
Acta Cybemetica, Vol. 10, Nr. 3, Szeged, 1992 

Alternation bounds for tree automata 

Kai Salomaa * 

Abstract 

We consider alternation depth bounds for tree automata, that is, we limit 
the number of alternations of existential and universal computation steps. We 
show that a constant bound guarantees that the forest recognized is regular, 
whereas already a logarithmic bound enables the automata to recognize a 
strictly larger class of forests. As a corollary we obtain results on other types 
of alternation bounds for tree automata. We consider also commutation prop-
erties of independent computation steps of an alternating tree automaton. 

1 Introduction 
An alternating computation generalizes a nondeterministic one by allowing the au-
tomaton to both make existential choices and branch the computation universally. 
Alternation has been used to model parallelism of various machine models, cf. e.g. 
[2], [6], [8], 19], [10]. The alternating computations of tree automata are particularly 
interesting Decause there parallelism occurs on two levels: the automaton reads in 
parallel independent subtrees of the input and, furthermore, the computation can 
branch universally. 

It is well known that alternating finite automata recognize only the regular lan-
guages. Also alternating top-down finite tree automata recognize just the regular 
forests, cf. [18]. On the other hand, alternation increases dramatically the com-
putational power of finite bottom-up tree automata, cf. [14], [15], [17]. These au-
tomata define as yield-languages even all recursively enumerable languages. Other 
alternating tree automaton models are studied in [11], [12], [16]. 

Because of the great computational power of alternating tree automata it seems 
natural to consider restrictions on the alternating computations that would limit 
the family of recognized forests. Alternation bounds on various Turing machine 
models and multihead finite automata have been investigated in [3], [5], [6], [7], 
[10], [13]. There one restricts the width or leaf-size of the computation trees, (or 
equivalently the number of universal computation steps in an alternating computar 
tion.) Also bounds that restrict the size of the alternating computation trees have 
been investigated, this corresponds to limiting together the length and parallelism 
of the computation. 

Alternation depth of Turing machines, that is the number of alternations of 
existential and universal configurations in a computation path, is considered in 
[2]. A similar measure called alternation size which restricts the total number of 
alternations in a computation tree is defined in [l], and the alternation size of a 
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Turing machine is shown to correspond closely to the number of reversals of an 
auxiliary pushdown automaton. 

Here we study alternation depth bounds in the context of bottom-up tree au-
tomata. For tree automata, the configurations cannot be divided into existential 
and universal ones as in the case of Turing machines (a tree configuration can 
contain an arbitrary number of states) and, therefore, we will in fact limit the 
alternation of existential and universal computation steps in any branch of the 
computation tree. Intuitively, one may think the edges of the computation tree to 
be labeled by E or U depending on whether the computation step is existential or 
universal. On a path from the root to a leaf a sequence of consequtive symbols E 
(respectively U) that is limited on both sides by symbols U (resp. E) is said to be 
an existential (resp. universal) computation segment. In an alternation bounded 
computation tree the number of computation segments on each path is limited by 
a function on the size of the input. 

Clearly even a computation tree with a constant alternation bound may contain 
an arbitrary number of universal computation steps and thus its width can be 
linear in the size of the input. However, it is shown that forests recognized by 
tree automata with a constant alternation bound are regular. This illustrates the 
fact that the power of alternating tree automata is not only due to an unlimited 
number of parallel computations but also to the capability of alternating existential 
and universal computation steps and reading independent subtrees of the input 
differently in distinct branches of the computation. As a special case it follows 
that also automata with constant width computation trees define only the regular 
forests. 

On the other hand, it is shown that already a logarithmic alternation bound 
enables the finite tree automata to recognize also nonregular forests. The main 
open question is whether the same is true for some sublogarithmic (nonconstant) 
functions. 

In order to establish the above results we need to consider the commutation 
properties of independent computation steps in an alternating computation. (That 
is, computation steps at independent nodes of the input tree.) In general, the order 
in which the recognizer reads independent subtrees of the input can be essential. 
However, clearly two existential (i.e., nondeterministic) independent computation 
steps always commute, and the same is true for universal computation steps. Fur-
thermore, a universal and existential computation step semi-commute, that is, a 
universal computation step may be assumed to be performed first. 

In Section 2 we recall the definition of an alternating tree recognizer and es-
tablish the above commutation properties. Alternation bounded computations are 
defined in Section 3 and there it is also shown that constant bounds define only the 
regular forests. Sections 4 and 5 consider the logarithmic bound and some related 
alternation measures. 

2 Alternating tree automata 
The reader is assumed to be familiar with trees and tree automata, cf. e.g. [4]. 
Here we recall the definition of an alternating finite bottom-up tree recognizer, 
cf. [14], [15], [17]. Since we will consider computations with a bounded number 
of alternations of existential and universal computation steps, we use a slightly 
different definition from that of op. cit. There at each computation step the 
automaton was able to make both an existential and a universal choice. It is shown 
that in terms of recognition power these models are essentially equivalent. 

The set of (nonempty) words over a set X is denoted by X" (respectively X + ) 
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and the empty word by X. The length of a word w is denoted tu|. The catenation 
of A, B C X* is defined by AB = [w € X*|(3tux £ A)(3tU2 £ B)w = tuitu2}. The 
set of subsets of X is denoted p(X). If X is finite, the cardinality of X is denoted 
by If X is a [proper) subset of Y this is denoted by X C Y(X C F) . The 
symbol N+ stands for the set of positive integers. 

A tree domain D is a nonempty subset of N+ that satisfies the conditions 
ÍTD1) and (TD2) below. 
ÍTD1) If u £ -D, then every prefix of u belongs to D. 
(TD2J For every u € D there exists i € N+ U {0 } such that uj £ D iff 1 < j < 
». (t = 0 if xi has no daughters.) 

Let A be a set. An A- labeled tree is a mapping t: D —» A, where D is a tree 
domain. The elements of D are called nodes of the tree t and D is denoted d o m ( t ) . 
A node u is said to be labeled by t(u)(£ A). We use freely notions such as the 
height, root, a leaf, and a subtree of a tree. The height of t is denoted hg( t ) (a tree 
with one node is defined to have height zero), and the set of leaves of t is denoted 
leaf(t) . The subtree of t at node u is denoted t / u . A node v is a successor of u £ 
dom(t) if u is a prefix of t/, and u and v are said to be independent, u||t>, if neither 
one is a successor of the other. If « i , . . . , u m £ dom(t) are pairwise independent, 
then t(ui «— tx um «— tm) denotes the tree obtained from t by replacing t /u; 
with t,-, i — 1 , . . . ,m. 

In the term notation one assumes that a node with t daughters (immediate 
successors) is always labeled by a symbol of rank ». Letters E and 0 denote here 
finite ranked alphabets and the set of m-ary, m > 0, symbols of I] is denoted by 
E m . The rank of an element a £ E m is denoted rankE(f) or just rank(cr) if the 
alphabet E is known. Let A be a (finite) set. The set óA-trees , FE(A), is the 
smallest set such that (i) Eo U A C (A), and (ii) if a £ E m , m > 1, f x , . . . , tm £ 
F E (A) , then ff(ti,...,tm) € F e U ) - The set of ó-trees, Fs, is defined to be FE(0J. 
Subsets of are called E-foresta. Let t,ti,... ,tm £ Fe (A) and o x , . . . , am £ A. 
Then t(ax *— t\,...,am *— tm) denotes the EA-tree obtained from i by replacing 
every occurrence of a symbol a,- with t¿. To a given E-tree t one associates in 
the natural way the corresponding tree domain dom(t). For t £ Fe we denote 
size(t) = #domit ) . A (E—)tree t is said to be balanced if every path from the 
root of t to a leaf has equal length. 

We still recall the notion of tree homomorphism, cf. [4]. For every m > 1, let 
Hm = { , . • •, £m} be a set of variables. Assume that for every m > 0 such that 
E m ^ 0 we are given a mapping hm : E m —* Fn(3 m ) . Then the mappings hm 
determine inductively a tree h o m o m o r p h i s m h : Fe (A) —• FQ (A) as follows. 

(i) h(a) = a for a £ A. 
(ii) Let m > 0,<r € Em , tx t m £ F E (A) . Then 

M»(t l , • • • • «-»)) = Mi l ) . • • • . tm — Htm)). 

It is clear that E-trees can be seen as E-labeled trees (graphs) where each node 
having i daughters is labeled by an element of rank i and conversely every E-labeled 
tree with the above property corresponds to a unique E-tree. In the following, we 
speak about trees using interchangeably the above notions of a E-labeled graph 
and an element of Fe-

Definition 2.1 An alternating ( bo t t om-up ) tree recognizer is a four-tuple 
A = (E, A, A', G), where 

(%) E is a finite ranked alphabet, 
(ii) A is a finite set of states, 
(Hi) A' C A is the a set of final states, and 
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(iv) G is the state transition relation defined as follows. The relation G asso-
ciates with every a € E m , m > 0, a mapping 

cG : A m - » p(A) x {E,U}. 

The class of alternating tree recognizers is denoted by A T R . Let A be as in 
Definition 2.1. Elements of F^(A) are called A-configurations. A configuration 
tree o f A is a tree where the nodes are labeled A-configurations, and the set of 
configuration trees of A is denoted by CT(A). Let T € C T J A) . Then conf(T) 
denotes the set of all A-configurations labeling some node of T. 

Let K be an A-configuration. Subtrees of K of the form o(a\t... ,am), 
m > 0, a G E m , a i , . . . , a m € A are said to be active subtrees, and the set 
of (occurrences of) active subtrees is denoted by act ( i f ) . Let Z é {E, U} and 
assume that 

c7 G (o 1 , . . . ,a m ) = ( B , Z ) , (1) 

where a 6 E m , o i , . . . , am G A and B C A. Then we denote 

ffZ(G)(al>---,am) = B, 

or simply, 
<Tz(a li • • • l am) = B 

if G is known. We also denote G = E(G)Ul/(G) or simply G = EuU. This notation 
can be justified by the fact that always exactly one of the sets CTE(CII, • • •, a m ) and 
^ { / ( f i i . . ..dm) is defined. 

If in (1) Z = E,vre say that the active subtree / = o(a\,..., am) is existential 
(or o f type E), and if Z = U, f is said to be universal (or of type U) . Also 
oz(ai,..., a m ) is denoted simply by fz- If fz consists of only one element, we 
say informally that the corresponding computation step is deterministic. When 
considering specific examples, the state-transition relation G is usually convenient 
to define by listing all nonempty sets fz where / is an active subtree. 

Intuitively, oz (oi, • • •, o m ) denotes the set of next states the automaton A 
reaches after reading the input symbol a in states a i , . . . , o m . If cr (o i , . . . , a m ) 
is existential, the automaton chooses nondeterministically one of the next states in 
which it continues the computation. If Z = U, the computation has to be continued 
in all states of cru(ai> • • • > am)- This is defined formally below. 

Definition 2.2 The transition relation of a recognizer A € ATR is the 
binary relation on CT(A) defined as follows. Let Ti,T2 € CT(A) . Then 
Ti =>\ T2 if T2 is obtained from T\ as follows. Let n be a leaf of T\ that is 
labeled by an A-configuration K. Let f G act[lQ be of type Z, Z 6 {E,U}, and 
fz = { o i , . . . , o m } , Oj e A,*' = 1 m. If Z = E, then T2 is obtained from 2\ by 
attaching for the node n a daughter labeled by K(f «— a+) for some i € {1,..., m}. 
If Z = U. then in T2 the node n has m daughters labeled by the configurations 
K(f+-a0 K(f *— o m ) . 

Let K £ F e (A) . The set of Üf-computation trees of A is defined by 

COM(A, K) = {T e CT(A)|tf =>*A T). 

Above K denotes the configuration tree with one node labeled by K. A computation 
tree is accepting if all its leaves are labeled by elements of A', and the set of 



Alternation bounds for tree automata 177 

accepting if-computation trees is denoted ACOM(A, K). We say that A accepts 
a configuration K if ACOM(A, K) jt 0. The set of accepted A-configurations is 
denoted by ACC(A). The forest recognized by the recognizer A is 

L(A) = f E n ACC(A). 

The family of forests recognized by alternating tree recognizers is denoted L(ATR). 
Let Ti,T2 € COM(A, t) for some input t and Ti T2. We use the notation 

Ti BT2 (resp. Ti => a UT2) to indicate that T2 is obtained from l i using an 
existential (resp. universal) computation step in some configuration labeling a leaf 
of 2\. A computation tree T is said to be complete if each leaf of T is labeled by 
an element of A (i.e.. each branch of the computation of T has reached the root of 
t.) 

Example 2.3 Let A = (E, A, A',G) e ATR where E = E0UE2 ,E0 = {r,7},E2 = 
{w},A = {<!,&}, A' = {a} and the relation G = E(G) U U{G) is defined by the 
following: 

RU(G) = {<*,&},7£(G) = {o,&},wB(G)(o,a) = w E(G)(b,b) = {a}, 

Wi/(G)(O.6) =w t / (G ) (6 )o) = {6}. 

Let t = w(r, 7). We construct an accepting t-computation tree of A. Below we de-
note a computation tree T with leaves labeled by configurations K_i,..., Km, m > 
1, simply by [ # ! , . . . , f fm ] . 

It is easy to see that this is the only accepting t-computation tree of A, i.e., in an 
accepting computation on t, A must always read the leaf labeled by r before the 
leaf 7. (Of course, the computation steps in different branches of the computation 
tree can be performed in arbitrary order.) 

Let A = (E, A, A', G) € ATR. The recognizer A is said to be nondeterminis-
tic if all active subtrees of A are existential. If, furthermore, for all active subtrees 
/ the set f s contains at most one element, the recognizer A is said to be deter-
ministic. If A is deterministic and fs = {6}, b 6 A, we denote fs simply by 6. 
(A deterministic recognizer could of course also be defined as a special case of a 
universal one.) It is clear that this definition of nondeterministic and deterministic 
tree recognizers is equivalent to the usual definitions, cf. [4]. Nondeterministic and 
determinisitic bottom-up recognizers both recognize the family of regular forests 
R E G . 

It is known from [14], [15], [17] that alternating bottom-up tree recognizers rec-
ognize also nonregular forests. In order to simplify some constructions, in op. cit. 
one uses an automaton model that in each computation step can branch the com-
putation both existentially and universally. In the following we refer to this model 
as the generalized alternating automaton (or recognizer). The definition used 
here is more restricted as each computation step has to be purely existential or 
universal. The automaton model of Definition 2.1 cannot straightforwardly, sim-
ulate the generalized alternating recognizers, however the models are "essentially 
equivalent" in the sense described below. 
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Let E be a ranked alphabet and M a E-forest recognized by a generalized 
alternating tree automaton B. Define the ranked alphabet 0 = E U A where 
A = {(/¡a e E} and i l m = E m if m ^ 1 and nx = Ei U A. Let h : FE Fn be the 
tree homomorphism defined by 

M < r ) = ^ ' M f i i • • •, £m)), m > 0, cr G E m . 

Intuitively for t G Fz, h(t) is obtained simply by attaching above each node labeled 
by a symbol a a node labeled with the unary symbol a' . We claim that an automa-
ton A of Definition 2.1 can recognize the R-forest h(M). The proof of this result 
is essentially the same as the proof of Theorem 4.4 of [14] and we just explain it 
intuitively below. At a node labeled by <r, A performs the existential choice of the 
generalized alternating automaton B recognizing M, and then at the node above 
labeled by a ' the recognizer A simulates the universal choice of B. Note that by 
Lemma 2.6 below, without restriction one can assume that A performs the univer-
sal computation step in a' immediately after reading the symbol a, (this could also 
be seen directly as in the proof given in [14].) Thus it is clear that all computa-
tions of A on a tree h(t), t 6 FE, correspond to a computation of the generalized 
automaton on t, and L(A) = L(B). 

Intuitively, the above result means that corresponding to every forest L recog-
nized by a generalized alternating automaton, the family L(ATR) contains a forest 
essentially similar to L. Now by the results of [14], [15], [17] it is immediate that 
L(ATR) contains forests that Eire not regular, and even not context-free (that is, 
algebraic). Also for instance the emptiness and equivalence problems are undecid-
able for L(ATR). The tree homomorphism h above does not affect the yield (or 
frontier), cf. [4], of a forest and hence by [17] it follows that every recursively 
enumerable language is the yield of a forest in L(ATR). 

Finally we define a complete recognizer. An ATR-recognizer is said to be c o m -
plete if fz ^ 0 for all active subtrees / of type Z, Z € {E, U). The proof of the 
following lemma is then immediate. 

Lemma 2.4 Every forest of L(ATR) can be recognized by a complete ATR-
recognizer. 

Example 2.5 Let A = (E, A, A',G) G ATR when E = E 0 U Ei U E 2 , E 0 = 
{r, l}, Ei = {<r}, E2 = { ( j ) , A = {a, b, 6i, 62, c, cx, c2 , d, du d2, e, eu e2, / } , A' = { / } 
and the relation G — E U U is defined by the following: 

(i) w = {a, 6} 
(») IB ={di,d2,e} 
(Hi) trB(o) = { c } 
(iv) av(c) = { c i , c 2 } 
(v) * B ( 6 ) = { 6 i , 6 2 } 
(vi) <Ju(bi) = {6,},« = 1,2 
(vii) <ru{di) = {di},i= 1,2 
(viii) au(e) = {ei,e2} 
(ix) u B ( i , y ) = {/} if(x,y) - (Ci,di) or (x,y) = (6,-,e,),»' G {1 ,2} . 

The relation G is undefined in all cases not covered by (i)-(ix). We denote 
t = w(<7a(r), ff(if)) and construct an accepting t-computation tree of A . As in the 
previous example we denote a computation tree with the sequence of configurations 
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labeling its leaves: 

' =*A ^ M 0 ) . <"M*)> » ( f ) ) ] 

(=>"A U)2MciMl))Me2><r[l))>u(a a(b)>ei)M< T<T(b)>e2)\ 

(=>A B)4[w(ci.£T(di)).w(c2.^(^2)),w(iT(61),ei)1a;(cr(62),e2)] 
(=>A U)4[^[ci>di)>u{c2,d2),^(bi,ei),u[b2,e2)} 

(=>A V I Z . / - / - / I 

It can be verified that the computation tree constructed above is the unique 
accepting t-computation tree of A . Of course the computation steps in parallel 
branches of the computation tree can be performed in different order, but the 
resulting computation tree will always be unique (if it is accepting.) Also one 
sees that in the computation starting from the configuration u(crcr(a), <7(7)) one 
must read both a-symbols in the subtree 00(a) before the symbol 7 whereas in the 
computation starting from w(<7cr(fc)>cr(7)) the automaton necessarily has to read 
the subtree ^(7) before continuing the computation in the subtree crcr(b). 

This example illustrates the fact that in an alternating computation tne order in 
which subtrees of the input are processed can be very essential. This is the reason 
why an alternating computation cannot in general be simulated by a nondetermin-
istic one using a subset construction. The above example was constructed to be as 
simple as possible and here of course L(A) is regular, (in fact L(A) = {t} . ) For 
examples of alternating tree recognizers defining nonregular forests see [14], [15], 
I " ] -

In Examples 2.3 and 2.5 we noticed that the order in which independent subtrees 
of the input are read can be important. To conclude this section we investigate 
when computation steps in independent subtrees commute. 

As was done in the previous examples, it is many times convenient to denote a 
computation tree T with the sequence of configurations [if 1 , . . . , KM] labeling the 
leaves of T. The configurations Jf,-,t = 1 , . . . , m , contain all information needed 
to continue the computation of T and also their order is irrelevant. We say that 
computation trees TI and T2 are equivalent if the leaves of both 7\ and T2 are 
labeled by the same sequence of configurations. In this case Ti can be completed to 
an accepting computation tree iff the same holds for T2- In general the computation 
tree gives also the structure of the computation and we cannot for all purposes 
replace it with the sequence of its leaves. 

An arbitrary sequence of A-configurations [K\,..., Km] does not necessarily 
correspond to any computation tree but we can extend the relation =>a ^ e 
natural way for arbitrary sequences of configurations: 

[Kl Km\ =*A [•^»•••i'®») 

iff for some t £ { l , . . . , m } there exists a computation tree T with 
leaves labeled by M \ M r such that Ki => a T and the multiset 

f Ki,..., Ki-i, M\,..., Mr, Ki+i,..., Km} equals to the multiset {Hi,..., Hn). 

Here T is a tree of height one with the root labeled by K{.) Note in particular that 
if \KX,..., KM\ is the sequence of leaves of a computation tree TI and [HI,..., HN] 
are the leaves of T2 then [KI i^ML^A *\HI> •••>#»] TOLDS ^ r i = * A *Ta-

In the next lemma we prove commutation properties of alternating compu-
tations. There it is notationally more convenient to consider sequences of con-
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figurations instead of computation trees. Using the above definition the al-
ternating computations can be defined also for sequences that do not corre-
spond to any computation tree and we thereby prove a slightly more general 
result. We still introduce some notation. Let A = { E , A , A ' , G ) G ATR. Let 
Z G ( E , U } and Ki, Hj G Fz(A),i = 1 , . . . , ^ ; ' = 1 a. Then the notation 
[ X i , . . . ,K r )=> A z ( « , * ) № € {1 r } , u e dom(Jfi), is used to denote 
that the sequence of configurations \H\,... ,H,\ is obtained from \K\,..., KT] by 
applying a Z-computation step at node u in the configuration Ki. If r = 1 or t is 
otherwise clear we denote =>A Z ( u > 0 simply by => A Z ( u ) -

Lemma 2.6 Let A = (E, A, A', G) e ATR and K G FE{A),u,v G dom(K). As-
sume that u||v and K/u,K/v G act(if) . Denote K/u = f,K/v = g, and let 
fx ={oi am},gY = {b1,...,b„},m,n>l,X,Y e{E,U\. 

(i) Assume that f and g are existential, (i.e., X = Y = E.J Let 

\K\ = > A B W ( * i ] = * A 
Then there exists K' G such that 

(ii) Assume that f is existential and g universal. Let 

\K\ ^ M I ^ K a " ^ 

Then there exist configurations H^,* — 1 ,...,n, such that 

\K] =>A U(v)[H[,...,H'n][=>A ...,Hn\. 

(Hi) Assume that / and g art universal. Suppose that 

[K\ ffm]=>A>.»') 

(*) \KU..., Ki-u Ki(v - fei), ...,Ki(v*~ bn), Ki+1, ...,Km}=>A*[Mu..., Mr], 

where v & dom(Aiy) or M}(v) G A, 1 < j < r, i.e., in each of the configurations 
Mj the active subtree g has been read. 

Then there exists a computation 

I*] =>A » № - M. . . . , * ( « « - &„)]=> A u(u, 1) 
[XxC - M, h), K(V - b3) K(v «- bn)}(=>A U(u))n~1 

(«) [¿Mv - h) Km(v - bx) J^« «- bn) Km(v « - 6„)] 
=>A*\Mu...,Mr\. 

Proof , (i) This is immediate since K\ = K(u *— a,) and K2 = K(u *— a, , v «— 
by), i G {1 m}, j G { 1 , . . . , n}, and clearly we can choose K' = K(v <— b}). 
(ii) Now Ki = K(u «— ai),i G { l , . . . , m } , and Hj — K(u *— an, t> «— bj), j = 
1 n. Thus we have 

[K\ =>Au(v)[K(v^b1),...,K(v^bn)) 
B(u, l)[tf(u Oi, I> - bj, K( V - b2), ...,K{v+- bn)\ 

^AB(u,2)...^AE{u,n)\H1 Hn]. 
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(iii) Clearly Ki = K(u « - o<),» = 1 , . . . , m. Let NX}-,..., N,j be the configurations 
from the sequence Mi MT that are successors of Kj,j e {1 i — 1, » + 
1, . . . , m}. Since the configurations Ki(v <— 6i) Ki(v «— bn) appear in both (*) 
and (**), it is sufficient to show that 

[K,{v ^bi),... K}( v - fc„)] =CA *[JVWl..., NtJ],j e {1 m},j ft i. ( 2 ) 

Let j 6 { 1 , . . . , t—l , t+ l , . . . , m}. Let Hi,..., Hq be the configurations appearing in 
each branch of the computation [Kj\ =>A * [ATiy,..., Nt] \ just before the automaton 
reads the subtree g at node v. Thus \Kj\ Hq\ using only computation 
steps at nodes that are independent with v. From this it follows that 

[K,(v - 6r)] =>A *[#!(„ - br) Hq(v br)\,r = 1 n. (3) 

By the choice of Hi,..., Hq, 

[Hi(v «- 60, ...,Hi(v+- bn), ...,Hq{v+- bi) Hq{v - &„)] 

and hence (2) holds by (3). (Note that one may arbitrarily permute the configure 
tions Pi,...Px in a sequence [P i , . . . , P*]-) Q- E. D. 

In the above lemma, case (i) states that one may always permute two inde-
pendent (i.e., corresponding to independent nodes) existential computation steps 
and (ii) states that an existential computation step followed by a universal com-
putation step may be replaced by first making the universal step and thereafter 
the corresponding existential computation steps. Case [iii) states that always two 
independent universal computation steps commute. This is the most complicated 
case as one does not directly obtain identical configurations but has to consider the 
computation so far that in each branch both universal active subtrees have been 
read. This is not a restriction when considering accepting computation trees where 
each branch ends at the root of the input. 

The fourth case would be a universal computation step followed by an indepen-
dent existential computation step. These cannot [in general) be permuted since in 
each universal branch the automaton can make different existential choices. Thus 
one can say that independent existential and universal computation steps semi-
commute: one may always replace EU with UE but not in the other direction. 

3 Depth bounded alternation 
As observed in the previous section, alternation is a very powerful mode of com-
putation for bottom-up tree automata. For this reason we consider alternating 
computations where in each path the number of alternations of the existential and 
universal computation steps is bounded by some function on the size of the input 
tree. 

Definition 3.1 We define a mapping alt: {E, U}+ -+ N+ as follows. Let u e 
{E, i/}+. Then alt(u) is the least integer n such that we can write 

u = ui...un, Ui 6 E+ uU+,i = 1, ...,n. 
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Definition 3.2 Let A = (£, A . A ' G ) G AT.R,t G FE and T G COAf(A , t ) . We 
define a mapping <f>r • dom(T) —• {E, U}' inductively at follows. 

(i)t r(A) = A. 
(ii) Let u € dom(T) be labeled by an A.-configuration K. Suppose that in the 

computation of T in the configuration K the recognizer reads an active subtree of 
type Z, Z G {E, U). Let n = max{t'|ut G dom(T)}. Then for every j = 1 n : 

4>T(uJ) — 

(Note that n< 1 if Z = E.) 
Now we define the function alt: COM(A,t) —* N+ by 

alt (T ) = max{alt ( « ^ t H ) | « G leaf ( T ) } . 

Let u be a node of a computation tree T. Then <¡>T(V) gives the sequence in 
which existential and universal computation steps are performed along the path 
from the root of T to u. Thus alt(^r(u)) denotes the number of existential and 
universal computation segments in the computation corresponding to the node u. 
Now depth bounded alternating computations can be defined by restricting the 
value alt(T). 

Definition S.S Let A = (£, A, A', G) G ATR,t G Fj¡, and 6 : N+ N+ be a 
function. The set of ^-bounded t-computation trees of A ú 

COM(A,t)[0] = {T G COM(A, i)|alt(T) < 0(sise(t))}. 

A forest L C is ^-bounded recognized by A if 
(i) L = L{A), and 
(ii) for every t G L, COM(A, t)[^lri ACOM[A, t) ¿ 0. 
In this case we denote L = L{AJ[0]. The family of forests 6-bounded recognized 

by alternating tree recognizers is denoted L(ATR)\0\. 

Thus L is ^-bounded recognized by A if each tree t of L has an accepting 
computation tree with alternation depth at most 0(size(t)) and any tree not in L 
does not have an accepting computation. If ¿(A)[0] is defined, we say also that the 
recognizer A is 0-bounded. Note that if one would define L(A)[0] just to consist of 
trees t e F j such that there exists an accepting computation tree in COM(A, i)[0], 
then the automaton would be able to use the counting properties of the function 6 
to check properties of the inputs. This would clearly be unnatural, especially if the 
function 6 is not well behaved. Note that £(A)[0] is not defined if L(A) contains 
trees that cannot be accepted in ^-bounded computations. 

Let t and A be as in Example 2.5 and let T be the t-computation tree considered 
there. Then altir) = 6. Thus L(A)\6) = { t } for every function $ such that 5(6) > 6. 
(Note that sizeft) = 6.) 

Lemma 3.4 For every function 6, the family L(ATR)[8] is closed with respect to 
intersection with regular sets. 

Proof . This is seen easily by adding to the states of an ATR-recognizer second 
components that simulate the computation of a deterministic recognizer for the 
regular forest in question. Clearly the simulation can be done at the same time 
preserving the type (existential or universal) of each computation step. Q.E.D. 
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Theorem 3.5 Suppose that <?i(n) < ^2(1) almost everywhere, i.e., there exists 
M & N+ such that for all n> M, 0i(n) < 0 2 M - Then 

L(ATR)[9I] C L(ATR)[62}. 

Proof. Let £ be a E-forest 0i-bounded recognized by A € ATR. Denote F(>) = 
{ t e F z | size(t) > M } and f ( < ) = {i G f E | size(t) < M} . Now 

L = (L(A)[ii] n #•(>)) U (L(A)[ii] n ^(c)). 

By Lemma 3.4 there exists B G ATR such that L(B)[0i] = L(A)[0i] D F{>). By 
the choice of M, furthermore, £(B)[0i] = I(B)[02)- Since F(<) is finite, using B 
one can easily construct a recognizer B' such that 

L(B')[02] = ¿(B)[tfa] U (L(A)[iiJ n F(<)) = L. 
Q . E . D . 

Clearly L(ATR]J»d] = L(ATR) where id denotes the identity function. In 
the following we will consider constant and logarithmic alternation bounds. Let 
c(k),k > 1. denote the function that maps every element of N+ to k. Then 
L(aTR)[c(1)] = REG because both the purely existential and purely universal 
tree automata recognize only the regular forests. Next we will show that in fact 
X(ATR| [c(k)\ = REG for all jfc > 1. In the following we denote the function c(k) 
simply fey k. 

A first idea for a regularity proof for the forests of i(ATR)|fc] might be to 
simulate the ¿-bounded alternating computations by a deterministic tree recog-
nizer using a subset construction where the sets would additionally contain the 
information which existential (resp. universal) segment of the computation one is 
simulating. (There can be at most k segments.) However, this approach does not 
work because it may be the case that in different branches of the computation a 
given node must be read in different segments. 

To illustrate the difficulty, let us consider again from Example 2.5 the t-
computation tree which is the unique accepting computation tree for the input 
t = tjj (¿To*(t), o ('y)) • For instance, in the left branch of the computation the symbol 
7 has to be read in the second existential segment whereas in the right branch it is 
necessarily read in the first existential segment. 

It turns out that a deterministic automaton simulating the computations of 
A will need to store in the states the information concerning the partition into 
existential and universal segments of all possible computation trees of the input 
scanned so far, this will be called the computation schema. It will be seen that for 
¿-bounded computations the number of distinct computation schemata is finite. 
Let A e ATR, t = a ( i i , . . . , im) G i s and T be a complete t-computation tree 
of A. The computation tree T is obtained by combining ¿¿-computation trees, 
» = 1 , . . . , m, and finally in each branch reading the root symbol a. Thus it is clear 
that one can construct an arbitrary (¿-bounded) ¿-computation tree if one knows 
all possible (¿-bounded) ¿¿-computation trees. 

In the following A = (E, A, A', G) e ATR is always assumed to be complete. By 
Lemma 2.4 this is not a restriction. (Clearly the analogy of Lemma 2.4 holds also 
for arbitrary ^-bounded computations.) We say that K G (A) is an existential 
configuration if all active subtrees of K are existential and otherwise K is said to 
be universal. In particular, if if G A then act ( i f ) = 0 and hence K is existential. 
Lemma 3.6 Let K be a universal configuration. Then there exist unique existential 
configurations i f j , . . . , Kn such that 

(4) 
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(Of courte Ki,...,Kn may be arbitrarily permuted.) 

P r o o f . Since A is complete, there are existential configurations Ky,..., Kn such 
that (4) holds Tone computes universal active subtrees until there are none left.) By 
Lemma 2.6 (iii) universal computation steps commute and hence the configurations 
Ki,..., Kn are unique. 

Definition S.7 Let t Ç. Fz and к > 1. The k - b o u n d e d t - computat ion schema 
of A , SC{t, fc, A ) it the configuration tree S defined at followt. The root of S 
is labeled by t. Suppote that a node u 6 dom(S), |u| < к — 1, is labeled by a 
configuration K. 

(i) Suppote that К it universal and let Ki,..., Kn be the (by Lemma 3.6 unique) 
existential configurations tuch that [-&](=>• A u)*[ifi, • • • > Kn]- Then the node u has 
n daughters (immediate successors) labeled by K\,... ,Kn. 

(ii) Let К be existential, К & A. Denote by С the set of ail configurations K' 
such that B)*[-K"'] and K' is universal or К' e A. Then for every К' € С 
the node u has a daughter labeled by K'. 

(iii) If К 6 A then и is a leaf of S. 
Finally, if u € dom(S) and |u| = k, then u has no daughters. 

If u is a leaf of S and £(u) A, then this branch corresponds to a computation 
that does not reach the root of the tree f in A; existential and universal computation 
segments. These computations cannot be a part of any ¿-bounded computation on 
an input with subtree t and thus the corresponding branches can be pruned from 
the schema. 

The pruned schema, prlS), is obtained from S by recursively repeating the 
following. Choose a leaf u of S labeled by an element not belonging to A and let v 
be the mother (immediate predecessor) of u. If the configuration SÏv) is existential 
then remove the node u. If S(v) is universal then remove all daugnters of v. (If a 
universal configuration К has a daughter leading to failure then the computation 
has failed already in K. ) Note that pr(S) is the empty tree iff there does not exist 
a complete ¿-bounded ¿-computation tree of A. In this case t is not a subtree of 
any tree of i(A)[fc]. 

The pruned computation schema pr(SC(i, k, A ) ) will be denoted by PSC(i, k, A ) 
and in the following, when not otherwise mentioned, by a computation schema we 
always mean the pruned schema. 

Suppose that S = PSC(t, k, A) . An A-configuration tree T is said to be a 
configuration tree associated with the schema S if T is constructed as follows. 
The root of Г is labeled by t. Suppose that u e dom(5) — leaf (5) is labeled by a 
configuration K. 

ii) If К is universal, then the node u has in T all the same daughters as in 5 . 
(ii) If Я is existential, then u has exactly one daughter labeled by some config-

uration that is a daughter of i f in 5 . 
Thus a configuration tree associated with the schema S is essentially a t-

computation tree where some intermediate nodes in the existential and universal 
computation segments have been removed. 

Example S.8 Let A = ( £ ,A , A',G) be the recognizer from Example 2.3 and 
t = w(w(r, 7)17) • Then the 2-bounded t-computation schema SC(t, 2, A ) w given in 
Figure 1. The configuration! a, w(w(a, 7), 7 ) , and ш{ш(Ь, 7) , 7) are exittential, all 
other configuraient appearing in the tchema are universal. The pruned computa-
tion tchema PSC(t, 2, A ) is obtained by removing all leavet except the onet labeled 
by a. The tchema PSC{t, 2, A ) has only one associated configuration tree and it 
equalt to PSC(t, 2, A ) . 
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w(w(r,7),7) 

ui(u>(a, b) 

a 

w(w(a,6),a) 
a) a) 

Figure 1. 

It is clear that every configuration tree associated with a schema corresponds 
to a computation tree of the recognizer A . In fact we have the correspondence also 
in the converse direction. 

Let A = (E,A,A' ,G) G ATR and t eFv,k> 1. We say that T G COM(A,i ) 
is normalized if the following condition holds. If some leaf of t is universal (i.e., t 
is a universal configuration), then at the root of T the recognizer reads a universal 
active subtree. 

Lemma 3,9 Let A and t be as above and k > 1. Then there exists a complete 
normalized computation tree in COM[A., t)[fc] with leaves labeled by « i , . . . , an(ai G 
A) iff there is a configuration tree associated with the schema PSC(t, k, A ) having 
leaves oi,... ,o„. 

Proof . The proof in the " if-direction is immediate since a configuration tree T 
associated to the schema is clearly a computation tree of A where some inter-
mediate nodes are left out. According to the definition of PSC(t, k,A) if t has a 
universal leaf-symbol, then the computation of T first branches universally, i.e., the 
corresponding computation tree is normalized. 

Suppose then that T € COM(A, is normalized and has leaves a i t . . . , o„. 
Using the commutation properties of Lemma 2.6 we show that there exists an 
equivalent Ti G COM(A,i)[A] (i.e., also 2\ has the leaves o i , . . . , a „ ) that follows 
the computation in the schema PSC(i, k, A ) . 

Since T is normalized, if t contains a universal leaf-symbol the automaton first 
makes a universal computation step. By Lemma 2.6 universal computation steps 
commute with each other and semi-commute with existential computation steps. 
Thus in an equivalent computation tree one can first make all possible universal 
computation steps (in arbitrary order). Now the computation of 7\ begins as in 
the schema PSC(t, k, A) . Always in an existential configuration K the automaton 
makes an arbitrary number of consequtive existential computation steps that lead 
to some universal configuration K'. Thus i f ' is a daughter of K in PSC(t, k, A ) . 
In K', A makes a universal computation step and thus again by Lemma 2.6 it can 
be made to read all universal active subtrees of K' successively yielding a number 
of existential configurations. By Lemma 3.6, these are exactly the daughters of 
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K' in PSC(t,¿, A ) . (Note that if a configuration K contains a universal active 
subtree / then by Lemma 2.6 in a Jf-computation tree A could always first read / . 
In general this could cause additional alternations of the existential and universal 
computation steps. However here this problem does not occur because the original 
computation step made in K' is universal and thus one can make thereafter an 
arbitrary number of universal steps "for free".) 

Since T is ¿-bounded so is also T\ (any operations above do not increase the 
existential-universal alternations.) Thus T is equivalent to a configuration tree 
associated with the schema PSC(t, k, A ) . Q.E.D. 

The previous lemma gives almost a criterion for checking whether ¿ e £(A)[&] 
using only the schema PSCit, k, A ) . There is still the restriction that the compu-
tation tree has to be normalized. This restriction can be removed by considering 
(k + l)-bounded schemata. 

Lemma S.10 Let A = (£, A, A', G) € ATR, k > 1, and L = £(A)[ifc]. Then t G L 
iff there exists a configuration tree W associated with the schema PSC(t,k + 1, A ) 
such that all leaves ofW are labeled by elements of A'. 

Proo f . Let t € L and T 6 COM(A, ¿ [̂¿1 be accepting. Assume that at least one 
leaf of t is labeled by a universal symbol. Then, by Lemma 2.6, T can be trans-
formed to an equivalent computation tree 2\ where first the automaton performs 
all possible universal computation steps, i.e., Tj is normalized. Furthermore, from 
the proof of Lemma 2.6 it follows that 7i is (k + l)-bounded. Moving a number of 
universal computation steps to the beginning may introduce an additional universal 
computation segment if the computation of T starts existentially. (Of course it is 
also possible that alt (7}] < k, but for our purposes it is sufficient just to know the 
upper bound alt(Ti) < k + 1.) On the other hand, if all leaves of t are existential 
then already the computation tree T is normalized. Thus in both cases by Lemma 
3.9 there exists a configuration tree W associated with the schema PSC(t, ¿ -f 1, A ) 
such that the leaves of W are labeled by elements of A' (since Ti is accepting). 

Conversely assume that W as above exists. Then by Lemma 3.9, there exists 
an accepting computation tree in COM(A, t)[A: + 1]. Thus t S ^ ( A ) and there 
necessarily exists also an accepting fc-boundea ¿-computation tree. Q.E.D. 

According to Lemmas 3.9 and 3.10 the schema PSC(¿, ¿ + 1,A) contains the 
information on all complete ¿-bounded ¿-computation trees of A. We want to 
define a deterministic tree automaton that stores the schemata in its states. For 
this purpose we need to consider the composition of schemata. 

Definition 3.11 Let a e Em,tu...,tm e FE and 5,- = P5C(¿j) ¿, A), ¿ > 1. 
We define the a-composition of the schemata Si,i = 1,... ,m,a[Si,..., Sm), 
as follows. First we construct a tree S (that will be the corresponding unpruned 
schema). The root of S is labeled by a(ti,... ,tm). Suppose that a node u 6 
dom(S), |u{ < fc — 1, is labeled by o(K Km) where Ki = S^(v,'),t = 1,..., m, 
and the node v< G dom(5,) has r4- daughters. (Note that ¿,- = iSj(A),t = l , . . . , m . ) 

(i) Let a(Ki,..., Km) be existential (i.e., Kit..., Km are all existential). Then 
the node u has daughters labeled by all configurations a(K[,..., K^) where 

(iaj K! is a daughter of Ki (in 5 , ) or K• = Ki, and, 
(ib) there exists at least one j such that K'}- / K}- and K'} & A, (i.e., jfy is 

universal.) 
(ic) Furthermore, if a,- mo daughter of Ki »'n 5,-,t = 1 and a(oi , . . . . a J 

is existential, then u has daughters labeled by all elements of c e ^ i , ..., amJ. If 
ff(ai,... ,am) is universal, then u has a daughter labeled by cr(ai , . . . , a m ) . (Note 
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that these conditions guarantee that all daughters of <r(Ki,..., Km) are universal 
configurations or elements of A.) 

(ii) Suppose that <r(KI,...,KM) is universal and that KJ is universal iff J S 
{ « ! , . . . , »'„}, c > 1,1 < »! < . . . < t'c < m. Then the node u has r^ ... ric daughters 
labeled by the configurations CT(K[, ..., K'M) where 

K > = { K ) » / y £ { * l * c } 
1 | some daughter of Kj if j 6 {t'i »<.}• 

Furthermore if for some a(K[,..., K'm) above K[ = o< € A,x = 1 , . . . , m, and 
<r(ai,. . . , a m ) is universal, then the node < r ( K [ , K'm) is replaced by nodes labeled 
by elements of au{ai,. •., om). 

Finally, if u 6 dom(S) and |u| = k, then u is a leaf of S. 

Now the composition <r{Si,..., Sm) is defined to be pr(S) where pr is the prun-
ing function defined after Definition 3.7. 

Clearly the cr-composition of fc-bounded schemata is a tree of height at most k 
such that existential and universal configurations alternate as internal nodes in each 
branch and all leaves are labeled by elements of A. The composition of schemata 
respects the composition of trees as follows. 

Lemma S.12 Let k > 1, 171 ^ 1,(7" G £fn; CITid ¿l)>*>)£m e Denote t = 
c(fi,...,TM),S = PSC (t,k,A) and 5< = PSC (ti,k,A),i = L , . . . , m . Then 

S = <r(Su...,Sm). 

Proo f . This follows straightforwardly from the definition of cr-composition. In 
the schema S the daughters of an existential node o(Ki,..., Km) are all universal 
configurations K such that a(Ki,..., Km)(=>j^ E)+K. (Here K may be also ex-
istential if K € A.) These are exactly the configurations where at least one K{ is 
replaced by its daughter in 5,- as in Definition 3.11 (i) (where the case K € A is 
handled separately.) 

Similarly, the daughters of a universal configuration ..., Km) in S are 
exactly all configurations obtained from a(Ki Km) by reading all the universal 
active subtrees. These are obtained from the daughters of universal configurations 
Kj as in Definition 3.11 (ii). (Note that if Kj is not universal then each / G act (Ay) 
is existential and Kj necessarily remains unchanged in the universal computation 
segment starting from a(J£i , . . . Km).) 

Finally the branches in the composition c r ^ , . . . , Sm) are terminated after the 
kth level exactly as in the schema S. Q.E.D. 

Next we define the reduced simplified computation schemata that will contain 
all essential information about the corresponding ¿-bounded computation trees. 
Intuitively, the reduced simplified schema is obtained by removing the labels of 
internal nodes and then identifying identical subtrees. This means that the set of 
reduced simplified schemata will be finite. 

Let S = PSC( i ,k ,A) , t € Fz,k > 1; the simplified schema corresponding 
to 5, sim(S), is defined by relabeling each internal existential and universal node 
respectively by E and U. The reduced simplified schema, redsim(S), is obtained 
by identifying identical subtrees of a given node of sim(5) recursively in the bottom-
up direction. 

Set So = sim(S). Suppose that ui,uj € dom(S r),r > 0, u 6 N+,t,j € N+,i < 
j, and Sr/ui = Sr/uj. Furthermore we assume that Sr/vii ^ Sr/vi2 always when 
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»1 / »2 and u is a proper prefix of v, i.e., u is chosen to be maximal. Then one 
defines S r+i to be the tree obtained by removing the subtree Sr/uj from Sr. There 
exists C G N+ such that ST = Sr+l always when r > C and we define 

redsim(5) = Sc . 

The construction of S r +i from Sr was defined nondeterministically. However be-
cause u is always chosen to be maximal, it is clear that redsim(5) is well defined. 
(Equivalently one could consider some fixed order for the identification process.) 

Now for each k > 1, the cardinality of the set 

D{k) = {redsim(PSC(t, A:, A))|i G FE} 

is finite. Already the simplified schema sim(5), S = PSC(i, A;, A ) , is a tree of height 
at most k where the nodes are labeled by elements of A U {E, U). However, the 
number of daughters of a given node of sim(iS') is in general unbounded (since t can 
be arbitrary). In redsim(5) one obtains a bound for the arity of the nodes (assuming 
that also k is fixed). In fact, #£>(l) < 2(2#A - 1) + 1 = 2#A+l - 1 ( PSC(i, k, A ) 
may also be the empty schema), and in general #D(k + 1) < 

Thus a finite automaton can use the reduced simplified schemata to remember 
all possible ¿-bounded computation trees of the input processed so far. We still 
need to define the compositions of simplified schemata. This is done completely 
analogously with Definition 3.11. In fact, these definitions could both be obtained 
as special cases from a more general notion of composition of schemata. However, 
we presented Definition 3.11 separately because it has a very clear intuitive meaning 
which makes also the idea behind the next definition more transparent. 

Definition 3.1S Let A G ATR and k > 1. Let m > I,a e E m , and S1,...,Sm 
be simplified schemata (i.e., computation schemata where the internal nodes are 
labeled just by E and U J. Then the composition of Si,..., Sm, 

S = <r[Si,.. .,Sm) 

is defined by the following. First we define a tree T as follows. Nodes of 
T are labeled by elements of A or elements of the form <r(xi xm) where 

= (^(u,),«^),«!, ' £ dom(Si). An element o(xi,..., xm) is said to be univer-
sal if 

there exists x,- = (u^), u,) such that <Si(ti,) = U, or (5) 

S i ( u i ) , . . . , S m ( u m ) € A and ct(i5i(ui), . . . , 5 m ( u m ) ) is a universal active subtree. 
(6) 

Otherwise <r(®i,..., xm) is existential. 
The root of T is labeled by ct((5x(A), A ) , . . . , (SMIA), A)). Assume that 

a node u € dom(T), |u| < k — 1, is labeled by an element R = 
< r ( ( S i ( u i ) . w i ) , • • •. ( S m ( u m ) , u m ) ) . 

(i) Suppose that R is existential. Then u has daughters labeled by elements 

<7( (S iM, t> i ) , . . . , (S m (v m ) , t , m ) ) (7) 
where (o)ut- = m or (6)t>, = u,n,n € N+.tiin G dom(5,), and for at least one 
i G { l , . . . , m } the case (6) holds with 5i(u,) = U. Furthermore, if ai & A is 
a daughter of the node u,- tn 5,-,» = 1, ...,m, and a(ai,... ,am) is an existential 
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active subtree of A, then u has also daughters labeled by elements ofas(a li • • •, <*m)-
If a(ai,... .am) is a universal active subtree, then u has a daughter labeled by 
<7((ai.Ul«l).---i(<»m.Wm*m)) w h e r e = ,S«(u»n»)'n« 6 N+>* = • • • « m -

(ii) Suppose that R is universal. Then u has daughters labeled by elements 

cr((S1(v1),v1),...,(Sm(vm),vm)) (8) 

where (o)«j = 14 »/S,(uj) = E, and (b)v{ is a daughter of u,(t'n S<) ifS^tii) = U,i = 
1 m. Furthermore if for some element as in (8), S,(t>i) = a,- 6 A,i = 1 , . . . , m, 
and cr(ai am) is a universal active subtree of A. then this node is replaced by 
nodes labeled by elements of cry (ay,..., a m ) . 

Next we relabel the existential inner nodes of T by E and the universal inner 
nodes by U. The nodes ofT are said to be universal or existential according to (5) 
and (6). The labels of leaves of T are left unchanged tn the relabeling. We denote 
by T\ the tree obtained from T as the result of the relabeling. 

Now the composition S is obtained by pruning the tree T\, i.e., 

o(S1,...,Sm)=pr(T1). 

Here for the definition of the pruning function pr one considers the internal 
nodes of 7\ labeled by E to be existential and those labeled by U to be universal. 
Thus in . . . , Sm) all leaves are labeled by elements of A and it is a simplified 
computation schema. Note that the composition cr(Si, . . . , 5 m ) need not be reduced 
even if the schemata Si Sm are reduced. 

Lemma S.14 Let a £ Em , and Si,..., Sm be k-bounded computation schemata of 
A, Jfc > 1. Then 

aim(er(Si,. . . ,Sm)) = a(sim(5i) I . . . ,s im(5m ) ) . 

Proof . This follows immediately from the Definitions 3.11 and 3.13. For the <7-
composition of the computation schemata S i , . . . , Sm (in Definition 3.11) one uses 
the configurations labeling the internal nodes of Si, i = 1 , . . . , m, only to determine 
whether the node is existential or universal. Hence it does not make a difference 
whether the configurations are replaced by the symbols E and U before or after 
the composition. Q.E.D. 

Lemma 3.15 Let a £ and Si,...,Sm be simplified k-bounded computation 
schemata of A, k> 1. Then 

red(<r(red(5x) red(5m))) = r e d ^ , . . . , ^ ) ) . 

Proof . Denote Rx = <r(red (S i ) , . . . , red(Sm)) and R? = c r (5 i , . . . ,S m ) . Since 
red (Si) is obtained by identifying some identical subtrees of S,,t = 1 , . . . , m, it 
follows that Ri is obtained from J?3 by identifying some subtrees. Thus it is clear 
that red(i2i) = red^a). Q.E.D. 

Lemma 3.16 Let k > 1,m > 1 ,a e S m ) t i , . . . , t m e Fa, and denote t = 
<r(ti,...,tm). Then 

redsim(PSC(t, A:, A)) = (9) 

red(a(redsim(PSC(ti, Jfc, A ) ) , . . . , redsim(PSC(tm, Jfc, A)))). 
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Proof. Denote S; = PSC(i ,k,A) and S{ = PSC(i<,jb, A),»' = l , . . . , m . , By Lemma 
3:12;. : • • » . • . . - • . 

; - , :' - S — <r(5i,-...,5m). . 

Thus by Lemma 3.14, v' r ' 

sim(5) = <r(8im(5i),..., sim(5m ) ) 

and (9) follows from Lemma 3.15. Q.E.D. 
Now using Lemma 3.16, corresponding to an alternating recognizer A we can 

construct a deterministic tree recognizer that arrives at the root of an input tree t 
in the state redsim(PSC(t, A;, A)). 

Theorem 3.17 For every k > 1, 

£(ATR)[Jfc] = REG. 

Proof. Clearly it is sufficient to show that I(ATR)[Jfc] C REG. Let A = 
(E, A, A', G) e ATR and suppose that L = I(A)(Jfc], Jfc > 1. 

Denote by A-SCHEMAifc, A) the set of all fc-bounded computation schemata 
of A, 5 = PSC(t,A:, A) , such that 5 has an associated configuration tree with all 
leaves labeled by elements of A'. Now we construct a deterministic recognizer 

B = (E ,B,B',H) 

where 
(i) B = {redsim(PSC(t, k + 1, A))|t e Ft}, 
ii) B' = {redsim(PSC(t, A; + l,A))|t e F^, PSC(t, k 4- 1 ,A) € A - SCHEMA 
k + 1,AU, 
iii) the relation H is defined by 

(a) 0E(H) — redsim(PSC(<r,A;+ 1, A ) ) if <r € E 0 , 
(b) .. <rB(H)lSi Sm) = redMSx Sm)), 

if m > 1,(7 6 E m , — , Sm 6 B. (Here a ( 5 i , . . . , 5 m ) denotes of course the 
<7-compo8ition of simplified schemata.) 

The set of final states B' is well defined. If S = PSC(t,A;-|- 1, A) then 5 is of 
course not determined by redsim(5). However, using redsim(5) one can determine 
whether S € A — SCHEMA (A: + 1 ,A) . One constructs the associated trees of 
redsim(5) by taking all successors of universal nodes and exactly one successor of 
an existential node. Since redsim(5) is obtained from S by relabeling internal nodes 
and identifying identical subtrees it is clear that there exists an associated tree of 
redsim(S) with all leaves labeled by elements of A' iff S 6 A - SCHEMA(A: + 1, A) . 
This observation also guarantees that the construction of B is effective. 

Now we claim that for every t € Fa the recognizer B reaches the root of t in 
the state redsim(PSC(i, A; + 1 ,A)) . If t € Eo this follows from the definition of 
H. Suppose then that m > 1,(7 6 E m , t = <r(t\,... ,tm) and the claim holds for 

• • • i tm- Then B reaches the root of t in the state 

FFE(H)(red8im(PSC(ii,A; + 1 , A ) ) , . . . , redsim(PSC(im,A; + 1 ,A) ) ) 
= red((7(redsim(PSC(ti, Jfc + 1, A ) ) , . . . ,redsim(PSC(tm, Jfc + 1, A)))) 
= redsim(PSC(t,Jfc + l , A ) ) . 

The second equality follows from Lemma 3.16. FYom Lemma 3.10 it follows that 
redsim(PSC(i, Jfc + 1, A)) € B' iff t € L(A)[Jfc]. Thus 1 ( B ) = I(A)[Jfc]. Q.E.D. 
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4 The logarithmic bound 
In this section we show that a logarithmic alternation depth bound defines a family 
of forests strictly larger than the regular forests. We denote by log the function 
n - * [log2(n)] where [log2(n)] is the smallest positive integer not less than the 
2-based logarithm of n. 

Let E = E 0 U Ei U E 3 where E 0 = f y } , Ei = {tx} and E 3 = {w} , and denote 
n = Eo U E 3 . Define the tree homomorphism h : Fa —1• F¡¡ by the following: 

M t ) = 7 and h2(u) = a(u(xi,x2)). 

The E-tree h{t) is obtained from an fi-tree t simply by attaching above every w-node 
of t a node labeled by the unary symbol o. 

L e m m a 4.1 Let E, O and h be as above and denote 

L = {/i(r)|r € Fa and r is balanced}. 

Then L 6 L{ATR)[2log]. 

Proo f . Clearly the set h(Fa) is regular. Hence by Lemma 3.4 it is sufficient to 
construct a recognizer A = (E, A, A',G) G ATR such that 

for every t 6 h[Fa) : t 6 L(A) if and only if t is balanced, (10) 
and for every balanced tree h(r), r € Fn, 

COM(A, fc(r))[21og] n ACOM(A, h(r)) ¿ 0. (11) 
That is, we can assume that the inputs are of the form h(r), r & Fa. Choose 

A = {c<, di,ei, fi,gi\x = 1,2,3}, and 
A' = A-{d1,d2,d3}. 

The state-transition relation G — ELlU is defined by the following. Below addition 
is always performed modulo three. 

1E = { c i } ; ( 1 2 ) 

e>u(ci,ci) = {e<, </,},»' = 1,2,3; (13) 

<7£(e.) = { c i + i , d , } , » = 1,2,3; (14) 

<rB(x) = { i } if x 6 {dud2,d3,fi,f2,f3,g1,g2)g3y, (15) 

wb(<7<,<7.) = {9i},i= 1,2,3; (16) 

UB{di,di) = {di},i= 1,2,3; (17) 

WB(*,V) = { /<} if = R . f t } , » € {1 ,2 ,3 } ; (18) 
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= {/<} if x,y € {dt, gt.fi) and/ , € { s , y } , » 6 {1,2,3}." (19) 
The state-transition relation is undefined in all other cases. We say that a config-
uration K € ^e(A) is well f ormed if K = h(r) for some OA-tree r. (The tree 
homomorohism h is extended to FQ(A) by setting h(O) = a for all a € A.) Let 
K 6 f E ( { ° i i • • • i a n} ) ^ such that K aoes not contain the nullary symbol 7, and 
«it• • • 1 <*» £ A. If each element a,-,«' = 1 , . . . ,n , occurs at least once in K, it is 
called an [a^ a^j-configuration. First we show that (11) holds. 

Claim 1 Let K\ be a well formed balanced [ci\-configuration, i £ {1 ,2 ,3} , and 
denote m = hg(i i i ) . We claim that there exists T € ACOM(A, Ki) such that 
alt(T) < m. 

P r o o f o f Claim 1. Since Ki is well formed, each subtree of Ki of height two 
is of the form a(o;(c,-,c,)). In the computation of T the recognizer reads first all 
(universal) active subtrees ai(c,-, cA in arbitrary order using the rule (13). Thus 
one obtains one [e,-¡-configuration a (1 ) , one [<7,-¡-configuration K(2) ana a number 

[«,) 9«¡-configurations / f (3) . In each configuration K(3) the recognizer reads 
all active subtrees aie,) making the existential choice d,, this results in a [¿«, <7,]-
configuration if(4). Since K(4) contains both states di and ¡7,-, it follows that the 
recognizer reaches the root of K(4) in the accepting state /,• by the deterministic 
rules (15)-(19). Similarly the computation starting from K(2) reaches the root in 
the state gi using rules (15) and (16). Finally, in i f ( l ) the recogniser makes in each 
active subtree cr(et) the existential choise c,-+i, which yields a [c,+1 ¡-configuration 
K2. Furthermore Ki is balanced because K\ is balanced. 

Above the computations starting from configurations Ki.2), K(3) and K(4) are 
purely existential. Thus there exists a ifi-computation tree 7\ such tnat alt(Ti) = 2 
and one leaf of 7\ is labeled by K2 and all other leaves by elements of A'. Now 
hgi-^a) = hg(ii"i) — 2. By inductive reasoning it follows that Ti can be completed 
to an accepting computation tree T, where alt(T) = m = hg(Jfi). (Since K\ is well 
formed, m is even. The configuration K^m/2+i) will be of the form Cj , j 6 {1 ,2 ,3} . ) 
This concludes the proof of the claim. 

Now let t € h(Fn) be balanced. We construct T € COM(A,t) as follows. First 
the recognizer reads the leaves of t using the rule (11) yielding a [cj ¡-configuration 
Ki . By Claim 1 there exists an accepting Ki-computation tree 7\ such that 
alt(Ti) = hg( i f i ) (= hgit)) where furthermore in each branch the first computation 
segment is universal. Thus T can be constructed so that 

alt(r) = hg(i) + 1. 

(The first computation segment corresponding to rules (12) is existential.) Since t 
is balanced, hg(t) < 21og(sise(t)) and (12) holds. 

It remains to verify that also (10) holds. The " i f direction follows from (11). 
The intuitive idea of the proof in tne "only if" direction is to show that in an 
accepting i-computation tree there necessarily exists a branch where the recogniser 
essentially reads the input in a layered fashion as in the proof of Claim 1 and thus 
checks that the input tree t is balanced. First we prove a number of claims. Denote 

Qi = {e,i di, git /,},»' = 1,2,3. 

Claim 2 Let K € i s (A) and assume that K contains elements of Qi and Q}-, 
i ft j. Then K is not accepting. 



Alternation bounds for tree automata 193 

P r o o f o f Cla im 2. Let T 6 COM(A, K) be arbitrary and let H label a node 
of T. If H contains an element of Qk,k £ {1 ,2 ,3 } , then one daughter of i f in 
T also contains an element of Qk- This follows immediately from the definition 
of the rules that read elements of Qk, note that in rule (13) one can choose the 
daughter corresponding to Now since K contains elements of both Qi and Q}, 
the computation tree T contains a branch where each configuration has elements 
of Qi and Q j and this computation cannot terminate successfully. 

Claim 3 Let K £ Fz(A) and assume that states e¿ and c,+a appear in K, (i + 2 
is computed modulo S.) Then K is not accepting. 

P r o o f o f Claim 3. We can assume that e¡ appears in an active subtree ri = cr(et ) 
and e,+2 in an active subtree = w(e¿+2, c<+2) because otherwise the computation 
is blocked already in the states in question. Let T be an arbitrary ÜT-computation 
tree of A . Assume that in T the recognizer reads r\ before r2 . The existential 
rule (14) yields the state c¿+1 or d\ which cannot appear together with c<+2 in 
an accepting configuration bv Claim 2. Thus necessarily the recognizer reads first 
r2 using the universal rule (13). Consider the branch of the computation corre-
sponding to the state g.+a- FYom rules (15), (16), (18) and (19) it follows that all 
configurations in this branch contain one of the states <¡r¿+a or fi+2, (<7.+a can only 
be deleted by changing it to /<+a using rule (18) or (19).) So when the recognizer 
reads the active subtree ri at an arbitrary time in the computation, both existential 
choices c 1 + j and d, yield a configuration that is not accepting by Claim 2. Thus 
T<¿ ACOM(A, i f ) . 

Claim 4 Denote D = {c i ,c2,c3,ei ,ea,e3,di ,d2,d3} . Assume that all leaves of a 
configuration K are labeled by elements of D and K contains at least one element 
of {dx,d2,d3}. Then K is not accepting. 

P r o o f o f Claim 4. Let T £ COM(A. K) be arbitrary. Consider the branch B of 
T that in universal computation steps (13) follows the choice e,-. All configurations 
in this branch have leaves labeled by elements of D and furthermore contain at 
least one element of {di , d2, This is because the elements d,- can be deleted 
only by rules (18) and (19) which do not become applicable as the configurations 
do not contain elements & or /,-. Thus B cannot end with an accepting final state. 

Claim 5 Let K be an A.-configuration with all leaves labeled by ei,i £ {1 ,2 ,3 } , 
and hg(K) > 1. Assume that T is an accepting K-computation tree of A . Then T 
contains a configuration Ki with all leaves labeled by e¿+i. Furthermore, 

K = i f i ( e i + i « - w(<r(e<),<r(e,))). (20) 

P r o o f o f Claim 5. Necessarily the mother (immediate predecessor) of each node 
ei is labeled by <r because otherwise the computation would be blocked in the state 
e¿. The computation of T first reads an arbitrary number of the active subtrees 
er(e¿) making the choice c,+x. The existential choice d¿ is prohibited by Claim 4. In 
the states the recognizer can then apply only the universal rule (13). Consider 
the branch B of the computation that corresponds to universal choices e¿+ j . Note 
that above the recognizer needs not read all subtrees cr(e,) before starting to read 
the subtrees w(c¿+ 1 ,c¿+ 1 ) . However, before continuing the computation from the 
states e¿+i the recognizer must read all active subtrees cr(e,) and w(c , + i , c¿+ 1) . 
This is seen as follows. 

The state e¿+i can only be read by rule (14) where by Claim 4 furthermore the 
recognizer needs to make the existential choice c¿+ 2 . (The current configuration 
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contains only states e,-, c^+i, e t+i.) By Claims 2 and 3, the state c,+2 cannot appear 
with c , + 1 or e,- in an accepting configuration. Thus we can choose Kx to be the 
configuration that appears in the branch B just before the first symbol e,+1 is 
read. Then all leaves of K1 are labeled by e,+ i and also clearly (20) holds. The 
assumption hg(Jif) > 1 prohibits the possibility that K = <r(e,). 

Now we can proceed to prove that the "only if" side of (10) holds. Assume that 
t e X,(A) and let T € COM(A, i) be accepting. Without restriction we can assume 
that in T the recognizer first reads all leaf symbols 7 . Note that the rule (12) is 
deterministic so it commutes with all other rules. Thus one obtains a configuration 
K = t(7 *— c i ) . Consider the branch of T that corresponds to the universal choices 
ex in the computation steps (13) in the configuration K. (Note that (13) is the 
only computation step applicable in K.) In this branch of the computation the 
recognizer must read all states cx before reading any of the states t\ by rule (14). 
(This is seen using Claims 2-4 exactly as in the proof of Claim 5.) Thus one obtains 
a configuration with all leaves labeled by ex such that 

t = i i i (e i - 0 , ( 7 , 7 ) ) . 

Denote by Wllthe smallest positive integer congruent to j modulo 3. By Claim 5, 
if Ki G conf(r) is a configuration with all leaves labeled by «¡,-j and having height 
at least two, there exists a configuration if,+x £ conf(T) with all leaves labeled by 
e|,+1] 8Uch that 

Ki = # i + i ( e | t + i | — <•>(?(«[{]), <r(e|j|))). (21) 

Denote m = (hg(Jïx) + l ) /2 . Then Km = ff(e(m|). (Since t 6 h(Fn ) , it is easy to 
see that the string of symbols labeling a path from a leaf of K\ to the root always 
belongs to (aw)*a. Hence hg(jfx) is odd and the last configuration in the chain 
defined by (21) is cr(e[mj).) From (21) it follows that K\ and hence t is balanced. 
Q.E.D. 

In Lemma 4.1 the function 2 log can be reduced by an arbitrary constant factor. 
The construction in the proof is independent of the rank of the elements u and by 
increasing rank (a;) the number of distinct existential and universal segments in a 
computation on an input t can be made to be smaller than C~1 log(size(t)) for any 
natural number C. 

Let m > 2 and define T = T0 U Tx U Tm , where T0 = W . T x = {<7} and 
r m = {w} , i.e., T is as £ in Lemma 4.1 except the binary symbol u> is replaced by 
w of rank m. Define L(m) to be the T-forest that is obtained from the forest L of 
Lemma 4.1 by relabeling each w-node with ZS and attaching for it m — 2 additional 
copies of the subtrees. In other words, L(m) consists of all balanced T-trees t such 
that the string of labels of each branch from the root of t to a leaf belongs to 
(aw) '7. Define A = (r , A, A', Gim|) € ATR otherwise exactly as in Lemma 4.1 
except the rules (13), (16), (17), (18) and (19) are replaced by the following: 

« i / ( c< , . . . , c < ) = { e „ i / , } , i = 1,2,3; (13)' 

.. •, 9i) = { f t j . t = 1,2,3; (16)' 

*B{di,...,di) = {di),i = 1,2,3; (17)' 

w B ( x i , . . . , x m ) = { /<} if { n i m } = {di,gi},i e {1 ,2 ,3 } ; (18)' 

ÛE(xi,--,xm) = {fi} if xi,...,xm € {di,gi,fi}, and (19)' 
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U £ { * ! , . . . , « „ , } , « 6 {1,2,3} . 
Then exactly as in the proof of Lemma 4.1 it is seen that 

1(A) = L(m), 
and furthermore for every t € L(m) there exists T 6 ACOM(A, t) such that 
alt(T) = hg(i) + 1. Let С € N+ be arbitrary and choose m > 2°. Then for 
every t £ L(m), 

hg(í) < (2/C)log(size(i)). 
Denote by C~1 log the function га —+ [ С - 1 log3(ra)]. Thus we have: 
Theorem 4.2 For every С £ N+: 

REG с L{ATR)\C~l log]. 
(Here С denotes strict inclusion.) 

5 Conclusions 
Here we briefly discuss open questions and results on other types of alternation 
bounds. We have shown that 

REG = i(ATR)[&] с L(ATR)[C _ 1 log] 
for all constants к and C. A central open question is whether it is possible to 
separate L(ATR)[01 from REG for some sublogarithmic function в. Also we do 
not know whether L (ATR) [log] с Z/(ATR). We conjecture that the simple forest 
L = {w(o,n('y),o-'l(7))|ra > 0} does not belong to ATR)[los] but do not have a 
proof for this. It is easy to see that L € I (ATR), cf. [14], [15]. 

One can restrict the computation trees of an alternating recognizer in many 
different ways. A natural variant of Definition 3.3 would be to require that the 
number of distinct existential and universal computation segments corresponding 
to any given path from a leaf to the root in the input tree is bounded by some func-
tion 9. Similarly as in Definitions 3.2 and 3.3, in every branch of a computation 
tree one can associate a word w over {E , U} to the computation steps performed 
on a given path from a leaf to the root in the input tree t. Then one requires that 
for all such words w, alt(u>) is at most 0(sizem). With this definition it is not 
difficult to see that already a constant bound (in fact even the constant 2) allows 
the alternating automata to recognize forests that are not regular. The detailed 
construction is omitted here. Note that since the computations in independent sub-
trees can be performed in arbitrary order, a ¿-computation tree may have 0(sise(t)) 
computation segments (in the sense of Definition 3.2) even if the computation on 
any fixed path of t has only 2 segments. 

Also one can restrict the width of the computation trees or, equivalently, 
the number of universal computation steps analogously with the bounds on par-
allelism considered in [5], [7]. Let в be a function on the natural numbers, 
A = (£, A, A', G) £ ATR and Г be a computation tree of A . We denote by 
# T the number of leaves of T. We say that the recognizer A accepts a S-forest 
L with the width-bound $ if L = LÍA) and for every t £ L there exists T £ 
ACOM(A,t ) such that # T < 0(size(t)l. This is denoted L = I ( A l [ 0 L . The 
family of forests recognized with the width bound 6 is denoted ¿(ATRjjíjuj. As a 
corollary of Theorem 3. 17 we have: 
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Theorem 5.1 ¿(ATRjffcju, = REG. (Again we denote the constant function c(k) 
simply by k.J 

Proo f . Suppose that L = £ ( A ) A = (E, A, A', G). Without restriction we can 
assume that if / is an active suDtree of type Z of A , ¿ 6 {E, U}, and fz consists of 
only one element of A, then / is existential, i.e., Z = E. (A suitable modification 
of the relation G does not change the number of leaves of any computation tree.) 
Thus for every computation tree T of A we have 

T is at least the number of universal computation steps in T plus one.) Thus 
= L(A)[2k - 1] and L is regular by Theorem 3.17. Q.E.D. 
Also the question whether £(ATR)[log]w contains nonregular forests remains 

open. Note that this does not follows from the results of the previous section 
because in the construction of Lemma 4.1 the recognizer uses 0(size(f)) universal 
computation steps on an input t. 
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