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Modelling of a Communication System 
Evolving in a Random Environment 

by J. Sztrik * L. Lukashuk * 

Abstract 

This paper is concerned with a queueing model to analyse the asymptotic 
behaviour of a finite-source communication system with a receiver containing 
multiple processors of the same kind. The source and processing times of 
each message are supposed to be exponentially distributed random variables 
with parameter depending on the state of a varying environment. Assuming 
that the arrivals of the messages are "fast" compared to their service, it is 
shown that the time to the first system failure converges in distribution, under 
appropriate norming, to an exponentially distributed random variable. 

- - Keywords : queueing, communication system, reliability, weak conver-
gence. 

1 Introduction 
Performance evaluation of information system development has become more com-
plex as the size and complexity of the system has increased, see Takagi (1990). Re-
liability is certainly the most importcint characteristic for communication networks. 
The measure of greatest interest is the distribution of the time to the first system 
failure. It is well-known that the majority of the problems can be treated by the 
help of Semi-Markov Processes (SMP) or Semi-Regenerative Processes (SRP). Since 
the failure-free operation time of the system correponds to sojourn time problems 
we can use the results obtained for SMP, cf. Ushakov (1985), Osaki et al. (1987). 
If the exit from a given subset of the state space is a "rare" event, that is, it occurs 
with a small probability it is natural to investigate the asymptotic behaviour of the 
sojourn time in that subspace, see Gertsbakh (1984, 1989), Keilson (1979), Rukhin 
and Hsieh (1987). 

This paper is concerned with a queueing model to analyse the asymptotic be-
haviour of a finite-source communication system with a receiver containing multi-
ple processors of the same kind. The source and processing times of each message 
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are supposed to be exponentially distributed random variables with parameter de-
pending on the state of a varying environment. Assuming that the arrivals of the 
messages are "fast" compared to their service, it is shown that the time to the 
first system failure converges in distribution, under appropriate norming, to an 
exponentially distributed random variable. 

2 Preliminary results 
In this section a brief survey is given of the most related theoretical results, mainly 
due to Anisimov, to be applied later on. 

Let (X , (A: ) ,k > 0) be a Markov chain with state space 

m-1-1 
U Xq, XinX} = 0, tjij, 

q=0 

defined by the transition matrix satisfying the following conditions: 

1. P«(i ( 0 ) ,y ( 0 )) — P o ( i ( 0 ) , y ( 0 ) ) , « e ^ 0, 

t(°),j(°> € X0, and P0 = ||po(i(0),y(0))|| ¡8 irreducible; 

2. P . ( * ( , ) . J ( , + 1 ) ) = eaW(iW,, - ( '+ 1 ) ) + o(e), № £ Xg, £ Xq+li 

3. p, (¿U) , / < « ) ) _ > 0, as 5 — » 0 , iMjM (£Xq,q>l-, 

4. ? . (»•(«) , / ( ' ) ) , = 0, ¡ W e X j W g X , , z - q > 2. 

In the sequel the set of states Xq is called the 9-th level of the chain, q = 1,..., m+1. 
Let us single out the subset of states 

m 
( a m ) = U Xq. 

9=0 

Denote by {ir,(i(«)),i(«) e X , } , q = 1 , . . . , m the stationary distribution of a chain 
with transition matrix 

' i - E p . ( t ( « ) ; f c ( » » + 1 ) ) 
H m + 1 ) e x „ + a ^ 

furthermore denote by gt((am)) the steady state probability of exit from (a m ) , 
that is 

¡ 7 < ( M ) = E »•(••(m)) E p . ( * ( m ) , i ( m + 1 ) ) -
i ( " ) € X m j'(m+1) g x m + i 

Denote by £ Xo} the stationary distribution corresponding to PQ 
and let 
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be row vectors. Finally, let 

defined by Condition 2. 
Conditions (l)-(4) enables us to compute the main terms of the asymptotic 

expression for 

and gt((am)). Namely, we obtain 

*L<} = e"Wa A<°> AW . . . + o(e<) 9 = 1 

<7,((«m)) = £ m + 1 5r 0 A(°) AW ... A*"1) 1 + o ( e m + 1 ) , ( l ) 
where 1 = (1 , . . . , 1)* is a column vector, see Anisimov et al. (1987) pp. 141-153. 
Let (r]^[t), i > 0) be a SMP given by the embedded Markov chain (X,[k) k > 0) 
satisfying conditions (l)-(4). Let the times transition times from 
state to state k^— fulfil the condition Eexp{ie&T.0<«> ,*<»>)} = 1 + z,Q)em+1 + o(£m+1), (i2 = - 1 ) 

where /7, is some normalizing factor. Denote by 0«(m) the instant at which the 
SMP reaches the m + 1-th level for the first time, exit time from (a m ) , provided 
T},(0) £ (am). Then we have: 

Theorem 1 (cf. Anisimov et al. (1987) pp. 158) If the above conditions are 
satisfied then 

^ ^ E exp { ; e & n , ( m ) } = ( l - A ( e ) ) - \ 

where 

E M3{0))poU(0),kW)ajk(o,o,e) 
y(°),fc(°)6Xo 

7r0A(°)A(1) . . .A('n)l 

Corollary 1 In particular, if ajk{s,z,Q) = iQm}k(s, z) then the limit is an expo-
nentially distributed random variable with mean 

E My(0))po(j<0U(0)K*(o,o) 
j(<».Jb(o)e x„ 

x0A(°)AW . . . A ( " * ) I 

3 The mathematical model 
Let us consider a communication system consisting of N sources of informa-
tion and n processors of the same kind at the receiver. The whole system is 
assumed to operate in a random environment governed by an ergodic Markov 
chain (£(t),t > 0) with state space (1 , . . . , r ) and with transition density matrix 

an — E j v , <*»/)• Whenever the environmental process is in 
state t the probability that an active source generates a message in the time inter-
val {t, t + h) is A(t, e)h -f o(h). Each message is transmitted to a receiver where the 
service immediately starts if there is an idle processor, otherwise a queueing line is 

A (6 ) 
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formed. The service discipline is First Come-First Served (FCFS). Whenever the 
environmental process is in state i the probability that the processing of a given 
message is completed in time interval (t,t + h) is fi(i)h+ o{h). If a given source has 
sent a message it stays idle and it cannot generate other one. After being serviced 
each message immediately returns to its source which hence becomes active. All 
random variables involved her and the random environment are supposed to be 
independent of each other. 

In practical applications it is very important to know the distribution of time 
until the receiver becomes empty. 

Let us consider the system unnder the assumption of "fast" arrivals, i.e., 
A(i, e) —• oo as e —• 0. For simplicity let A(i,e) = A(i)/e. Denote by Yt(t) 
the number of active sources at time t, and let 

n,(m) = inf{i : t > 0, y,(i) = m + l|r,(0) < m}, 

that is, the instant at which the number of active sources reaches the m + 1-th level 
for the first time, provided that at the begining their number is not greater than 
m, m = 0 , . . . , N — 1. In the following O, (m) is referred to as the time to the 
first system failure. In particular, if m = N — 1 than the receiver becomes empty. 

Denote by {irk, k = l , . . . , r ) the steady-state distribution of the governing 
Markov chain (£(t), t > 0). Now we have: 

Theorem 2 For the system in question under the above assumptions, indepen-
dently of the initial state, the distribution of the normalized random variable 
emfl ,(m) converges weakly to an exponentially distributed random variable with 
parameter 

m! .=i v r - ' A(t)m 

Proof . It is easy to see that the process 

is a two-dimensional Markov chain with state space 

£ = ( ( » » , i = 1 , . . . , r, s = 0,...N). 

Furthermore, let 

(am) = ((*',s), t = l , . . . , r , s = 0 , . . . , m). 

Hence our aim is to determine the distribution of the first exit time of Zt{t) from 
(«m), provided that Z,{o) e (am). 

It can easily be verified that the transition probabilities in any time interval 
(t, t + h) are the following: 

f 0 » aijh+oih), ijtj, 
(i, s) < (*, a + 1) min(n, N — s)p(i)h + o{h) a = 0 , . . . , N - 1, 

{ (i,a — 1) (aA(i)/ff)A + o{h), s = l,...,N. 

In addition, the sojourn time rt(i, a) of Z,{t) in state (t, s) is exponentially 
distributed with parameter ax + sA(i)/e + min{N, n — s)^i(t). Thus, the transition 
probabilities for the embedded Markov chain are 
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p.[(»-.»).0'.*)]- + a A ( t ) / g + j y _ 3 ) M ( t ) . s = 0,...,N, 

P .[(i, .), (», s + 1)] = min(n,iVra)M(i) = _ i -«iv . /»v. и од + eA(t)/e + min(n, 2V - s)^(t)' 

P.K»-, в a - D ) = + а Л ( 0 / е ; А ^ ; П ) ^ _ , M 0 . — l , 

As e — • 0 this implies 

P«M)> (У>°)1 = ЛГ^ЦЩ' a = °> * 

P«[(»>«). (У.3)1 = o(l), s = l,...,N, 

p.[(i,s), (г, в + 1)] = + o ( e ) ) > a = 1 N — 1, 

p . [ ( t » , ( t , s - l ) ] — s = l,...N. 

This agrees with the conditions (l)-f4), but here the zero level is the set 
((»',0), (t, l ) , t = l , . . . , r ) while the g-tn level is ((»,q + l ) , t = l , . . . , r ) . Since 
the level 0 in the limit forms an essential class, the probabilities iro(i, 0), яъ(*\ 1), 
i = 1 , . . . , r satisfy the following system of equations 

*о(У. 0) = £ Mh0Ну/(аи + n/i(»)) + nQ(j, i) (2) 

M i , 1) = то(У,0)п^(У)/(ауу + п/х(У)). (3) 
By substituting (3) to (2) we get 

*о(У>°) аУ// ( аУл + n f i ( j ) ) = £ тг0(»',0)а,у \ ( a u + n ^ ( t ) ) . (4) 
ijt] 

Since 

*УаУУ = £ Ъ Ъ ] , 

from (3) and (4) we have 

To (t, o) = Вт (Oii + n/i(t) ), 7T0 (t, 1 ) = BiCi nn(i), 

where В is the normalizing constant, i.e. 
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• = l 

By using (1) it is easy to show that the probability of exit from (a m ) is 

9*[(am)) = emnBY,w(t) aA(t) U + °(1)) • = i 

» = i 1 

Taking into account the exponentiality of r,(j, s) for fixed 6 we have 

E exp {»e m ©r, ( j ,0 ) } = 1 + -^" "TY U + "(1)) 

E exp {tem0r,(y, s)} = 1 + o(em), s > 0. 

Notice that = em and therefore from Corollary 1 we immediately get the state-
ment that £mfl*(m) converges weakly to an exponentially distributed random vari-
able with parameter 

1=1 1 ' 

which completes the proof. 
Consequently, the distribution of the time to the first system failure can be 

approximated by 

P(n , (m) > t) = P(e r on,(m) > emt) » exp(-emAt),-

i.e. fi,(m) is asymptotically an exponenetially distributed random variable with 
parameter emA. In particular, for m = N — 1 we have 

N—l » 6 ™ _N-n ST ~ W - nN-n V" 

In the case when there is no random environment we get . 

j r - i t - n ! • - w - » • 
(N — 1)! ( A / « ) * " 1 ' 
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