A note on intersections of isotone clones

János Demetrovics and Lajos Rónyai *

Abstract

We show that for every $k>3$ there exists two chains P_{1}, P_{2} over a base set $A,|A|=k$ such that the only isotone functions P_{1} and P_{2} have in common are the constants and projections. This settles a question raised by Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenovic. We prove a related result which generalises the observation that two 3 -element chains over the same ground set always admit a nontrivial common order preserving operation.

1 Introduction

Let A be a nonempty finite set. An n-ary operation over A is a function from A^{n} to A. $O_{n}(A)$ denotes the set of all n-ary operations over A and we put $O(A)=$ $\cup_{n \geq 0} O_{n}(A)$. A set of operations $C \subseteq O(A)$ is a clone over A if it contains the projections and is closed under arbitrary superpositions (cf. Jablonskii [J58], Pöschel, Kaluznin [PK79], Szendrei [SZ86]). The set of all clones over A is denoted by $L(A) . L(A)$ is a partially ordered set with respect to inclusion and is closed under intersection. Clearly the set K_{A} of all projections and constant operations form a clone over A.

Let $P=<A, \leq>$ be a partial order (a poset for short) on A. We say that an operation $f \in O_{n}(A)$ preserves P if $x_{1} \leq y_{1}, x_{2} \leq y_{2}, \ldots, x_{n} \leq y_{n}$ implies that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, for every $x_{i}, y_{i} \in A$. In this case f is called an isotone function (with respect to P). It is easy to see that

$$
\operatorname{Pol}(P)=\{f \in O(A) ; f \text { preserves } P\}
$$

is a clone over A and $\operatorname{Pol}(P) \supseteq K_{A}$. In [DMRSS90] Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenoví́ studied intersections of clones of the form $P o l(P)$. In the context of semirigid relations they proved that if $|A|>7$ or $|A|=6$ then there exists two posets P_{1}, P_{2} over A for which we have $\operatorname{Pol}\left(P_{1}\right) \cap \operatorname{Pol}\left(P_{2}\right)=$ K_{A}. Also, they constructed four chains $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ over A for which the clones $\operatorname{Pol}\left(Q_{i}\right)$ intersect in K_{A}. The objective of this note is to improve the latter result. For $|A|>3$ we exhibit two chains P_{1}, P_{2} over A with the property $\operatorname{Pol}\left(P_{1}\right) \cap$ $\operatorname{Pol}\left(P_{2}\right)=K_{A}$ (Theorem A). It is easy to see that any two chains over a 3-element set admit a common order preserving function. This observation is generalized in Theorem B. We show for a large class of posets P that any two isomorphic copies of P over the same ground set have a common order preserving operation. This class, besides the 3 -element chain, includes the diamond and the pentagon. The note is concluded with a problem for further research.

[^0]
2 The results

Recall that a pair of elements $a<b$ of a poset P forms a cover if there is no $c \in P$ such that $a<c<b$. In this case we say also that b is an upper cover of a and a is a lower cover of b. A poset P is bounded if there exist $x, y \in P$ such that for every $z \in P$ we have $x \leq z \leq y$. In the sequel we shall use the following result (cf. [LP84], [P84]).

Lemma 1 Let $|A|>2$ and C be a clone over A. Then $C=K_{A}$ if and only if $C \cap O_{1}(A)=K_{A} \cap O_{1}(A)$.

In simple terms, Lemma 1 states that a clone C is K_{A} exactly when the unary fuctions in C are the constants and the identity function. For $k>0$ let A_{k} denote the set $\{0,1, \ldots k-1\}$.

Theorem A. For every integer $k U \cup$ U there exists two chains P_{1}, P_{2} on A_{k} such that $\operatorname{Pol}\left(P_{1}\right) \cap \operatorname{Pol}\left(P_{2}\right)=K_{A_{k}}$.

Proof. We give first the definitions of P_{1} and P_{2} by specifying the covers in the respective orders:

$$
P_{1}: \quad 0<1<2<\ldots<k-2<k-1 .
$$

In the definition of P_{2}, we distinguish two cases, corresponding to the parity of k. If $k=2 m$ then we put

$$
P_{2}: \quad 2 m-2<2 m-4<\ldots<2<0<2 m-1<2 m-3<\ldots<3<1 .
$$

If $k=2 m+1$ then we set

$$
P_{2}: \quad 2 m-2<2 m-4<\ldots<2<2 m<0<2 m-1<2 m-3<\ldots<3<1 .
$$

In other words, P_{1} is the standard ordering of A_{k}, while in P_{2} we have first the even integers from the interval $[0, k-1]$ in a decreasing order (with respect to the standard ordering) followed by the odd numbers listed decreasingly again, provided that k is even. If k is odd then a little perturbation is introduced: $k-1$ is placed between 2 and 0 rather than to the beginning of the sequence. This is possible because $k>3$ and therefore $2 \neq 2 \mathrm{~m}$.

As for the proof, let $f \in \operatorname{Pol}\left(P_{1}\right) \cap \operatorname{Pol}\left(P_{2}\right)$ be a nontrivial unary function (i.e. f is not constant and not the identical function on A_{k}). Chains have no nontrivial automorphisms, therefore there exists $a \neq b \in A_{k}$ such that $f(a)=f(b)$. Using that $f \in \operatorname{Pol}\left(P_{1}\right)$, we can assume that $b=a+1$, hence a and b have different parities. Now from $f \in \operatorname{Pol}\left(P_{2}\right)$ we infer that $f(0)=f(k-1)$ if k is even and $f(0)=f(k-2)$ if k is odd. Switching back to P_{1} we obtain that $f(0)=f(1)=\cdots=f(k-1)$ for k even. In this case the proof is finished. For k odd the same argument gives that $f(0)=f(1)=f(2)=\cdots=f(k-2)$. From the relations $2<2 m<0$ in P_{2} we infer $f(0)=f(2 m)=f(2)$ and conclude that f is a constant. The proof is complete.

The unary functions over A_{2} are the identity function and the constants. If P_{1} and P_{2} are chains over A_{3} then an easy argument shows that $\operatorname{Pol}\left(P_{1}\right) \cap \operatorname{Pol}\left(P_{2}\right)$ is nontrivial. Next we prove a generalization of this observation. A finite bounded poset has the cover property if every element, except possibly the least and the greatest elements, has either a unique lower cover or a unique upper cover. We argue that there are many posets having the cover property. In fact, if P is an arbitrary
bounded poset then if we replace every $z \in P$ (except possibliy the greatest and the least elements of P) by a two-element chain then the resulting poset will have the cover property.

Theorem B. Let P be a bounded poset on the finite base set A. Let $0,1 \in A$ denote the least and the greatest elements of P. Suppose that there is an element $a \in P$ such that $0<a$ and $a<1$ are covers and that the poset $P \backslash\{a\}$ has the cover property. Let Q be an other poset on the base set A isomorphic to P. Then $\operatorname{Pol}(P)$ and $\operatorname{Pol}(Q)$ have a nontrivial intersection, i.e. $\operatorname{Pol}\left(P_{1}\right) \cap \operatorname{Pol}\left(P_{2}\right) \supset K_{A}$.

Proof. Let $\phi: A \rightarrow A$ denote the map establishing an isomorphism phi : $P \rightarrow Q$ and put $b=\phi(a)$. Observe first that an arbitary map $f: P \rightarrow P$ which is the identical map on $P \backslash\{a\}$ is actually an order preserving map of P. For this reason if $b=a$ then for the map $g: A \rightarrow A$ defined as $g(a)=1$ and $g(y)=y$ if $y \neq a$ we have $g \in \operatorname{Pol}(P) \cap \operatorname{Pol}(Q)$. We can henceforth assume that $a \neq b$. If $b \notin\{0,1\}$ then we can easily construct a nontivial function $h \in \operatorname{Pol}(P) \cap \operatorname{Pol}(Q)$ as follows. As $P \backslash\{a\}$ has the cover property, $b \in P$ has either a unique upper cover in P or a unique lower cover in P. We shall assume that $c \in P$ is a unique upper cover of b in P (the other case can be treated in exactly the same way). Now set $h(b)=c$ and $h(z)=z$ if $z \in A \backslash\{b\}$. From the fact that c is a unique upper cover of b in $P \backslash\{a\}$ an therefore in P, we obtain that $h \in \operatorname{Pol}(P)$. By our first observation we have $h \in \operatorname{Pol}(Q)$ as well.

We are left with four cases to consider: $a \neq b, b \in\{0,1\}$ and (by symmetry) $a \in\{\phi(0), \phi(1)\}$. In each case we shall define a nontrivial unary function $h \in \operatorname{Pol}(P) \cap \operatorname{Pol}(Q)$
(i) If $b=0$ and $a=\phi(0)$ then we set $h(a)=h(b)=a$ and $h(y)=1$ if $y \notin\{a, b\}$.
(ii) Analogously, if $b=1$ and $a=\phi(1)$ then we set $h(a)=h(b)=a$ and $h(y)=0$ if $y \notin\{a, b\}$.
(iii) If $b=0$ and $a=\phi(1)$ then we set $h(a)=h(b)=a$ and $h(y)=1$ if $y \notin\{a, b\}$.
(iv) Analogously, if $b=1$ and $a=\phi(0)$ then we put $h(a)=h(b)=a$ and $h(y)=0$ if $y \notin\{a, b\}$.

In all cases we have $|\operatorname{Im}(h)|=2$ therefore h neither is constant nor is the identity function on A. The easy verification of the fact that h is an isotone function with respect to both P and Q is left to the reader.

Corollary C. Let P and Q be two posets on A_{5} isomorphic to the pentagon (i.e. the poset on A_{5} defined by the covers $0<1<2<3$ and $0<4<3$). Then $\operatorname{Pol}(P)$ and $\operatorname{Pol}(Q)$ have a nontrivial intersection.

Example. In contrast to Corollary C, consider the posets R and S over the base set A_{6} defined by covers as follows:

$$
\begin{array}{ll}
R: & 0<1<2<3 \text { and } 0<4<5<3 . \\
S: & 1<3<0<5 \text { and } 1<4<2<5 .
\end{array}
$$

Note that R is obtained from the pentagon by inserting a new element between 4 and 3. Clearly R and S are isomorphic posets. We show that $\operatorname{Pol}(R)$ and $\operatorname{Pol}(S)$ have a trivial intersection, i.e. $\operatorname{Pol}(R) \cap \operatorname{Pol}(S)=K_{A_{6}}$.

To this end, let $f \in \operatorname{Pol}(R) \cap \operatorname{Pol}(S)$ be a unary function. We consider first the case when $f(0) \neq 0$ or $f(3) \neq 3$. We claim that in this case $|\operatorname{Im}(f)| \leq 2$. Indeed, $f \in \operatorname{Pol}(R)$ implies then that $\operatorname{Im}(f)$ is bounded in R and is consequently a subset
of one of the following four sets: $\{0,1,2\},\{0,4,5\},\{1,2,3\}$ and $\{3,4,5\}$. On the other hand, $\operatorname{Im}(f)$ is a bounded poset with respect to S as well. As neither of the above four subsets of A_{6} form a bounded subposet of S, the claim follows. If f is not a constant then we have $|\operatorname{Im}(f)|=2$ and $f(0) / f(3)$. Now an inspection of S reveals that $f(1)=f(3)$ and $f(5)=f(0)$. Using again that $f \in \operatorname{Pol}(R)$ we obtain that $f(2)=f(3)$ and $f(4)=f(5)$. The latter implies in S that $f(2)=f(5)$, showing that f is a constant, a contradiction.

From now on we can assume that $f(0)=0$ and $f(3)=3$. Now $f \in \operatorname{Pol}(S)$ implies that $f(5) \in\{0,5\}$ and $f(1) \in\{1,3\}$. But $f(5)=0$ would imply in R that $f(4)=0$ which in S leads to $f(2)=0$. The latter in R implies $f(1)=0$ which in S leads to the contradictory $f(3)=0$. A similar argument switching back and forth between R and S shows that $f(1)=1$. At this point we have $f(i)=i$ for $i \in\{0,1,3,5\}$ and (from R) $f(4) \in\{0,4,5\}$. Here $f(4) \in\{0,5\}$ would give (in S) that $f(2) \in\{0,5\}$, which contradicts the relation

$$
\begin{equation*}
f(2) \in\{1,2,3\} \tag{*}
\end{equation*}
$$

obtained from R. We infer that $f(4)=4$ and this gives in S that $f(2) \in\{2,4,5\}$. This together with $\left(^{*}\right.$) implies that $f(2)=2$, i.e. f is the identity function of A_{6}. This proves the statement.

Motivated by our considerations we propose the follwing open research problem.
Problem. Find a characterization of the (bounded) posets $P=<A, \leq_{P}>$ for which there exists a poset $\left.Q=<A, \leq_{Q}\right\rangle$ such that P and Q are isomorphic and $\operatorname{Pol}(P) \cap \operatorname{Pol}(Q)=K_{A}$.

References

[DMRSS90] J. Demetrovics, M. Miyakawa, I. G. Rosenberg, D. A. Simovici, I. Stojmenovic: Intersections of isotone clones on a finite set; Proc. of the 20th International Symposium on Multiple-Valued Logic, Charlotte, NC, 1990, 248-253.
[J58] S. V. Jablonskii: Functional constructions in a k-valued logic (Russian); Trudy Mat. Inst. Steklov, 51 (1958) 5-142.
[LP84] F. Länger, R. Pöschel: Relational systems with trivial endomorphisms and polymorphisms; J. Pure and Appl. Algebra 32 (1984) 129-142.
[P84] P. P. Pálfy: Unary polynomials in algebras I; Algebra Universalis 18 (1984) 262-27s.
[PK79] R. Pöschel, L. A. Kaluznin: Funktionen und relationenalgebren; VEB Deutscher Verlag der Wissenschaften, Berlin 1979.
[SZ86] A. Szendrei: Clones in universal algebra; Les Presses de l'Université de Montréal, 1986.

[^0]: *Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Victor Hugo u. 18-22. H-1132 Hungary. Research partially supported by OTKA Grant 2581.

