A note on intersections of isotone clones

János Demetrovics and Lajos Rónyai *

Abstract

We show that for every k > 3 there exists two chains P_1 , P_2 over a base set A, |A| = k such that the only isotone functions P_1 and P_2 have in common are the constants and projections. This settles a question raised by Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenović. We prove a related result which generalizes the observation that two 3-element chains over the same ground set always admit a nontrivial common order preserving operation.

1 Introduction

Let A be a nonempty finite set. An n-ary operation over A is a function from A^n to A. $O_n(A)$ denotes the set of all n-ary operations over A and we put $O(A) = \bigcup_{n\geq 0}O_n(A)$. A set of operations $C \subseteq O(A)$ is a clone over A if it contains the projections and is closed under arbitrary superpositions (cf. Jablonskii [J58], Pöschel, Kaluznin [PK79], Szendrei [SZ86]). The set of all clones over A is denoted by L(A). L(A) is a partially ordered set with respect to inclusion and is closed under intersection. Clearly the set K_A of all projections and constant operations form a clone over A.

Let $P = \langle A, \leq \rangle$ be a partial order (a poset for short) on A. We say that an operation $f \in O_n(A)$ preserves P if $x_1 \leq y_1, x_2 \leq y_2, \ldots, x_n \leq y_n$ implies that $f(x_1, x_2, \ldots, x_n) \leq f(y_1, y_2, \ldots, y_n)$, for every $x_i, y_i \in A$. In this case f is called an isotone function (with respect to P). It is easy to see that

$$Pol(P) = \{f \in O(A); f \text{ preserves } P\}$$

is a clone over A and $Pol(P) \supseteq K_A$. In [DMRSS90] Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenović studied intersections of clones of the form Pol(P). In the context of semirigid relations they proved that if |A| > 7 or |A| = 6then there exists two posets P_1, P_2 over A for which we have $Pol(P_1) \cap Pol(P_2) = K_A$. Also, they constructed four chains Q_1, Q_2, Q_3, Q_4 over A for which the clones $Pol(Q_i)$ intersect in K_A . The objective of this note is to improve the latter result. For |A| > 3 we exhibit two chains P_1, P_2 over A with the property $Pol(P_1) \cap Pol(P_2) = K_A$ (Theorem A). It is easy to see that any two chains over a 3-element set admit a common order preserving function. This observation is generalized in Theorem B. We show for a large class of posets P that any two isomorphic copies of P over the same ground set have a common order preserving operation. This class, besides the 3-element chain, includes the diamond and the pentagon. The note is concluded with a problem for further research.

^{*}Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Victor Hugo u. 18-22. H-1132 Hungary. Research partially supported by OTKA Grant 2581.

2 The results

Recall that a pair of elements a < b of a poset P forms a cover if there is no $c \in P$ such that a < c < b. In this case we say also that b is an upper cover of a and a is a lower cover of b. A poset P is bounded if there exist $x, y \in P$ such that for every $z \in P$ we have $x \leq z \leq y$. In the sequel we shall use the following result (cf. [LP84], [P84]).

Lemma 1 Let |A| > 2 and C be a clone over A. Then $C = K_A$ if and only if $C \cap O_1(A) = K_A \cap O_1(A)$.

In simple terms, Lemma 1 states that a clone C is K_A exactly when the unary fuctions in C are the constants and the identity function. For k > 0 let A_k denote the set $\{0, 1, \ldots k - 1\}$.

Theorem A. For every integer k U 3 there exists two chains P_1 , P_2 on A_k such that $Pol(P_1) \cap Pol(P_2) = K_{A_k}$.

Proof. We give first the definitions of P_1 and P_2 by specifying the covers in the respective orders:

$$P_1: \quad 0 < 1 < 2 < \ldots < k-2 < k-1.$$

In the definition of P_2 , we distinguish two cases, corresponding to the parity of k. If k = 2m then we put

 $P_2: \quad 2m-2 < 2m-4 < \ldots < 2 < 0 < 2m-1 < 2m-3 < \ldots < 3 < 1.$

If k = 2m + 1 then we set

$$P_2: \quad 2m-2 < 2m-4 < \ldots < 2 < 2m < 0 < 2m-1 < 2m-3 < \ldots < 3 < 1.$$

In other words, P_1 is the standard ordering of A_k , while in P_2 we have first the even integers from the interval [0, k-1] in a decreasing order (with respect to the standard ordering) followed by the odd numbers listed decreasingly again, provided that k is even. If k is odd then a little perturbation is introduced: k-1is placed between 2 and 0 rather than to the beginning of the sequence. This is possible because k > 3 and therefore $2 \neq 2m$.

As for the proof, let $f \in Pol(P_1) \cap Pol(P_2)$ be a nontrivial unary function (i.e. f is not constant and not the identical function on A_k). Chains have no nontrivial automorphisms, therefore there exists $a \neq b \in A_k$ such that f(a) = f(b). Using that $f \in Pol(P_1)$, we can assume that b = a + 1, hence a and b have different parities. Now from $f \in Pol(P_2)$ we infer that f(0) = f(k-1) if k is even and f(0) = f(k-2)if k is odd. Switching back to P_1 we obtain that $f(0) = f(1) = \cdots = f(k-1)$ for k even. In this case the proof is finished. For k odd the same argument gives that $f(0) = f(1) = f(2) = \cdots = f(k-2)$. From the relations 2 < 2m < 0 in P_2 we infer f(0) = f(2m) = f(2) and conclude that f is a constant. The proof is complete.

The unary functions over A_2 are the identity function and the constants. If $\overline{P_1}$ and P_2 are chains over A_3 then an easy argument shows that $Pol(P_1) \cap Pol(P_2)$ is nontrivial. Next we prove a generalization of this observation. A finite bounded poset has the cover property if every element, except possibly the least and the greatest elements, has either a unique lower cover or a unique upper cover. We argue that there are many posets having the cover property. In fact, if P is an arbitrary bounded poset then if we replace every $z \in P$ (except possibly the greatest and the least elements of P) by a two-element chain then the resulting poset will have the cover property.

Theorem B. Let P be a bounded poset on the finite base set A. Let $0, 1 \in A$ denote the least and the greatest elements of P. Suppose that there is an element $a \in P$ such that 0 < a and a < 1 are covers and that the poset $P \setminus \{a\}$ has the cover property. Let Q be an other poset on the base set A isomorphic to P. Then Pol(P)and Pol(Q) have a nontrivial intersection, i.e. $Pol(P_1) \cap Pol(P_2) \supset K_A$.

Proof. Let $\phi: A \to A$ denote the map establishing an isomorphism $phi: P \to Q$ and put $b = \phi(a)$. Observe first that an arbitary map $f: P \to P$ which is the identical map on $P \setminus \{a\}$ is actually an order preserving map of P. For this reason if b = a then for the map $g: A \to A$ defined as g(a) = 1 and g(y) = y if $y \neq a$ we have $g \in Pol(P) \cap Pol(Q)$. We can henceforth assume that $a \neq b$. If $b \notin \{0, 1\}$ then we can easily construct a nontivial function $h \in Pol(P) \cap Pol(Q)$ as follows. As $P \setminus \{a\}$ has the cover property, $b \in P$ has either a unique upper cover in P or a unique lower cover in P. We shall assume that $c \in P$ is a unique upper cover of b in P (the other case can be treated in exactly the same way). Now set h(b) = cand h(z) = z if $z \in A \setminus \{b\}$. From the fact that c is a unique upper cover of b in $P \setminus \{a\}$ an therefore in P, we obtain that $h \in Pol(P)$. By our first observation we have $h \in Pol(Q)$ as well.

We are left with four cases to consider: $a \neq b, b \in \{0,1\}$ and (by symmetry) $a \in \{\phi(0), \phi(1)\}$. In each case we shall define a nontrivial unary function $h \in Pol(P) \cap Pol(Q)$

(i) If b = 0 and $a = \phi(0)$ then we set h(a) = h(b) = a and h(y) = 1 if $y \notin \{a, b\}$. (ii) Analogously, if b = 1 and $a = \phi(1)$ then we set h(a) = h(b) = a and h(y) = 0 if $y \notin \{a, b\}$.

(iii) If b = 0 and $a = \phi(1)$ then we set h(a) = h(b) = a and h(y) = 1 if $y \notin \{a, b\}$. (iv) Analogously, if b = 1 and $a = \phi(0)$ then we put h(a) = h(b) = a and h(y) = 0 if $y \notin \{a, b\}$.

In all cases we have |Im(h)| = 2 therefore h neither is constant nor is the identity function on A. The easy verification of the fact that h is an isotone function with respect to both P and Q is left to the reader.

Corollary C. Let P and Q be two posets on A_5 isomorphic to the pentagon (i.e. the poset on A_5 defined by the covers 0 < 1 < 2 < 3 and 0 < 4 < 3). Then Pol(P) and Pol(Q) have a nontrivial intersection.

Example. In contrast to Corollary C, consider the posets R and S over the base set A_6 defined by covers as follows:

 $R: \quad 0 < 1 < 2 < 3 \text{ and } 0 < 4 < 5 < 3.$ $S: \quad 1 < 3 < 0 < 5 \text{ and } 1 < 4 < 2 < 5.$

Note that R is obtained from the pentagon by inserting a new element between 4 and 3. Clearly R and S are isomorphic posets. We show that Pol(R) and Pol(S) have a trivial intersection, i.e. $Pol(R) \cap Pol(S) = K_{A_s}$.

To this end, let $f \in Pol(R) \cap Pol(S)$ be a unary function. We consider first the case when $f(0) \neq 0$ or $f(3) \neq 3$. We claim that in this case $|Im(f)| \leq 2$. Indeed, $f \in Pol(R)$ implies then that Im(f) is bounded in R and is consequently a subset

of one of the following four sets: $\{0, 1, 2\}$, $\{0, 4, 5\}$, $\{1, 2, 3\}$ and $\{3, 4, 5\}$. On the other hand, Im(f) is a bounded poset with respect to S as well. As neither of the above four subsets of A_6 form a bounded subposet of S, the claim follows. If f is not a constant then we have |Im(f)| = 2 and f(0) /f(3). Now an inspection of S reveals that f(1) = f(3) and f(5) = f(0). Using again that $f \in Pol(R)$ we obtain that f(2) = f(3) and f(4) = f(5). The latter implies in S that f(2) = f(5), showing that f is a constant, a contradiction.

From now on we can assume that f(0) = 0 and f(3) = 3. Now $f \in Pol(S)$ implies that $f(5) \in \{0, 5\}$ and $f(1) \in \{1, 3\}$. But f(5) = 0 would imply in R that f(4) = 0 which in S leads to f(2) = 0. The latter in R implies f(1) = 0 which in S leads to the contradictory f(3) = 0. A similar argument switching back and forth between R and S shows that f(1) = 1. At this point we have f(i) = i for $i \in \{0, 1, 3, 5\}$ and (from R) $f(4) \in \{0, 4, 5\}$. Here $f(4) \in \{0, 5\}$ would give (in S) that $f(2) \in \{0, 5\}$, which contradicts the relation

$$(*) f(2) \in \{1, 2, 3\}$$

obtained from R. We infer that f(4) = 4 and this gives in S that $f(2) \in \{2, 4, 5\}$. This together with (*) implies that f(2) = 2, i.e. f is the identity function of A_6 . This proves the statement.

Motivated by our considerations we propose the following open research problem.

Problem. Find a characterization of the (bounded) posets $P = \langle A, \leq_P \rangle$ for which there exists a poset $Q = \langle A, \leq_Q \rangle$ such that P and Q are isomorphic and $Pol(P) \cap Pol(Q) = K_A$.

References

- [DMRSS90] J. Demetrovics, M. Miyakawa, I. G. Rosenberg, D. A. Simovici, I. Stojmenović: Intersections of isotone clones on a finite set; Proc. of the 20th International Symposium on Multiple-Valued Logic, Charlotte, NC, 1990, 248-253.
- [J58] S. V. Jablonskii: Functional constructions in a k-valued logic (Russian); Trudy Mat. Inst. Steklov, 51 (1958) 5-142.
- [LP84] F. Länger, R. Pöschel: Relational systems with trivial endomorphisms and polymorphisms; J. Pure and Appl. Algebra 32 (1984) 129-142.
- [P84] P. P. Pálfy: Unary polynomials in algebras I; Algebra Universalis 18 (1984) 262-273.
- [PK79] R. Pöschel, L. A. Kaluznin: Funktionen und relationenalgebren; VEB Deutscher Verlag der Wissenschaften, Berlin 1979.
- [SZ86] A. Szendrei: Clones in universal algebra; Les Presses de l'Université de Montréal, 1986.

Received September 2, 1991.