
Acta Cybemetica, Vol. 10, Nr. 3, Szeged, 1992

Alternation bounds for tree automata

Kai Salomaa *

Abstract

We consider alternation depth bounds for tree automata, that is, we limit
the number of alternations of existential and universal computation steps. We
show that a constant bound guarantees that the forest recognized is regular,
whereas already a logarithmic bound enables the automata to recognize a
strictly larger class of forests. As a corollary we obtain results on other types
of alternation bounds for tree automata. We consider also commutation prop-
erties of independent computation steps of an alternating tree automaton.

1 Introduction
An alternating computation generalizes a nondeterministic one by allowing the au-
tomaton to both make existential choices and branch the computation universally.
Alternation has been used to model parallelism of various machine models, cf. e.g.
[2], [6], [8], 19], [10]. The alternating computations of tree automata are particularly
interesting Decause there parallelism occurs on two levels: the automaton reads in
parallel independent subtrees of the input and, furthermore, the computation can
branch universally.

It is well known that alternating finite automata recognize only the regular lan-
guages. Also alternating top-down finite tree automata recognize just the regular
forests, cf. [18]. On the other hand, alternation increases dramatically the com-
putational power of finite bottom-up tree automata, cf. [14], [15], [17]. These au-
tomata define as yield-languages even all recursively enumerable languages. Other
alternating tree automaton models are studied in [11], [12], [16].

Because of the great computational power of alternating tree automata it seems
natural to consider restrictions on the alternating computations that would limit
the family of recognized forests. Alternation bounds on various Turing machine
models and multihead finite automata have been investigated in [3], [5], [6], [7],
[10], [13]. There one restricts the width or leaf-size of the computation trees, (or
equivalently the number of universal computation steps in an alternating computar
tion.) Also bounds that restrict the size of the alternating computation trees have
been investigated, this corresponds to limiting together the length and parallelism
of the computation.

Alternation depth of Turing machines, that is the number of alternations of
existential and universal configurations in a computation path, is considered in
[2]. A similar measure called alternation size which restricts the total number of
alternations in a computation tree is defined in [l], and the alternation size of a

•Department of Mathematics, University of Turku, SF-20500 Turku, Finland

173

174 Kai Saiomaa

Turing machine is shown to correspond closely to the number of reversals of an
auxiliary pushdown automaton.

Here we study alternation depth bounds in the context of bottom-up tree au-
tomata. For tree automata, the configurations cannot be divided into existential
and universal ones as in the case of Turing machines (a tree configuration can
contain an arbitrary number of states) and, therefore, we will in fact limit the
alternation of existential and universal computation steps in any branch of the
computation tree. Intuitively, one may think the edges of the computation tree to
be labeled by E or U depending on whether the computation step is existential or
universal. On a path from the root to a leaf a sequence of consequtive symbols E
(respectively U) that is limited on both sides by symbols U (resp. E) is said to be
an existential (resp. universal) computation segment. In an alternation bounded
computation tree the number of computation segments on each path is limited by
a function on the size of the input.

Clearly even a computation tree with a constant alternation bound may contain
an arbitrary number of universal computation steps and thus its width can be
linear in the size of the input. However, it is shown that forests recognized by
tree automata with a constant alternation bound are regular. This illustrates the
fact that the power of alternating tree automata is not only due to an unlimited
number of parallel computations but also to the capability of alternating existential
and universal computation steps and reading independent subtrees of the input
differently in distinct branches of the computation. As a special case it follows
that also automata with constant width computation trees define only the regular
forests.

On the other hand, it is shown that already a logarithmic alternation bound
enables the finite tree automata to recognize also nonregular forests. The main
open question is whether the same is true for some sublogarithmic (nonconstant)
functions.

In order to establish the above results we need to consider the commutation
properties of independent computation steps in an alternating computation. (That
is, computation steps at independent nodes of the input tree.) In general, the order
in which the recognizer reads independent subtrees of the input can be essential.
However, clearly two existential (i.e., nondeterministic) independent computation
steps always commute, and the same is true for universal computation steps. Fur-
thermore, a universal and existential computation step semi-commute, that is, a
universal computation step may be assumed to be performed first.

In Section 2 we recall the definition of an alternating tree recognizer and es-
tablish the above commutation properties. Alternation bounded computations are
defined in Section 3 and there it is also shown that constant bounds define only the
regular forests. Sections 4 and 5 consider the logarithmic bound and some related
alternation measures.

2 Alternating tree automata
The reader is assumed to be familiar with trees and tree automata, cf. e.g. [4].
Here we recall the definition of an alternating finite bottom-up tree recognizer,
cf. [14], [15], [17]. Since we will consider computations with a bounded number
of alternations of existential and universal computation steps, we use a slightly
different definition from that of op. cit. There at each computation step the
automaton was able to make both an existential and a universal choice. It is shown
that in terms of recognition power these models are essentially equivalent.

The set of (nonempty) words over a set X is denoted by X" (respectively X +)

Alternation bounds for tree automata 175

and the empty word by X. The length of a word w is denoted tu|. The catenation
of A, B C X* is defined by AB = [w € X*|(3tux £ A)(3tU2 £ B)w = tuitu2}. The
set of subsets of X is denoted p(X). If X is finite, the cardinality of X is denoted
by If X is a [proper) subset of Y this is denoted by X C Y(X C F) . The
symbol N+ stands for the set of positive integers.

A tree domain D is a nonempty subset of N+ that satisfies the conditions
ÍTD1) and (TD2) below.
ÍTD1) If u £ -D, then every prefix of u belongs to D.
(TD2J For every u € D there exists i € N+ U {0 } such that uj £ D iff 1 < j <
». (t = 0 if xi has no daughters.)

Let A be a set. An A- labeled tree is a mapping t: D —» A, where D is a tree
domain. The elements of D are called nodes of the tree t and D is denoted d o m (t) .
A node u is said to be labeled by t(u)(£ A). We use freely notions such as the
height, root, a leaf, and a subtree of a tree. The height of t is denoted hg(t) (a tree
with one node is defined to have height zero), and the set of leaves of t is denoted
leaf(t) . The subtree of t at node u is denoted t / u . A node v is a successor of u £
dom(t) if u is a prefix of t/, and u and v are said to be independent, u||t>, if neither
one is a successor of the other. If « i , . . . , u m £ dom(t) are pairwise independent,
then t(ui «— tx um «— tm) denotes the tree obtained from t by replacing t /u;
with t,-, i — 1 , . . . ,m.

In the term notation one assumes that a node with t daughters (immediate
successors) is always labeled by a symbol of rank ». Letters E and 0 denote here
finite ranked alphabets and the set of m-ary, m > 0, symbols of I] is denoted by
E m . The rank of an element a £ E m is denoted rankE(f) or just rank(cr) if the
alphabet E is known. Let A be a (finite) set. The set óA-trees , FE(A), is the
smallest set such that (i) Eo U A C (A), and (ii) if a £ E m , m > 1, f x , . . . , tm £
F E (A) , then ff(ti,...,tm) € F e U) - The set of ó-trees, Fs, is defined to be FE(0J.
Subsets of are called E-foresta. Let t,ti,... ,tm £ Fe (A) and o x , . . . , am £ A.
Then t(ax *— t\,...,am *— tm) denotes the EA-tree obtained from i by replacing
every occurrence of a symbol a,- with t¿. To a given E-tree t one associates in
the natural way the corresponding tree domain dom(t). For t £ Fe we denote
size(t) = #domit) . A (E—)tree t is said to be balanced if every path from the
root of t to a leaf has equal length.

We still recall the notion of tree homomorphism, cf. [4]. For every m > 1, let
Hm = { , . • •, £m} be a set of variables. Assume that for every m > 0 such that
E m ^ 0 we are given a mapping hm : E m —* Fn(3 m) . Then the mappings hm
determine inductively a tree h o m o m o r p h i s m h : Fe (A) —• FQ (A) as follows.

(i) h(a) = a for a £ A.
(ii) Let m > 0,<r € Em , tx t m £ F E (A) . Then

M»(t l , • • • • «-»)) = Mi l) . • • • . tm — Htm)).

It is clear that E-trees can be seen as E-labeled trees (graphs) where each node
having i daughters is labeled by an element of rank i and conversely every E-labeled
tree with the above property corresponds to a unique E-tree. In the following, we
speak about trees using interchangeably the above notions of a E-labeled graph
and an element of Fe-

Definition 2.1 An alternating (bo t t om-up) tree recognizer is a four-tuple
A = (E, A, A', G), where

(%) E is a finite ranked alphabet,
(ii) A is a finite set of states,
(Hi) A' C A is the a set of final states, and

176 Kai Salo ma a

(iv) G is the state transition relation defined as follows. The relation G asso-
ciates with every a € E m , m > 0, a mapping

cG : A m - » p(A) x {E,U}.

The class of alternating tree recognizers is denoted by A T R . Let A be as in
Definition 2.1. Elements of F^(A) are called A-configurations. A configuration
tree o f A is a tree where the nodes are labeled A-configurations, and the set of
configuration trees of A is denoted by CT(A). Let T € C T J A) . Then conf(T)
denotes the set of all A-configurations labeling some node of T.

Let K be an A-configuration. Subtrees of K of the form o(a\t... ,am),
m > 0, a G E m , a i , . . . , a m € A are said to be active subtrees, and the set
of (occurrences of) active subtrees is denoted by act (i f) . Let Z é {E, U} and
assume that

c7 G (o 1 , . . . ,a m) = (B , Z) , (1)

where a 6 E m , o i , . . . , am G A and B C A. Then we denote

ffZ(G)(al>---,am) = B,

or simply,
<Tz(a li • • • l am) = B

if G is known. We also denote G = E(G)Ul/(G) or simply G = EuU. This notation
can be justified by the fact that always exactly one of the sets CTE(CII, • • •, a m) and
^ { / (f i idm) is defined.

If in (1) Z = E,vre say that the active subtree / = o(a\,..., am) is existential
(or o f type E), and if Z = U, f is said to be universal (or of type U) . Also
oz(ai,..., a m) is denoted simply by fz- If fz consists of only one element, we
say informally that the corresponding computation step is deterministic. When
considering specific examples, the state-transition relation G is usually convenient
to define by listing all nonempty sets fz where / is an active subtree.

Intuitively, oz (oi, • • •, o m) denotes the set of next states the automaton A
reaches after reading the input symbol a in states a i , . . . , o m . If cr (o i , . . . , a m)
is existential, the automaton chooses nondeterministically one of the next states in
which it continues the computation. If Z = U, the computation has to be continued
in all states of cru(ai> • • • > am)- This is defined formally below.

Definition 2.2 The transition relation of a recognizer A € ATR is the
binary relation on CT(A) defined as follows. Let Ti,T2 € CT(A) . Then
Ti =>\ T2 if T2 is obtained from T\ as follows. Let n be a leaf of T\ that is
labeled by an A-configuration K. Let f G act[lQ be of type Z, Z 6 {E,U}, and
fz = { o i , . . . , o m } , Oj e A,*' = 1 m. If Z = E, then T2 is obtained from 2\ by
attaching for the node n a daughter labeled by K(f «— a+) for some i € {1,..., m}.
If Z = U. then in T2 the node n has m daughters labeled by the configurations
K(f+-a0 K(f *— o m) .

Let K £ F e (A) . The set of Üf-computation trees of A is defined by

COM(A, K) = {T e CT(A)|tf =>*A T).

Above K denotes the configuration tree with one node labeled by K. A computation
tree is accepting if all its leaves are labeled by elements of A', and the set of

Alternation bounds for tree automata 177

accepting if-computation trees is denoted ACOM(A, K). We say that A accepts
a configuration K if ACOM(A, K) jt 0. The set of accepted A-configurations is
denoted by ACC(A). The forest recognized by the recognizer A is

L(A) = f E n ACC(A).

The family of forests recognized by alternating tree recognizers is denoted L(ATR).
Let Ti,T2 € COM(A, t) for some input t and Ti T2. We use the notation

Ti BT2 (resp. Ti => a UT2) to indicate that T2 is obtained from l i using an
existential (resp. universal) computation step in some configuration labeling a leaf
of 2\. A computation tree T is said to be complete if each leaf of T is labeled by
an element of A (i.e.. each branch of the computation of T has reached the root of
t.)

Example 2.3 Let A = (E, A, A',G) e ATR where E = E0UE2 ,E0 = {r,7},E2 =
{w},A = {<!,&}, A' = {a} and the relation G = E(G) U U{G) is defined by the
following:

RU(G) = {<*,&},7£(G) = {o,&},wB(G)(o,a) = w E(G)(b,b) = {a},

Wi/(G)(O.6) =w t / (G) (6)o) = {6}.

Let t = w(r, 7). We construct an accepting t-computation tree of A. Below we de-
note a computation tree T with leaves labeled by configurations K_i,..., Km, m >
1, simply by [# ! , . . . , f fm] .

It is easy to see that this is the only accepting t-computation tree of A, i.e., in an
accepting computation on t, A must always read the leaf labeled by r before the
leaf 7. (Of course, the computation steps in different branches of the computation
tree can be performed in arbitrary order.)

Let A = (E, A, A', G) € ATR. The recognizer A is said to be nondeterminis-
tic if all active subtrees of A are existential. If, furthermore, for all active subtrees
/ the set f s contains at most one element, the recognizer A is said to be deter-
ministic. If A is deterministic and fs = {6}, b 6 A, we denote fs simply by 6.
(A deterministic recognizer could of course also be defined as a special case of a
universal one.) It is clear that this definition of nondeterministic and deterministic
tree recognizers is equivalent to the usual definitions, cf. [4]. Nondeterministic and
determinisitic bottom-up recognizers both recognize the family of regular forests
R E G .

It is known from [14], [15], [17] that alternating bottom-up tree recognizers rec-
ognize also nonregular forests. In order to simplify some constructions, in op. cit.
one uses an automaton model that in each computation step can branch the com-
putation both existentially and universally. In the following we refer to this model
as the generalized alternating automaton (or recognizer). The definition used
here is more restricted as each computation step has to be purely existential or
universal. The automaton model of Definition 2.1 cannot straightforwardly, sim-
ulate the generalized alternating recognizers, however the models are "essentially
equivalent" in the sense described below.

178 Kai Saiomaa

Let E be a ranked alphabet and M a E-forest recognized by a generalized
alternating tree automaton B. Define the ranked alphabet 0 = E U A where
A = {(/¡a e E} and i l m = E m if m ^ 1 and nx = Ei U A. Let h : FE Fn be the
tree homomorphism defined by

M < r) = ^ ' M f i i • • •, £m)), m > 0, cr G E m .

Intuitively for t G Fz, h(t) is obtained simply by attaching above each node labeled
by a symbol a a node labeled with the unary symbol a' . We claim that an automa-
ton A of Definition 2.1 can recognize the R-forest h(M). The proof of this result
is essentially the same as the proof of Theorem 4.4 of [14] and we just explain it
intuitively below. At a node labeled by <r, A performs the existential choice of the
generalized alternating automaton B recognizing M, and then at the node above
labeled by a ' the recognizer A simulates the universal choice of B. Note that by
Lemma 2.6 below, without restriction one can assume that A performs the univer-
sal computation step in a' immediately after reading the symbol a, (this could also
be seen directly as in the proof given in [14].) Thus it is clear that all computa-
tions of A on a tree h(t), t 6 FE, correspond to a computation of the generalized
automaton on t, and L(A) = L(B).

Intuitively, the above result means that corresponding to every forest L recog-
nized by a generalized alternating automaton, the family L(ATR) contains a forest
essentially similar to L. Now by the results of [14], [15], [17] it is immediate that
L(ATR) contains forests that Eire not regular, and even not context-free (that is,
algebraic). Also for instance the emptiness and equivalence problems are undecid-
able for L(ATR). The tree homomorphism h above does not affect the yield (or
frontier), cf. [4], of a forest and hence by [17] it follows that every recursively
enumerable language is the yield of a forest in L(ATR).

Finally we define a complete recognizer. An ATR-recognizer is said to be c o m -
plete if fz ^ 0 for all active subtrees / of type Z, Z € {E, U). The proof of the
following lemma is then immediate.

Lemma 2.4 Every forest of L(ATR) can be recognized by a complete ATR-
recognizer.

Example 2.5 Let A = (E, A, A',G) G ATR when E = E 0 U Ei U E 2 , E 0 =
{r, l}, Ei = {<r}, E2 = { (j) , A = {a, b, 6i, 62, c, cx, c2 , d, du d2, e, eu e2, / } , A' = { / }
and the relation G — E U U is defined by the following:

(i) w = {a, 6}
(») IB ={di,d2,e}
(Hi) trB(o) = { c }
(iv) av(c) = { c i , c 2 }
(v) * B (6) = { 6 i , 6 2 }
(vi) <Ju(bi) = {6,},« = 1,2
(vii) <ru{di) = {di},i= 1,2
(viii) au(e) = {ei,e2}
(ix) u B (i , y) = {/} if(x,y) - (Ci,di) or (x,y) = (6,-,e,),»' G {1 ,2} .

The relation G is undefined in all cases not covered by (i)-(ix). We denote
t = w(<7a(r), ff(if)) and construct an accepting t-computation tree of A . As in the
previous example we denote a computation tree with the sequence of configurations

Alternation bounds for tree automata 179

labeling its leaves:

' =*A ^ M 0) . <"M*)> » (f))]

(=>"A U)2MciMl))Me2><r[l))>u(a a(b)>ei)M< T<T(b)>e2)\

(=>A B)4[w(ci.£T(di)).w(c2.^(^2)),w(iT(61),ei)1a;(cr(62),e2)]
(=>A U)4[^[ci>di)>u{c2,d2),^(bi,ei),u[b2,e2)}

(=>A V I Z . / - / - / I

It can be verified that the computation tree constructed above is the unique
accepting t-computation tree of A . Of course the computation steps in parallel
branches of the computation tree can be performed in different order, but the
resulting computation tree will always be unique (if it is accepting.) Also one
sees that in the computation starting from the configuration u(crcr(a), <7(7)) one
must read both a-symbols in the subtree 00(a) before the symbol 7 whereas in the
computation starting from w(<7cr(fc)>cr(7)) the automaton necessarily has to read
the subtree ^(7) before continuing the computation in the subtree crcr(b).

This example illustrates the fact that in an alternating computation tne order in
which subtrees of the input are processed can be very essential. This is the reason
why an alternating computation cannot in general be simulated by a nondetermin-
istic one using a subset construction. The above example was constructed to be as
simple as possible and here of course L(A) is regular, (in fact L(A) = {t} .) For
examples of alternating tree recognizers defining nonregular forests see [14], [15],
I "] -

In Examples 2.3 and 2.5 we noticed that the order in which independent subtrees
of the input are read can be important. To conclude this section we investigate
when computation steps in independent subtrees commute.

As was done in the previous examples, it is many times convenient to denote a
computation tree T with the sequence of configurations [if 1 , . . . , KM] labeling the
leaves of T. The configurations Jf,-,t = 1 , . . . , m , contain all information needed
to continue the computation of T and also their order is irrelevant. We say that
computation trees TI and T2 are equivalent if the leaves of both 7\ and T2 are
labeled by the same sequence of configurations. In this case Ti can be completed to
an accepting computation tree iff the same holds for T2- In general the computation
tree gives also the structure of the computation and we cannot for all purposes
replace it with the sequence of its leaves.

An arbitrary sequence of A-configurations [K\,..., Km] does not necessarily
correspond to any computation tree but we can extend the relation =>a ^ e
natural way for arbitrary sequences of configurations:

[Kl Km\ =*A [•^»•••i'®»)

iff for some t £ { l , . . . , m } there exists a computation tree T with
leaves labeled by M \ M r such that Ki => a T and the multiset

f Ki,..., Ki-i, M\,..., Mr, Ki+i,..., Km} equals to the multiset {Hi,..., Hn).

Here T is a tree of height one with the root labeled by K{.) Note in particular that
if \KX,..., KM\ is the sequence of leaves of a computation tree TI and [HI,..., HN]
are the leaves of T2 then [KI i^ML^A *\HI> •••>#»] TOLDS ^ r i = * A *Ta-

In the next lemma we prove commutation properties of alternating compu-
tations. There it is notationally more convenient to consider sequences of con-

180 Kai Sadomaa.

figurations instead of computation trees. Using the above definition the al-
ternating computations can be defined also for sequences that do not corre-
spond to any computation tree and we thereby prove a slightly more general
result. We still introduce some notation. Let A = { E , A , A ' , G) G ATR. Let
Z G (E , U } and Ki, Hj G Fz(A),i = 1 , . . . , ^ ; ' = 1 a. Then the notation
[X i , . . . ,K r)=> A z (« , *) № € {1 r } , u e dom(Jfi), is used to denote
that the sequence of configurations \H\,... ,H,\ is obtained from \K\,..., KT] by
applying a Z-computation step at node u in the configuration Ki. If r = 1 or t is
otherwise clear we denote =>A Z (u > 0 simply by => A Z (u) -

Lemma 2.6 Let A = (E, A, A', G) e ATR and K G FE{A),u,v G dom(K). As-
sume that u||v and K/u,K/v G act(if) . Denote K/u = f,K/v = g, and let
fx ={oi am},gY = {b1,...,b„},m,n>l,X,Y e{E,U\.

(i) Assume that f and g are existential, (i.e., X = Y = E.J Let

\K\ = > A B W (* i] = * A
Then there exists K' G such that

(ii) Assume that f is existential and g universal. Let

\K\ ^ M I ^ K a " ^

Then there exist configurations H^,* — 1 ,...,n, such that

\K] =>A U(v)[H[,...,H'n][=>A ...,Hn\.

(Hi) Assume that / and g art universal. Suppose that

[K\ ffm]=>A>.»')

(*) \KU..., Ki-u Ki(v - fei), ...,Ki(v*~ bn), Ki+1, ...,Km}=>A*[Mu..., Mr],

where v & dom(Aiy) or M}(v) G A, 1 < j < r, i.e., in each of the configurations
Mj the active subtree g has been read.

Then there exists a computation

I*] =>A » № - M. . . . , * (« « - &„)]=> A u(u, 1)
[XxC - M, h), K(V - b3) K(v «- bn)}(=>A U(u))n~1

(«) [¿Mv - h) Km(v - bx) J^« «- bn) Km(v « - 6„)]
=>A*\Mu...,Mr\.

Proof , (i) This is immediate since K\ = K(u *— a,) and K2 = K(u *— a, , v «—
by), i G {1 m}, j G { 1 , . . . , n}, and clearly we can choose K' = K(v <— b}).
(ii) Now Ki = K(u «— ai),i G { l , . . . , m } , and Hj — K(u *— an, t> «— bj), j =
1 n. Thus we have

[K\ =>Au(v)[K(v^b1),...,K(v^bn))
B(u, l)[tf(u Oi, I> - bj, K(V - b2), ...,K{v+- bn)\

^AB(u,2)...^AE{u,n)\H1 Hn].

Alternation bounds for tree automata 181

(iii) Clearly Ki = K(u « - o<),» = 1 , . . . , m. Let NX}-,..., N,j be the configurations
from the sequence Mi MT that are successors of Kj,j e {1 i — 1, » +
1, . . . , m}. Since the configurations Ki(v <— 6i) Ki(v «— bn) appear in both (*)
and (**), it is sufficient to show that

[K,{v ^bi),... K}(v - fc„)] =CA *[JVWl..., NtJ],j e {1 m},j ft i. (2)

Let j 6 { 1 , . . . , t—l , t+ l , . . . , m}. Let Hi,..., Hq be the configurations appearing in
each branch of the computation [Kj\ =>A * [ATiy,..., Nt] \ just before the automaton
reads the subtree g at node v. Thus \Kj\ Hq\ using only computation
steps at nodes that are independent with v. From this it follows that

[K,(v - 6r)] =>A *[#!(„ - br) Hq(v br)\,r = 1 n. (3)

By the choice of Hi,..., Hq,

[Hi(v «- 60, ...,Hi(v+- bn), ...,Hq{v+- bi) Hq{v - &„)]

and hence (2) holds by (3). (Note that one may arbitrarily permute the configure
tions Pi,...Px in a sequence [P i , . . . , P*]-) Q- E. D.

In the above lemma, case (i) states that one may always permute two inde-
pendent (i.e., corresponding to independent nodes) existential computation steps
and (ii) states that an existential computation step followed by a universal com-
putation step may be replaced by first making the universal step and thereafter
the corresponding existential computation steps. Case [iii) states that always two
independent universal computation steps commute. This is the most complicated
case as one does not directly obtain identical configurations but has to consider the
computation so far that in each branch both universal active subtrees have been
read. This is not a restriction when considering accepting computation trees where
each branch ends at the root of the input.

The fourth case would be a universal computation step followed by an indepen-
dent existential computation step. These cannot [in general) be permuted since in
each universal branch the automaton can make different existential choices. Thus
one can say that independent existential and universal computation steps semi-
commute: one may always replace EU with UE but not in the other direction.

3 Depth bounded alternation
As observed in the previous section, alternation is a very powerful mode of com-
putation for bottom-up tree automata. For this reason we consider alternating
computations where in each path the number of alternations of the existential and
universal computation steps is bounded by some function on the size of the input
tree.

Definition 3.1 We define a mapping alt: {E, U}+ -+ N+ as follows. Let u e
{E, i/}+. Then alt(u) is the least integer n such that we can write

u = ui...un, Ui 6 E+ uU+,i = 1, ...,n.

182 if ai Saloma, a

Definition 3.2 Let A = (£, A . A ' G) G AT.R,t G FE and T G COAf(A , t) . We
define a mapping <f>r • dom(T) —• {E, U}' inductively at follows.

(i)t r(A) = A.
(ii) Let u € dom(T) be labeled by an A.-configuration K. Suppose that in the

computation of T in the configuration K the recognizer reads an active subtree of
type Z, Z G {E, U). Let n = max{t'|ut G dom(T)}. Then for every j = 1 n :

4>T(uJ) —

(Note that n< 1 if Z = E.)
Now we define the function alt: COM(A,t) —* N+ by

alt (T) = max{alt (« ^ t H) | « G leaf (T) } .

Let u be a node of a computation tree T. Then <¡>T(V) gives the sequence in
which existential and universal computation steps are performed along the path
from the root of T to u. Thus alt(^r(u)) denotes the number of existential and
universal computation segments in the computation corresponding to the node u.
Now depth bounded alternating computations can be defined by restricting the
value alt(T).

Definition S.S Let A = (£, A, A', G) G ATR,t G Fj¡, and 6 : N+ N+ be a
function. The set of ^-bounded t-computation trees of A ú

COM(A,t)[0] = {T G COM(A, i)|alt(T) < 0(sise(t))}.

A forest L C is ^-bounded recognized by A if
(i) L = L{A), and
(ii) for every t G L, COM(A, t)[^lri ACOM[A, t) ¿ 0.
In this case we denote L = L{AJ[0]. The family of forests 6-bounded recognized

by alternating tree recognizers is denoted L(ATR)\0\.

Thus L is ^-bounded recognized by A if each tree t of L has an accepting
computation tree with alternation depth at most 0(size(t)) and any tree not in L
does not have an accepting computation. If ¿(A)[0] is defined, we say also that the
recognizer A is 0-bounded. Note that if one would define L(A)[0] just to consist of
trees t e F j such that there exists an accepting computation tree in COM(A, i)[0],
then the automaton would be able to use the counting properties of the function 6
to check properties of the inputs. This would clearly be unnatural, especially if the
function 6 is not well behaved. Note that £(A)[0] is not defined if L(A) contains
trees that cannot be accepted in ^-bounded computations.

Let t and A be as in Example 2.5 and let T be the t-computation tree considered
there. Then altir) = 6. Thus L(A)\6) = { t } for every function $ such that 5(6) > 6.
(Note that sizeft) = 6.)

Lemma 3.4 For every function 6, the family L(ATR)[8] is closed with respect to
intersection with regular sets.

Proof . This is seen easily by adding to the states of an ATR-recognizer second
components that simulate the computation of a deterministic recognizer for the
regular forest in question. Clearly the simulation can be done at the same time
preserving the type (existential or universal) of each computation step. Q.E.D.

Alternation bounds for tree automata 183

Theorem 3.5 Suppose that <?i(n) < ^2(1) almost everywhere, i.e., there exists
M & N+ such that for all n> M, 0i(n) < 0 2 M - Then

L(ATR)[9I] C L(ATR)[62}.

Proof. Let £ be a E-forest 0i-bounded recognized by A € ATR. Denote F(>) =
{ t e F z | size(t) > M } and f (<) = {i G f E | size(t) < M} . Now

L = (L(A)[ii] n #•(>)) U (L(A)[ii] n ^(c)).

By Lemma 3.4 there exists B G ATR such that L(B)[0i] = L(A)[0i] D F{>). By
the choice of M, furthermore, £(B)[0i] = I(B)[02)- Since F(<) is finite, using B
one can easily construct a recognizer B' such that

L(B')[02] = ¿(B)[tfa] U (L(A)[iiJ n F(<)) = L.
Q . E . D .

Clearly L(ATR]J»d] = L(ATR) where id denotes the identity function. In
the following we will consider constant and logarithmic alternation bounds. Let
c(k),k > 1. denote the function that maps every element of N+ to k. Then
L(aTR)[c(1)] = REG because both the purely existential and purely universal
tree automata recognize only the regular forests. Next we will show that in fact
X(ATR| [c(k)\ = REG for all jfc > 1. In the following we denote the function c(k)
simply fey k.

A first idea for a regularity proof for the forests of i(ATR)|fc] might be to
simulate the ¿-bounded alternating computations by a deterministic tree recog-
nizer using a subset construction where the sets would additionally contain the
information which existential (resp. universal) segment of the computation one is
simulating. (There can be at most k segments.) However, this approach does not
work because it may be the case that in different branches of the computation a
given node must be read in different segments.

To illustrate the difficulty, let us consider again from Example 2.5 the t-
computation tree which is the unique accepting computation tree for the input
t = tjj (¿To*(t), o ('y)) • For instance, in the left branch of the computation the symbol
7 has to be read in the second existential segment whereas in the right branch it is
necessarily read in the first existential segment.

It turns out that a deterministic automaton simulating the computations of
A will need to store in the states the information concerning the partition into
existential and universal segments of all possible computation trees of the input
scanned so far, this will be called the computation schema. It will be seen that for
¿-bounded computations the number of distinct computation schemata is finite.
Let A e ATR, t = a (i i , . . . , im) G i s and T be a complete t-computation tree
of A. The computation tree T is obtained by combining ¿¿-computation trees,
» = 1 , . . . , m, and finally in each branch reading the root symbol a. Thus it is clear
that one can construct an arbitrary (¿-bounded) ¿-computation tree if one knows
all possible (¿-bounded) ¿¿-computation trees.

In the following A = (E, A, A', G) e ATR is always assumed to be complete. By
Lemma 2.4 this is not a restriction. (Clearly the analogy of Lemma 2.4 holds also
for arbitrary ^-bounded computations.) We say that K G (A) is an existential
configuration if all active subtrees of K are existential and otherwise K is said to
be universal. In particular, if if G A then act (i f) = 0 and hence K is existential.
Lemma 3.6 Let K be a universal configuration. Then there exist unique existential
configurations i f j , . . . , Kn such that

(4)

184 Kai Saiomaa

(Of courte Ki,...,Kn may be arbitrarily permuted.)

P r o o f . Since A is complete, there are existential configurations Ky,..., Kn such
that (4) holds Tone computes universal active subtrees until there are none left.) By
Lemma 2.6 (iii) universal computation steps commute and hence the configurations
Ki,..., Kn are unique.

Definition S.7 Let t Ç. Fz and к > 1. The k - b o u n d e d t - computat ion schema
of A , SC{t, fc, A) it the configuration tree S defined at followt. The root of S
is labeled by t. Suppote that a node u 6 dom(S), |u| < к — 1, is labeled by a
configuration K.

(i) Suppote that К it universal and let Ki,..., Kn be the (by Lemma 3.6 unique)
existential configurations tuch that [-&](=>• A u)*[ifi, • • • > Kn]- Then the node u has
n daughters (immediate successors) labeled by K\,... ,Kn.

(ii) Let К be existential, К & A. Denote by С the set of ail configurations K'
such that B)*[-K"'] and K' is universal or К' e A. Then for every К' € С
the node u has a daughter labeled by K'.

(iii) If К 6 A then и is a leaf of S.
Finally, if u € dom(S) and |u| = k, then u has no daughters.

If u is a leaf of S and £(u) A, then this branch corresponds to a computation
that does not reach the root of the tree f in A; existential and universal computation
segments. These computations cannot be a part of any ¿-bounded computation on
an input with subtree t and thus the corresponding branches can be pruned from
the schema.

The pruned schema, prlS), is obtained from S by recursively repeating the
following. Choose a leaf u of S labeled by an element not belonging to A and let v
be the mother (immediate predecessor) of u. If the configuration SÏv) is existential
then remove the node u. If S(v) is universal then remove all daugnters of v. (If a
universal configuration К has a daughter leading to failure then the computation
has failed already in K.) Note that pr(S) is the empty tree iff there does not exist
a complete ¿-bounded ¿-computation tree of A. In this case t is not a subtree of
any tree of i(A)[fc].

The pruned computation schema pr(SC(i, k, A)) will be denoted by PSC(i, k, A)
and in the following, when not otherwise mentioned, by a computation schema we
always mean the pruned schema.

Suppose that S = PSC(t, k, A) . An A-configuration tree T is said to be a
configuration tree associated with the schema S if T is constructed as follows.
The root of Г is labeled by t. Suppose that u e dom(5) — leaf (5) is labeled by a
configuration K.

ii) If К is universal, then the node u has in T all the same daughters as in 5 .
(ii) If Я is existential, then u has exactly one daughter labeled by some config-

uration that is a daughter of i f in 5 .
Thus a configuration tree associated with the schema S is essentially a t-

computation tree where some intermediate nodes in the existential and universal
computation segments have been removed.

Example S.8 Let A = (£ ,A , A',G) be the recognizer from Example 2.3 and
t = w(w(r, 7)17) • Then the 2-bounded t-computation schema SC(t, 2, A) w given in
Figure 1. The configuration! a, w(w(a, 7), 7) , and ш{ш(Ь, 7) , 7) are exittential, all
other configuraient appearing in the tchema are universal. The pruned computa-
tion tchema PSC(t, 2, A) is obtained by removing all leavet except the onet labeled
by a. The tchema PSC{t, 2, A) has only one associated configuration tree and it
equalt to PSC(t, 2, A) .

Alternation bounds for tree automata 185

w(w(r,7),7)

ui(u>(a, b)

a

w(w(a,6),a)
a) a)

Figure 1.

It is clear that every configuration tree associated with a schema corresponds
to a computation tree of the recognizer A . In fact we have the correspondence also
in the converse direction.

Let A = (E,A,A' ,G) G ATR and t eFv,k> 1. We say that T G COM(A,i)
is normalized if the following condition holds. If some leaf of t is universal (i.e., t
is a universal configuration), then at the root of T the recognizer reads a universal
active subtree.

Lemma 3,9 Let A and t be as above and k > 1. Then there exists a complete
normalized computation tree in COM[A., t)[fc] with leaves labeled by « i , . . . , an(ai G
A) iff there is a configuration tree associated with the schema PSC(t, k, A) having
leaves oi,... ,o„.

Proof . The proof in the " if-direction is immediate since a configuration tree T
associated to the schema is clearly a computation tree of A where some inter-
mediate nodes are left out. According to the definition of PSC(t, k,A) if t has a
universal leaf-symbol, then the computation of T first branches universally, i.e., the
corresponding computation tree is normalized.

Suppose then that T € COM(A, is normalized and has leaves a i t . . . , o„.
Using the commutation properties of Lemma 2.6 we show that there exists an
equivalent Ti G COM(A,i)[A] (i.e., also 2\ has the leaves o i , . . . , a „) that follows
the computation in the schema PSC(i, k, A) .

Since T is normalized, if t contains a universal leaf-symbol the automaton first
makes a universal computation step. By Lemma 2.6 universal computation steps
commute with each other and semi-commute with existential computation steps.
Thus in an equivalent computation tree one can first make all possible universal
computation steps (in arbitrary order). Now the computation of 7\ begins as in
the schema PSC(t, k, A) . Always in an existential configuration K the automaton
makes an arbitrary number of consequtive existential computation steps that lead
to some universal configuration K'. Thus i f ' is a daughter of K in PSC(t, k, A) .
In K', A makes a universal computation step and thus again by Lemma 2.6 it can
be made to read all universal active subtrees of K' successively yielding a number
of existential configurations. By Lemma 3.6, these are exactly the daughters of

186 Kai Saiomaa

K' in PSC(t,¿, A) . (Note that if a configuration K contains a universal active
subtree / then by Lemma 2.6 in a Jf-computation tree A could always first read / .
In general this could cause additional alternations of the existential and universal
computation steps. However here this problem does not occur because the original
computation step made in K' is universal and thus one can make thereafter an
arbitrary number of universal steps "for free".)

Since T is ¿-bounded so is also T\ (any operations above do not increase the
existential-universal alternations.) Thus T is equivalent to a configuration tree
associated with the schema PSC(t, k, A) . Q.E.D.

The previous lemma gives almost a criterion for checking whether ¿ e £(A)[&]
using only the schema PSCit, k, A) . There is still the restriction that the compu-
tation tree has to be normalized. This restriction can be removed by considering
(k + l)-bounded schemata.

Lemma S.10 Let A = (£, A, A', G) € ATR, k > 1, and L = £(A)[ifc]. Then t G L
iff there exists a configuration tree W associated with the schema PSC(t,k + 1, A)
such that all leaves ofW are labeled by elements of A'.

Proo f . Let t € L and T 6 COM(A, ¿ [̂¿1 be accepting. Assume that at least one
leaf of t is labeled by a universal symbol. Then, by Lemma 2.6, T can be trans-
formed to an equivalent computation tree 2\ where first the automaton performs
all possible universal computation steps, i.e., Tj is normalized. Furthermore, from
the proof of Lemma 2.6 it follows that 7i is (k + l)-bounded. Moving a number of
universal computation steps to the beginning may introduce an additional universal
computation segment if the computation of T starts existentially. (Of course it is
also possible that alt (7}] < k, but for our purposes it is sufficient just to know the
upper bound alt(Ti) < k + 1.) On the other hand, if all leaves of t are existential
then already the computation tree T is normalized. Thus in both cases by Lemma
3.9 there exists a configuration tree W associated with the schema PSC(t, ¿ -f 1, A)
such that the leaves of W are labeled by elements of A' (since Ti is accepting).

Conversely assume that W as above exists. Then by Lemma 3.9, there exists
an accepting computation tree in COM(A, t)[A: + 1]. Thus t S ^ (A) and there
necessarily exists also an accepting fc-boundea ¿-computation tree. Q.E.D.

According to Lemmas 3.9 and 3.10 the schema PSC(¿, ¿ + 1,A) contains the
information on all complete ¿-bounded ¿-computation trees of A. We want to
define a deterministic tree automaton that stores the schemata in its states. For
this purpose we need to consider the composition of schemata.

Definition 3.11 Let a e Em,tu...,tm e FE and 5,- = P5C(¿j) ¿, A), ¿ > 1.
We define the a-composition of the schemata Si,i = 1,... ,m,a[Si,..., Sm),
as follows. First we construct a tree S (that will be the corresponding unpruned
schema). The root of S is labeled by a(ti,... ,tm). Suppose that a node u 6
dom(S), |u{ < fc — 1, is labeled by o(K Km) where Ki = S^(v,'),t = 1,..., m,
and the node v< G dom(5,) has r4- daughters. (Note that ¿,- = iSj(A),t = l , . . . , m .)

(i) Let a(Ki,..., Km) be existential (i.e., Kit..., Km are all existential). Then
the node u has daughters labeled by all configurations a(K[,..., K^) where

(iaj K! is a daughter of Ki (in 5 ,) or K• = Ki, and,
(ib) there exists at least one j such that K'}- / K}- and K'} & A, (i.e., jfy is

universal.)
(ic) Furthermore, if a,- mo daughter of Ki »'n 5,-,t = 1 and a(oi , a J

is existential, then u has daughters labeled by all elements of c e ^ i , ..., amJ. If
ff(ai,... ,am) is universal, then u has a daughter labeled by cr(ai , . . . , a m) . (Note

Alternation bounds for tree automata 187

that these conditions guarantee that all daughters of <r(Ki,..., Km) are universal
configurations or elements of A.)

(ii) Suppose that <r(KI,...,KM) is universal and that KJ is universal iff J S
{ « ! , . . . , »'„}, c > 1,1 < »! < . . . < t'c < m. Then the node u has r^ ... ric daughters
labeled by the configurations CT(K[, ..., K'M) where

K > = { K) » / y £ { * l * c }
1 | some daughter of Kj if j 6 {t'i »<.}•

Furthermore if for some a(K[,..., K'm) above K[= o< € A,x = 1 , . . . , m, and
<r(ai,. . . , a m) is universal, then the node < r (K [, K'm) is replaced by nodes labeled
by elements of au{ai,. •., om).

Finally, if u 6 dom(S) and |u| = k, then u is a leaf of S.

Now the composition <r{Si,..., Sm) is defined to be pr(S) where pr is the prun-
ing function defined after Definition 3.7.

Clearly the cr-composition of fc-bounded schemata is a tree of height at most k
such that existential and universal configurations alternate as internal nodes in each
branch and all leaves are labeled by elements of A. The composition of schemata
respects the composition of trees as follows.

Lemma S.12 Let k > 1, 171 ^ 1,(7" G £fn; CITid ¿l)>*>)£m e Denote t =
c(fi,...,TM),S = PSC (t,k,A) and 5< = PSC (ti,k,A),i = L , . . . , m . Then

S = <r(Su...,Sm).

Proo f . This follows straightforwardly from the definition of cr-composition. In
the schema S the daughters of an existential node o(Ki,..., Km) are all universal
configurations K such that a(Ki,..., Km)(=>j^ E)+K. (Here K may be also ex-
istential if K € A.) These are exactly the configurations where at least one K{ is
replaced by its daughter in 5,- as in Definition 3.11 (i) (where the case K € A is
handled separately.)

Similarly, the daughters of a universal configuration ..., Km) in S are
exactly all configurations obtained from a(Ki Km) by reading all the universal
active subtrees. These are obtained from the daughters of universal configurations
Kj as in Definition 3.11 (ii). (Note that if Kj is not universal then each / G act (Ay)
is existential and Kj necessarily remains unchanged in the universal computation
segment starting from a(J£i , . . . Km).)

Finally the branches in the composition c r ^ , . . . , Sm) are terminated after the
kth level exactly as in the schema S. Q.E.D.

Next we define the reduced simplified computation schemata that will contain
all essential information about the corresponding ¿-bounded computation trees.
Intuitively, the reduced simplified schema is obtained by removing the labels of
internal nodes and then identifying identical subtrees. This means that the set of
reduced simplified schemata will be finite.

Let S = PSC(i ,k ,A) , t € Fz,k > 1; the simplified schema corresponding
to 5, sim(S), is defined by relabeling each internal existential and universal node
respectively by E and U. The reduced simplified schema, redsim(S), is obtained
by identifying identical subtrees of a given node of sim(5) recursively in the bottom-
up direction.

Set So = sim(S). Suppose that ui,uj € dom(S r),r > 0, u 6 N+,t,j € N+,i <
j, and Sr/ui = Sr/uj. Furthermore we assume that Sr/vii ^ Sr/vi2 always when

188 Kai Saiomaa

»1 / »2 and u is a proper prefix of v, i.e., u is chosen to be maximal. Then one
defines S r+i to be the tree obtained by removing the subtree Sr/uj from Sr. There
exists C G N+ such that ST = Sr+l always when r > C and we define

redsim(5) = Sc .

The construction of S r +i from Sr was defined nondeterministically. However be-
cause u is always chosen to be maximal, it is clear that redsim(5) is well defined.
(Equivalently one could consider some fixed order for the identification process.)

Now for each k > 1, the cardinality of the set

D{k) = {redsim(PSC(t, A:, A))|i G FE}

is finite. Already the simplified schema sim(5), S = PSC(i, A;, A) , is a tree of height
at most k where the nodes are labeled by elements of A U {E, U). However, the
number of daughters of a given node of sim(iS') is in general unbounded (since t can
be arbitrary). In redsim(5) one obtains a bound for the arity of the nodes (assuming
that also k is fixed). In fact, #£>(l) < 2(2#A - 1) + 1 = 2#A+l - 1 (PSC(i, k, A)
may also be the empty schema), and in general #D(k + 1) <

Thus a finite automaton can use the reduced simplified schemata to remember
all possible ¿-bounded computation trees of the input processed so far. We still
need to define the compositions of simplified schemata. This is done completely
analogously with Definition 3.11. In fact, these definitions could both be obtained
as special cases from a more general notion of composition of schemata. However,
we presented Definition 3.11 separately because it has a very clear intuitive meaning
which makes also the idea behind the next definition more transparent.

Definition 3.1S Let A G ATR and k > 1. Let m > I,a e E m , and S1,...,Sm
be simplified schemata (i.e., computation schemata where the internal nodes are
labeled just by E and U J. Then the composition of Si,..., Sm,

S = <r[Si,.. .,Sm)

is defined by the following. First we define a tree T as follows. Nodes of
T are labeled by elements of A or elements of the form <r(xi xm) where

= (^(u,),«^),«!, ' £ dom(Si). An element o(xi,..., xm) is said to be univer-
sal if

there exists x,- = (u^), u,) such that <Si(ti,) = U, or (5)

S i (u i) , . . . , S m (u m) € A and ct(i5i(ui), . . . , 5 m (u m)) is a universal active subtree.
(6)

Otherwise <r(®i,..., xm) is existential.
The root of T is labeled by ct((5x(A), A) , . . . , (SMIA), A)). Assume that

a node u € dom(T), |u| < k — 1, is labeled by an element R =
< r ((S i (u i) . w i) , • • •. (S m (u m) , u m)) .

(i) Suppose that R is existential. Then u has daughters labeled by elements

<7((S iM, t> i) , . . . , (S m (v m) , t , m)) (7)
where (o)ut- = m or (6)t>, = u,n,n € N+.tiin G dom(5,), and for at least one
i G { l , . . . , m } the case (6) holds with 5i(u,) = U. Furthermore, if ai & A is
a daughter of the node u,- tn 5,-,» = 1, ...,m, and a(ai,... ,am) is an existential

Alternation bounds for tree automata 189

active subtree of A, then u has also daughters labeled by elements ofas(a li • • •, <*m)-
If a(ai,... .am) is a universal active subtree, then u has a daughter labeled by
<7((ai.Ul«l).---i(<»m.Wm*m)) w h e r e = ,S«(u»n»)'n« 6 N+>* = • • • « m -

(ii) Suppose that R is universal. Then u has daughters labeled by elements

cr((S1(v1),v1),...,(Sm(vm),vm)) (8)

where (o)«j = 14 »/S,(uj) = E, and (b)v{ is a daughter of u,(t'n S<) ifS^tii) = U,i =
1 m. Furthermore if for some element as in (8), S,(t>i) = a,- 6 A,i = 1 , . . . , m,
and cr(ai am) is a universal active subtree of A. then this node is replaced by
nodes labeled by elements of cry (ay,..., a m) .

Next we relabel the existential inner nodes of T by E and the universal inner
nodes by U. The nodes ofT are said to be universal or existential according to (5)
and (6). The labels of leaves of T are left unchanged tn the relabeling. We denote
by T\ the tree obtained from T as the result of the relabeling.

Now the composition S is obtained by pruning the tree T\, i.e.,

o(S1,...,Sm)=pr(T1).

Here for the definition of the pruning function pr one considers the internal
nodes of 7\ labeled by E to be existential and those labeled by U to be universal.
Thus in . . . , Sm) all leaves are labeled by elements of A and it is a simplified
computation schema. Note that the composition cr(Si, . . . , 5 m) need not be reduced
even if the schemata Si Sm are reduced.

Lemma S.14 Let a £ Em , and Si,..., Sm be k-bounded computation schemata of
A, Jfc > 1. Then

aim(er(Si,. . . ,Sm)) = a(sim(5i) I . . . ,s im(5m)) .

Proof . This follows immediately from the Definitions 3.11 and 3.13. For the <7-
composition of the computation schemata S i , . . . , Sm (in Definition 3.11) one uses
the configurations labeling the internal nodes of Si, i = 1 , . . . , m, only to determine
whether the node is existential or universal. Hence it does not make a difference
whether the configurations are replaced by the symbols E and U before or after
the composition. Q.E.D.

Lemma 3.15 Let a £ and Si,...,Sm be simplified k-bounded computation
schemata of A, k> 1. Then

red(<r(red(5x) red(5m))) = r e d ^ , . . . , ^)) .

Proof . Denote Rx = <r(red (S i) , . . . , red(Sm)) and R? = c r (5 i , . . . ,S m) . Since
red (Si) is obtained by identifying some identical subtrees of S,,t = 1 , . . . , m, it
follows that Ri is obtained from J?3 by identifying some subtrees. Thus it is clear
that red(i2i) = red^a). Q.E.D.

Lemma 3.16 Let k > 1,m > 1 ,a e S m) t i , . . . , t m e Fa, and denote t =
<r(ti,...,tm). Then

redsim(PSC(t, A:, A)) = (9)

red(a(redsim(PSC(ti, Jfc, A)) , . . . , redsim(PSC(tm, Jfc, A)))).

190 Kai Saiomaa

Proof. Denote S; = PSC(i ,k,A) and S{ = PSC(i<,jb, A),»' = l , . . . , m . , By Lemma
3:12;. : • • » . • . . - • .

; - , :' - S — <r(5i,-...,5m). .

Thus by Lemma 3.14, v' r '

sim(5) = <r(8im(5i),..., sim(5m))

and (9) follows from Lemma 3.15. Q.E.D.
Now using Lemma 3.16, corresponding to an alternating recognizer A we can

construct a deterministic tree recognizer that arrives at the root of an input tree t
in the state redsim(PSC(t, A;, A)).

Theorem 3.17 For every k > 1,

£(ATR)[Jfc] = REG.

Proof. Clearly it is sufficient to show that I(ATR)[Jfc] C REG. Let A =
(E, A, A', G) e ATR and suppose that L = I(A)(Jfc], Jfc > 1.

Denote by A-SCHEMAifc, A) the set of all fc-bounded computation schemata
of A, 5 = PSC(t,A:, A) , such that 5 has an associated configuration tree with all
leaves labeled by elements of A'. Now we construct a deterministic recognizer

B = (E ,B,B',H)

where
(i) B = {redsim(PSC(t, k + 1, A))|t e Ft},
ii) B' = {redsim(PSC(t, A; + l,A))|t e F^, PSC(t, k 4- 1 ,A) € A - SCHEMA
k + 1,AU,
iii) the relation H is defined by

(a) 0E(H) — redsim(PSC(<r,A;+ 1, A)) if <r € E 0 ,
(b) .. <rB(H)lSi Sm) = redMSx Sm)),

if m > 1,(7 6 E m , — , Sm 6 B. (Here a (5 i , . . . , 5 m) denotes of course the
<7-compo8ition of simplified schemata.)

The set of final states B' is well defined. If S = PSC(t,A;-|- 1, A) then 5 is of
course not determined by redsim(5). However, using redsim(5) one can determine
whether S € A — SCHEMA (A: + 1 ,A) . One constructs the associated trees of
redsim(5) by taking all successors of universal nodes and exactly one successor of
an existential node. Since redsim(5) is obtained from S by relabeling internal nodes
and identifying identical subtrees it is clear that there exists an associated tree of
redsim(S) with all leaves labeled by elements of A' iff S 6 A - SCHEMA(A: + 1, A) .
This observation also guarantees that the construction of B is effective.

Now we claim that for every t € Fa the recognizer B reaches the root of t in
the state redsim(PSC(i, A; + 1 ,A)) . If t € Eo this follows from the definition of
H. Suppose then that m > 1,(7 6 E m , t = <r(t\,... ,tm) and the claim holds for

• • • i tm- Then B reaches the root of t in the state

FFE(H)(red8im(PSC(ii,A; + 1 , A)) , . . . , redsim(PSC(im,A; + 1 ,A)))
= red((7(redsim(PSC(ti, Jfc + 1, A)) , . . . ,redsim(PSC(tm, Jfc + 1, A))))
= redsim(PSC(t,Jfc + l , A)) .

The second equality follows from Lemma 3.16. FYom Lemma 3.10 it follows that
redsim(PSC(i, Jfc + 1, A)) € B' iff t € L(A)[Jfc]. Thus 1 (B) = I(A)[Jfc]. Q.E.D.

Alternation bounds for tree automata 191

4 The logarithmic bound
In this section we show that a logarithmic alternation depth bound defines a family
of forests strictly larger than the regular forests. We denote by log the function
n - * [log2(n)] where [log2(n)] is the smallest positive integer not less than the
2-based logarithm of n.

Let E = E 0 U Ei U E 3 where E 0 = f y } , Ei = {tx} and E 3 = {w} , and denote
n = Eo U E 3 . Define the tree homomorphism h : Fa —1• F¡¡ by the following:

M t) = 7 and h2(u) = a(u(xi,x2)).

The E-tree h{t) is obtained from an fi-tree t simply by attaching above every w-node
of t a node labeled by the unary symbol o.

L e m m a 4.1 Let E, O and h be as above and denote

L = {/i(r)|r € Fa and r is balanced}.

Then L 6 L{ATR)[2log].

Proo f . Clearly the set h(Fa) is regular. Hence by Lemma 3.4 it is sufficient to
construct a recognizer A = (E, A, A',G) G ATR such that

for every t 6 h[Fa) : t 6 L(A) if and only if t is balanced, (10)
and for every balanced tree h(r), r € Fn,

COM(A, fc(r))[21og] n ACOM(A, h(r)) ¿ 0. (11)
That is, we can assume that the inputs are of the form h(r), r & Fa. Choose

A = {c<, di,ei, fi,gi\x = 1,2,3}, and
A' = A-{d1,d2,d3}.

The state-transition relation G — ELlU is defined by the following. Below addition
is always performed modulo three.

1E = { c i } ; (1 2)

e>u(ci,ci) = {e<, </,},»' = 1,2,3; (13)

<7£(e.) = { c i + i , d , } , » = 1,2,3; (14)

<rB(x) = { i } if x 6 {dud2,d3,fi,f2,f3,g1,g2)g3y, (15)

wb(<7<,<7.) = {9i},i= 1,2,3; (16)

UB{di,di) = {di},i= 1,2,3; (17)

WB(*,V) = { /<} if = R . f t } , » € {1 ,2 ,3 } ; (18)

192 Kai Saiomaa

= {/<} if x,y € {dt, gt.fi) and/ , € { s , y } , » 6 {1,2,3}." (19)
The state-transition relation is undefined in all other cases. We say that a config-
uration K € ^e(A) is well f ormed if K = h(r) for some OA-tree r. (The tree
homomorohism h is extended to FQ(A) by setting h(O) = a for all a € A.) Let
K 6 f E ({ ° i i • • • i a n}) ^ such that K aoes not contain the nullary symbol 7, and
«it• • • 1 <*» £ A. If each element a,-,«' = 1 , . . . ,n , occurs at least once in K, it is
called an [a^ a^j-configuration. First we show that (11) holds.

Claim 1 Let K\ be a well formed balanced [ci\-configuration, i £ {1 ,2 ,3} , and
denote m = hg(i i i) . We claim that there exists T € ACOM(A, Ki) such that
alt(T) < m.

P r o o f o f Claim 1. Since Ki is well formed, each subtree of Ki of height two
is of the form a(o;(c,-,c,)). In the computation of T the recognizer reads first all
(universal) active subtrees ai(c,-, cA in arbitrary order using the rule (13). Thus
one obtains one [e,-¡-configuration a (1) , one [<7,-¡-configuration K(2) ana a number

[«,) 9«¡-configurations / f (3) . In each configuration K(3) the recognizer reads
all active subtrees aie,) making the existential choice d,, this results in a [¿«, <7,]-
configuration if(4). Since K(4) contains both states di and ¡7,-, it follows that the
recognizer reaches the root of K(4) in the accepting state /,• by the deterministic
rules (15)-(19). Similarly the computation starting from K(2) reaches the root in
the state gi using rules (15) and (16). Finally, in i f (l) the recogniser makes in each
active subtree cr(et) the existential choise c,-+i, which yields a [c,+1 ¡-configuration
K2. Furthermore Ki is balanced because K\ is balanced.

Above the computations starting from configurations Ki.2), K(3) and K(4) are
purely existential. Thus there exists a ifi-computation tree 7\ such tnat alt(Ti) = 2
and one leaf of 7\ is labeled by K2 and all other leaves by elements of A'. Now
hgi-^a) = hg(ii"i) — 2. By inductive reasoning it follows that Ti can be completed
to an accepting computation tree T, where alt(T) = m = hg(Jfi). (Since K\ is well
formed, m is even. The configuration K^m/2+i) will be of the form Cj , j 6 {1 ,2 ,3} .)
This concludes the proof of the claim.

Now let t € h(Fn) be balanced. We construct T € COM(A,t) as follows. First
the recognizer reads the leaves of t using the rule (11) yielding a [cj ¡-configuration
Ki . By Claim 1 there exists an accepting Ki-computation tree 7\ such that
alt(Ti) = hg(i f i) (= hgit)) where furthermore in each branch the first computation
segment is universal. Thus T can be constructed so that

alt(r) = hg(i) + 1.

(The first computation segment corresponding to rules (12) is existential.) Since t
is balanced, hg(t) < 21og(sise(t)) and (12) holds.

It remains to verify that also (10) holds. The " i f direction follows from (11).
The intuitive idea of the proof in tne "only if" direction is to show that in an
accepting i-computation tree there necessarily exists a branch where the recogniser
essentially reads the input in a layered fashion as in the proof of Claim 1 and thus
checks that the input tree t is balanced. First we prove a number of claims. Denote

Qi = {e,i di, git /,},»' = 1,2,3.

Claim 2 Let K € i s (A) and assume that K contains elements of Qi and Q}-,
i ft j. Then K is not accepting.

Alternation bounds for tree automata 193

P r o o f o f Cla im 2. Let T 6 COM(A, K) be arbitrary and let H label a node
of T. If H contains an element of Qk,k £ {1 ,2 ,3 } , then one daughter of i f in
T also contains an element of Qk- This follows immediately from the definition
of the rules that read elements of Qk, note that in rule (13) one can choose the
daughter corresponding to Now since K contains elements of both Qi and Q},
the computation tree T contains a branch where each configuration has elements
of Qi and Q j and this computation cannot terminate successfully.

Claim 3 Let K £ Fz(A) and assume that states e¿ and c,+a appear in K, (i + 2
is computed modulo S.) Then K is not accepting.

P r o o f o f Claim 3. We can assume that e¡ appears in an active subtree ri = cr(et)
and e,+2 in an active subtree = w(e¿+2, c<+2) because otherwise the computation
is blocked already in the states in question. Let T be an arbitrary ÜT-computation
tree of A . Assume that in T the recognizer reads r\ before r2 . The existential
rule (14) yields the state c¿+1 or d\ which cannot appear together with c<+2 in
an accepting configuration bv Claim 2. Thus necessarily the recognizer reads first
r2 using the universal rule (13). Consider the branch of the computation corre-
sponding to the state g.+a- FYom rules (15), (16), (18) and (19) it follows that all
configurations in this branch contain one of the states <¡r¿+a or fi+2, (<7.+a can only
be deleted by changing it to /<+a using rule (18) or (19).) So when the recognizer
reads the active subtree ri at an arbitrary time in the computation, both existential
choices c 1 + j and d, yield a configuration that is not accepting by Claim 2. Thus
T<¿ ACOM(A, i f) .

Claim 4 Denote D = {c i ,c2,c3,ei ,ea,e3,di ,d2,d3} . Assume that all leaves of a
configuration K are labeled by elements of D and K contains at least one element
of {dx,d2,d3}. Then K is not accepting.

P r o o f o f Claim 4. Let T £ COM(A. K) be arbitrary. Consider the branch B of
T that in universal computation steps (13) follows the choice e,-. All configurations
in this branch have leaves labeled by elements of D and furthermore contain at
least one element of {di , d2, This is because the elements d,- can be deleted
only by rules (18) and (19) which do not become applicable as the configurations
do not contain elements & or /,-. Thus B cannot end with an accepting final state.

Claim 5 Let K be an A.-configuration with all leaves labeled by ei,i £ {1 ,2 ,3 } ,
and hg(K) > 1. Assume that T is an accepting K-computation tree of A . Then T
contains a configuration Ki with all leaves labeled by e¿+i. Furthermore,

K = i f i (e i + i « - w(<r(e<),<r(e,))). (20)

P r o o f o f Claim 5. Necessarily the mother (immediate predecessor) of each node
ei is labeled by <r because otherwise the computation would be blocked in the state
e¿. The computation of T first reads an arbitrary number of the active subtrees
er(e¿) making the choice c,+x. The existential choice d¿ is prohibited by Claim 4. In
the states the recognizer can then apply only the universal rule (13). Consider
the branch B of the computation that corresponds to universal choices e¿+ j . Note
that above the recognizer needs not read all subtrees cr(e,) before starting to read
the subtrees w(c¿+ 1 ,c¿+ 1) . However, before continuing the computation from the
states e¿+i the recognizer must read all active subtrees cr(e,) and w(c , + i , c¿+ 1) .
This is seen as follows.

The state e¿+i can only be read by rule (14) where by Claim 4 furthermore the
recognizer needs to make the existential choice c¿+ 2 . (The current configuration

194 Kai Saiomaa

contains only states e,-, c^+i, e t+i.) By Claims 2 and 3, the state c,+2 cannot appear
with c , + 1 or e,- in an accepting configuration. Thus we can choose Kx to be the
configuration that appears in the branch B just before the first symbol e,+1 is
read. Then all leaves of K1 are labeled by e,+ i and also clearly (20) holds. The
assumption hg(Jif) > 1 prohibits the possibility that K = <r(e,).

Now we can proceed to prove that the "only if" side of (10) holds. Assume that
t e X,(A) and let T € COM(A, i) be accepting. Without restriction we can assume
that in T the recognizer first reads all leaf symbols 7 . Note that the rule (12) is
deterministic so it commutes with all other rules. Thus one obtains a configuration
K = t(7 *— c i) . Consider the branch of T that corresponds to the universal choices
ex in the computation steps (13) in the configuration K. (Note that (13) is the
only computation step applicable in K.) In this branch of the computation the
recognizer must read all states cx before reading any of the states t\ by rule (14).
(This is seen using Claims 2-4 exactly as in the proof of Claim 5.) Thus one obtains
a configuration with all leaves labeled by ex such that

t = i i i (e i - 0 , (7 , 7)) .

Denote by Wllthe smallest positive integer congruent to j modulo 3. By Claim 5,
if Ki G conf(r) is a configuration with all leaves labeled by «¡,-j and having height
at least two, there exists a configuration if,+x £ conf(T) with all leaves labeled by
e|,+1] 8Uch that

Ki = # i + i (e | t + i | — <•>(?(«[{]), <r(e|j|))). (21)

Denote m = (hg(Jïx) + l) /2 . Then Km = ff(e(m|). (Since t 6 h(Fn) , it is easy to
see that the string of symbols labeling a path from a leaf of K\ to the root always
belongs to (aw)*a. Hence hg(jfx) is odd and the last configuration in the chain
defined by (21) is cr(e[mj).) From (21) it follows that K\ and hence t is balanced.
Q.E.D.

In Lemma 4.1 the function 2 log can be reduced by an arbitrary constant factor.
The construction in the proof is independent of the rank of the elements u and by
increasing rank (a;) the number of distinct existential and universal segments in a
computation on an input t can be made to be smaller than C~1 log(size(t)) for any
natural number C.

Let m > 2 and define T = T0 U Tx U Tm , where T0 = W . T x = {<7} and
r m = {w} , i.e., T is as £ in Lemma 4.1 except the binary symbol u> is replaced by
w of rank m. Define L(m) to be the T-forest that is obtained from the forest L of
Lemma 4.1 by relabeling each w-node with ZS and attaching for it m — 2 additional
copies of the subtrees. In other words, L(m) consists of all balanced T-trees t such
that the string of labels of each branch from the root of t to a leaf belongs to
(aw) '7. Define A = (r , A, A', Gim|) € ATR otherwise exactly as in Lemma 4.1
except the rules (13), (16), (17), (18) and (19) are replaced by the following:

« i / (c< , . . . , c <) = { e „ i / , } , i = 1,2,3; (13)'

.. •, 9i) = { f t j . t = 1,2,3; (16)'

*B{di,...,di) = {di),i = 1,2,3; (17)'

w B (x i , . . . , x m) = { /<} if { n i m } = {di,gi},i e {1 ,2 ,3 } ; (18)'

ÛE(xi,--,xm) = {fi} if xi,...,xm € {di,gi,fi}, and (19)'

Alternation bounds for tree automata 195

U £ { * ! , . . . , « „ , } , « 6 {1,2,3} .
Then exactly as in the proof of Lemma 4.1 it is seen that

1(A) = L(m),
and furthermore for every t € L(m) there exists T 6 ACOM(A, t) such that
alt(T) = hg(i) + 1. Let С € N+ be arbitrary and choose m > 2°. Then for
every t £ L(m),

hg(í) < (2/C)log(size(i)).
Denote by C~1 log the function га —+ [С - 1 log3(ra)]. Thus we have:
Theorem 4.2 For every С £ N+:

REG с L{ATR)\C~l log].
(Here С denotes strict inclusion.)

5 Conclusions
Here we briefly discuss open questions and results on other types of alternation
bounds. We have shown that

REG = i(ATR)[&] с L(ATR)[C _ 1 log]
for all constants к and C. A central open question is whether it is possible to
separate L(ATR)[01 from REG for some sublogarithmic function в. Also we do
not know whether L (ATR) [log] с Z/(ATR). We conjecture that the simple forest
L = {w(o,n('y),o-'l(7))|ra > 0} does not belong to ATR)[los] but do not have a
proof for this. It is easy to see that L € I (ATR), cf. [14], [15].

One can restrict the computation trees of an alternating recognizer in many
different ways. A natural variant of Definition 3.3 would be to require that the
number of distinct existential and universal computation segments corresponding
to any given path from a leaf to the root in the input tree is bounded by some func-
tion 9. Similarly as in Definitions 3.2 and 3.3, in every branch of a computation
tree one can associate a word w over {E , U} to the computation steps performed
on a given path from a leaf to the root in the input tree t. Then one requires that
for all such words w, alt(u>) is at most 0(sizem). With this definition it is not
difficult to see that already a constant bound (in fact even the constant 2) allows
the alternating automata to recognize forests that are not regular. The detailed
construction is omitted here. Note that since the computations in independent sub-
trees can be performed in arbitrary order, a ¿-computation tree may have 0(sise(t))
computation segments (in the sense of Definition 3.2) even if the computation on
any fixed path of t has only 2 segments.

Also one can restrict the width of the computation trees or, equivalently,
the number of universal computation steps analogously with the bounds on par-
allelism considered in [5], [7]. Let в be a function on the natural numbers,
A = (£, A, A', G) £ ATR and Г be a computation tree of A . We denote by
T the number of leaves of T. We say that the recognizer A accepts a S-forest
L with the width-bound $ if L = LÍA) and for every t £ L there exists T £
ACOM(A,t) such that # T < 0(size(t)l. This is denoted L = I (A l [0 L . The
family of forests recognized with the width bound 6 is denoted ¿(ATRjjíjuj. As a
corollary of Theorem 3. 17 we have:

196 Kai Saiomaa

Theorem 5.1 ¿(ATRjffcju, = REG. (Again we denote the constant function c(k)
simply by k.J

Proo f . Suppose that L = £ (A) A = (E, A, A', G). Without restriction we can
assume that if / is an active suDtree of type Z of A , ¿ 6 {E, U}, and fz consists of
only one element of A, then / is existential, i.e., Z = E. (A suitable modification
of the relation G does not change the number of leaves of any computation tree.)
Thus for every computation tree T of A we have

T is at least the number of universal computation steps in T plus one.) Thus
= L(A)[2k - 1] and L is regular by Theorem 3.17. Q.E.D.
Also the question whether £(ATR)[log]w contains nonregular forests remains

open. Note that this does not follows from the results of the previous section
because in the construction of Lemma 4.1 the recognizer uses 0(size(f)) universal
computation steps on an input t.

References
[1] G. Buntrock and A. Hoene, Reversals and alternation, Proc. of 6th STACS,

Lect. Notes Comput. Sci. 349 (1989) 218-228.

[2] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J. Assoc. Com-
put. Mach. 28 (1981) 114-133.

[3] E.M. Gurari and O.H. Ibarra, (Semi) Alternating stack automata, Math. Sys-
tems Theory 15 (1982) 211-224.

[4] F. Gécseg and M. Steinby, Tree automata, Akadémiai Kiadó, Budapest, 1984.

[5] J. Hromkovic, Tradeoffs for language recognition on parallel computing models,
Proc. of 13th ICALP, Lect. Notes Comput. Sci. 226 (1986) 157-166.

[6] J. Hromkovic, On the power of alternation in automata theory, J. Comput.
System Sci. 31 (1985) 28-39.

[7] K.N. King, Measures of parallelism in alternating computation trees, Proc. of
13th Ann. ACM Symp. on Theory of Computing (1981) 189-201.

[8] K.N. King, Alternating multihead finite automata, Theoret. Comput. Sci. 61
(1988) 149-174.

[9] R.E. Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating pushdown and
stack automata, SIAM J. Comput. 13 (1984) 135-155.

[10] H. Matsuno, K. Inoue, H. Taniguchi and I. Takanami, Alternating simple
multihead finite automata, Theoret. Comput. Sci. 36 (1985) 291-308.

[11] D.E. Muller, A. Saoudi and P.E. Schupp, Alternating automata, the weak
monadic theory of the tree, and its complexity, Proc. of 13th ICALP, Lect.
Notes Comput. Sci. 226 (1986) 275-283.

[12] D.E. Muller and P.E. Schupp, Alternating automata on infinite trees, Theoret.
Comput. Sci. 54 (1987) 267-276.

alt(T) < 2 (# r) - 1.

Alternation bounds for tree automata 197

13] W.L. Ruzzo, Itee-size bounded alternation, J. Comput. System Sci. 21 (1980)
218-235.

14] K. Salomaa, Alternating bottom-up tree recognizers, Proc. of 11th CAAP,
Lect. Notes Comput. Sci. 214 (1986) 158-171.

15] K. Salomaa, Yield-languages recognized by alternating tree recognizers,
RAIRO Inform. Th4or. 22 (1988) 319-339.

16] K. Salomaa, Alternating tree pushdown automata, Ann. Univ. Turku Ser. AI
192 (1988).

17] K. Salomaa, Representation of recursively enumerable languages using alter-
nating finite tree recognizers, Proc. of 7th FCT, Lect. Notes Comput. Sci. 380
(1989) 372-383.

18] G. Slutzki, Alternating tree automata, Proc. of 8th CAAP, Lect. Notes Com-
put. Sci. 159 (1983) 392-404.

Received June 20, 1991.

