{*}\right)
$$

where c is a new symbol and $h_{c}:(V \cup\{c\})^{*} \longrightarrow V^{*}$ is the homomorphism defined by $h_{c}(a)=a, a \in V, h_{c}(c)=\lambda$.

Two open problems are then raised in [6]:
(1) Can the homomorphism in above theorem be removed, that is suffices an intersection for obtaining a representation/characterization of X starting from languages in FIX?
(2) What about inverse homomorphism characterizations?

We affirmativelly solve here both these problems: there are such representations (sometimes characterizations).

In what follows, two languages will be considered equal if they differ only by the null string λ.

2 Characterization and representation results

Theorem $2 X=\left\{h^{-1}(L) \mid L \in\right.$ FIX h a homomorphism $\}, X \in\{$ REG, LIN, CF $\}$.
Proof. Each family X as above is closed under inverse homomorphisms [7], hence the inclusion \supseteq is true.

Conversely, let $L \subseteq V^{*}$, be a context-free language. Denote by $d_{a}(L)$ the left derivative of L with respect to $a \in V$, that is

$$
d_{a}(L)=\left\{x \in V^{*} \mid a x \in L\right\}
$$

We have

$$
L=\bigcup_{a \in V}\{a\} d_{a}(L)
$$

Each $d_{a}(L), a \in V$, is. a context-free language; let $G_{a}=\left(V_{N, a}, V, S_{a}, P_{a}\right)$ be a λ-free grammar for $d_{a}(L)$. We construct the grammar

$$
G=\left(V_{N}, V \cup\{c\}, S, P\right)
$$

where c, S are new symbols,

$$
V_{N}=\bigcup_{a \in V} V_{N, a} \cup\{S\}
$$

and P contains the following rules:
(1) $S \longrightarrow a c$, if $a \in L, a \in V$,
(2) $S \longrightarrow a S_{a}, a \in V$,
(3) $A \longrightarrow x^{\prime}$, for $A \longrightarrow x \in \bigcup_{a \in V} P_{a}$, and x^{\prime} is obtained by replacing each terminal b in $x, b \in V$, by $c b$ (the nonterminals in x remain unchanged),
(4) $A \longrightarrow x^{\prime}$, for $A \longrightarrow x \in \underset{a \in V}{ } P_{a}$, and x^{\prime} is obtained by replacing each terminal b in $x, b \in V$, by $c b$, excepting one occurrence of some $b \in V$ which is replaced by $c b c$ (the nonterminals remain unchanged).

Let $L^{\prime}=L_{i n}(G)$ and consider the homomorphism $h: V^{*} \longrightarrow(V \cup\{c\})^{*}$ defined by $h(a)=a c, a \in V$. Clearly, $\operatorname{Im}(h)=(V\{c\})^{*}$ and

$$
L_{i n}(G)=L(G) \cup \cup_{A \in V_{N}-\{S\}} L_{A}(G)
$$

with

$$
L_{A}\left(G=\left\{x \in V^{*} \mid A \xlongequal{*} x \text { in } G\right\}\right.
$$

As each $x \in L_{A}(G), A \neq S$, is of the form $x=c y, y \in(V \cup\{c\})^{*}$, it follows that $\operatorname{Im}(h) \cap L_{A}(G)=\emptyset$, hence $h^{-1}\left(L^{\prime}\right)=h^{-1}(L(G))$. On the other hand, we have

$$
L(G)=L_{1} \cup L_{2} \cup L_{3} \cup L_{4}
$$

where

$$
L_{1}=L(G) \cap\left\{\left.x \in(V \cup\{c\})^{*}| | x\right|_{c}=|x|_{V}-1\right\}
$$

(the strings in L_{1} are produced by using rules of the form (2) and (3), without using rules (1) and (4))

$$
L_{2}=L(G) \cap\left\{\left.x \in(V \cup\{c\})^{*}| | x\right|_{c}>|x|_{V}\right\}
$$

(the strings in L_{2} are obtained by using rules of forms (2), (3) and (4), namely at least two times rules of type (4))

$$
L_{3}=L(G) \cap\left\{\left.x \in(V \cup\{c\})^{*}| | x\right|_{c}=|x|_{V}, x=y a, a \in V, y \in(V \cup\{c\})^{*}\right\}
$$

(the strings in L_{3} are produced by using rules of types (2), (3) and (4), exactly one time a rule of type (4), but with cac not introduced on the rightmost position of the string).

$$
L_{4}=L(G) \cap(V\{c\})^{*}
$$

(the strings in L_{4} are produced by using rules of type (1), or of types (2), (3), (4), exactly one time a rule of type (4), with cac introduced on the rightmost position of the string)

Clearly, $\operatorname{Im}(h) \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)=\emptyset$, hence $h^{-1}(L(G))=h^{-1}\left(L_{4}\right)$.
Moreover, $h(L)=L_{4}$ (from each derivation in $G_{a}, a \in V$, we can obtain a derivation in G and conversely, and $\left.h(L) \subseteq \operatorname{Im}(h)=(V\{c\})^{*}\right)$, and h is an injective homomorphism, hence $h^{-1}\left(L_{4}\right)=L$, that is $L=h^{-1}\left(L_{4}\right)=h^{-1}(L(G))=$ $h^{-1}\left(L^{\prime}\right)=h^{-1}\left(L_{i n}(G)\right)$.

As one can see, if L is regular, then G is right-linear, and if L is linear, then G is linear too, which completes the proof.

Consider now the intersection. For LIN and CF we cannot obtain characterizations: consider the linear grammars

$$
\begin{aligned}
G_{1}= & (\{S, A\},\{a, b, c\}, S,\{S \longrightarrow S c, S \longrightarrow A, A \longrightarrow a A b, \\
& A \longrightarrow a b\}) \\
G_{2}= & (\{S, A\},\{a, b, c\}, S,\{S \longrightarrow a S, S \longrightarrow A, A \longrightarrow b A c \\
& A \longrightarrow b c\})
\end{aligned}
$$

We have

$$
\begin{aligned}
& L_{i n}\left(G_{1}\right)=\left\{a^{n} b^{n} c^{m} \mid n \geq 1, m \geq 0\right\} \\
& L_{i n}\left(G_{2}\right)=\left\{a^{n} b^{m} c^{m} \mid n \geq 0, m \geq 1\right\}
\end{aligned}
$$

hence

$$
L_{i n}\left(G_{1}\right) \cap L_{i n}\left(G_{2}\right)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
$$

a language which is not context-free.
However, we can obtain representations of languages in $X, X \in$ \{REG, LIN, CF\}, as intersections of languages in FLX; as REG is closed under intersection, for this family we have in fact a characterisation.

Theorem 3 For each $L \in X, X \in\{$ REG, LIN $\}$, there are $L_{1}, L_{2} \in F I X$, such that $L=L_{1} \cap L_{2}$.

Proof. We consider here only the linear case; the regular case is a particular one.

Let $G=\left(V_{N}, V_{T}, S, P\right)$ be a linear grammar. Without loss of generality we may assume that each rule in P is of the next forms: $A \longrightarrow a B, A \longrightarrow B a, A \longrightarrow a$ (for, each rule $A \longrightarrow a_{1} \ldots a_{n} B b_{m} \ldots b_{1}$ can be replaced by $A \longrightarrow a_{1} A_{1}, A_{1} \longrightarrow$ $a_{2} A_{2}, \ldots, A_{n-1} \longrightarrow a_{n} C, C \longrightarrow C_{1} b_{1}, C_{1} \longrightarrow C_{2} b_{2}, \ldots, C_{m-1} \longrightarrow B b_{m}$, etc.).

Consider the new symbols S_{1}, S_{2} and construct the grammars

$$
G_{i}=\left(V_{N} \cup\left\{S_{i}\right\}, V_{T}, S_{i}, P_{i}\right), i=1,2
$$

with

$$
\begin{aligned}
& P_{1}=\left\{S_{1} \longrightarrow x|x \in L(G),|x| \leq 1\}\right. \\
& \cup\left\{S_{1} \longrightarrow x A y \mid S \xrightarrow{*} x A y \text { in } G,|x y| \leq 2\right\} \\
& \cup\{A \longrightarrow x B y \mid A \xlongequal{*} x B y \text { in } G,|x y|=2\} \\
& \cup\left\{A \longrightarrow a \mid A \longrightarrow a \in P, a \in V_{T}\right\}, \\
& P_{2}=\left\{S_{i} \longrightarrow x|x \in L(G),|x| \leq 2\}\right. \\
& \cup\left\{S_{1} \longrightarrow x A y \mid S \xlongequal{*} x A y \text { in } G,|x y| \leq 2\right\} \\
& \cup\{A \longrightarrow x B y \mid A \xrightarrow{*} x B y \text { in } G,|x y|=2\} \\
& \cup\left\{A \longrightarrow a b \mid A \stackrel{\ddot{\circ}}{\Longrightarrow} a b \text { in } G, a, b \in V_{T}\right\} .
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
L\left(G_{1}\right) & =L\left(G_{2}\right)=L \\
L_{i n}\left(G_{1}\right) & =L\left(G_{1}\right) \cup \cup_{A \neq S_{1}} L_{A}\left(G_{1}\right) \\
L_{i n}\left(G_{2}\right) & =L\left(G_{2}\right) \cup \cup_{A \neq S_{2}} L_{A}\left(G_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{A}\left(G_{1}\right) \subseteq\left\{x \in V_{T}^{*}| | x \mid=2 k+1, k \geq 0\right\}, A \neq S_{1}, \\
& L_{A}\left(G_{2}\right) \subseteq\left\{x \in V_{T}^{*}| | x \mid=2 k, k \geq 1\right\}, A \neq S_{2} .
\end{aligned}
$$

Therefore,

$$
L_{i n}\left(G_{1}\right) \cap L_{i n}\left(G_{2}\right)=L\left(G_{1}\right) \cap L\left(G_{2}\right)=L
$$

A similar representation theorem can be obtained also for the context-free case.
Theorem 4 For each $L \in \mathrm{CF}$, there are $L_{1}, L_{2} \in$ FICF, such that $L=L_{1} \cap L_{2}$.
Proof. Let $L \subseteq V^{*}$ be a context-free language and consider

$$
\begin{aligned}
& \operatorname{even}(L)=L \cap\{a b \mid a, b \in V\}^{*} \\
& \operatorname{odd}(L)=L \cap\{a b \mid a, b \in V\}^{*} V
\end{aligned}
$$

Clearly, $L=\operatorname{even}(L) \cup \operatorname{odd}(L)$ and even (L), odd (L) are context-free languages (CF is closed under intersection by regular sets).

On the other hand,

$$
L=\bigcup_{a \in V}\{a\} d_{a}(L)
$$

and

$$
\begin{aligned}
& \operatorname{even}(L)=\bigcup_{a \in V}\{a\} \operatorname{odd}\left(d_{a}(L)\right) \\
& \operatorname{odd}(L)=\bigcup_{a \in V}\{a\} \operatorname{even}\left(d_{a}(L)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L & =\operatorname{even}(L) \cup \bigcup_{a \in V}\{a\} \operatorname{even}\left(d_{a}(L)\right) \\
& =\operatorname{odd}(L) \cup \bigcup_{a \in V}\{a\} \operatorname{odd}\left(d_{a}(L)\right) .
\end{aligned}
$$

All languages even $\left(d_{a}(L)\right)$, odd $\left(d_{a}(L)\right), a \in V$, are context-free. In view of the super-normal form theorem in [2], [5], there are the grammars
(i) $G_{1}=\left(V_{N, 1}, V_{T}, S_{1}, P_{1}\right)$

$$
G_{a, 1}=\left(V_{N, a, 1}, V_{T}, S_{a, 1}, P_{a, 1}\right)
$$

such that $L\left(G_{1}\right)=\operatorname{even}(L), L\left(G_{a, 1}\right)=\operatorname{even}\left(d_{a}(L)\right), a \in V$, and the nonterminal rules in $P_{1}, P_{a, 1}, a \in V$, are in the ($2,0,0$) normal form (of type $A \longrightarrow x B C ; x \in$ $V_{T}^{*},|x|=2, A, B, C$ nonterminals), whereas the terminal rules $A \longrightarrow w$ have $|w|$ in the length set of the generated language, that is $|w|$ is even;
(ii) $G_{2}=\left(V_{N, 2}, V_{T}, S_{2}, P_{2}\right)$

$$
G_{a, 2}=\left(V_{N, a, 2}, V_{T}, S_{a, 2}, P_{a, 2}\right)
$$

such that $L\left(G_{2}\right)=\operatorname{odd}(L), L\left(G_{a, 2}\right)=\operatorname{odd}\left(d_{a}(L)\right), a \in V$, and the nonterminal rules in $P_{2}, P_{a, 2}, a \in V$, are in the $(1,0,0)$ normal form (of type $A \longrightarrow b B C, b \in$
V, A, B, C nonterminals), whereas the terminal rules $A \longrightarrow w$ have $|w|$ in the length set of the generated language, that is $|w|$ is odd.

Now, it is easy to see that $L_{i n}\left(G_{1}\right), L_{i n}\left(G_{a, 1}\right), a \in V$, contain only strings of even lengths, whereas $L_{i n}\left(G_{2}\right), L_{i n}\left(G_{a, 2}\right), a \in V$, contain only strings of odd lengths (induction on the number of rules used in a derivation).

Assume all vocabularies $V_{N, i}, V_{N, a, i}, i=1,2$, pairwise disjoint and construct the grammars

$$
G_{i}^{\prime}=\left(V_{N, i}^{\prime}, V_{T}, S_{i}^{\prime}, P_{i}^{\prime}\right), i=1,2
$$

with

$$
\begin{aligned}
V_{N, i}^{\prime} & =V_{N, i} \cup \cup_{a \in V} V_{N, a, i} \cup\left\{S_{i}^{\prime}\right\} \\
P_{i}^{\prime} & =P_{i} \cup \cup_{a \in V} P_{a, i} \cup\left\{S_{i}^{\prime} \longrightarrow S_{i}\right\} \cup\left\{S_{i}^{\prime} \longrightarrow a S_{a, i} \mid a \in V\right\}
\end{aligned}
$$

From the above relations we have

$$
\begin{aligned}
L\left(G_{1}^{\prime}\right) & =L\left(G_{2}^{\prime}\right)=L \\
L_{i n}\left(G_{i}^{\prime}\right) & =L_{i n}\left(G_{i}\right) \cup \cup_{a \in V}\{a\} L_{i n}\left(G_{a, i}\right), i=1,2
\end{aligned}
$$

and, from the construction of G_{i}^{\prime}, we obtain
(a) if $w \in L_{\text {in }}\left(G_{1}^{\prime}\right)-L\left(G_{1}^{\prime}\right)$, then $|w|$ is even,
(b) if $w \in L_{i n}\left(G_{2}^{\prime}\right)-L\left(G_{2}^{\prime}\right)$, then $|w|$ is odd.

In conclusion, $L_{i n}\left(G_{1}^{\prime}\right) \cap L_{i n}\left(G_{2}^{\prime}\right)=L\left(G_{1}^{\prime}\right) \cap L\left(G_{2}^{\prime}\right)=L$, and the proof is over.

References

[1] T. Balanescu, M. Gheorghe, Gh. Paun, On fully initial grammars with regulated rewriting, Acta Cybernetica, 9, 2 (1989), 157-165.
[2] M. Blattner, S. Ginsburg, Canonical forms of context-free grammars and position restricted grammar forms, Lect. Notes Computer Sci., 56, Springer-Verlag, 1979, 49-53.
[3] J. Dassow, On fully initial context-free languages, Papers on Automata and Languages, 10 (1988), 3-6.
[4] Al. Mateescu, Gh. Paun, Further remarks on fully initial grammars, Acta Cybernetica, 9, 2 (1989), 143-156.
[5] H. A. Maurer, A. Salomaa, D. Wood, A super normal form theorem for contextfree grammars, Report F6s, Institut für Inform., Techn. Univ. Grax, 1981.
[6] Gh. Paun, A note on fully initial context-free languages, Papers on Automata and languages, 10 (1988), 7-11.
[7] A. Salomaa, Formal languages, Academic Press, New York, London, 1973.
[8] S. Vicolov, A note on fully initial grammars, Acta Cybernetica, 10, 1-2 (1991), 113-118.

[^0]: *University of Bucharest, Faculty of Mathematics, Str. Academiei 14, 70109 Bucuresti, ROMANIA

