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The Boolean Closure of DR-Recognizable Tree 
Languages 

E. Jurvanen* 

Abstract 
The family DRec of tree languages recognized by deterministic root-to-

frontier (top-down) tree automata is not closed under unions or complements. 
Hence, it is not a variety of tree languages in the sense of Steinby. However, we 
show that the Boolean closure of DRec is a variety which is properly included 
in the variety Rec of all recognizable tree languages. This Boolean closure is 
also compared with some other tree language varieties. 

1 Introduction 
Finite tree recognizers are divided into four types according to whether they are de-
terministic or not, and whether they read trees from root to frontier or from frontier 
to root. The nondeterministic tree automata and the deterministic frontier-to-root 
tree automata recognize the same class of tree languages. This is the class of rec-
ognizable tree languages which is here denoted by Rec. However, the deterministic 
root-to-frontier tree automata recognize a proper subclass of Rec called here DRec. 
These tree automata types were defined and the connections between the languages 
they recognize were established in the late sixties by Thatcher and Wright [TW68], 
Rabin [Rab69], Doner [Don70], Magidor and Moran [MM69], 

The class DRec has been studied relatively little. Courcelle [Cou78a,Cou78b] 
and Viragh [Vir80] gave a characterization using a path closure operator. Gecseg 
and Steinby [GS78] presented an algorithm for minimizing deterministic root-to-
frontier tree automata. 

In this paper we study the Boolean closure of DRec denoted here by B(DRec). 
It is shown to form a variety in the sense of Steinby [Ste79,Ste92]. Since also Rec 
is a variety, the next question is, whether variety B(DRec) is properly included 
in variety Rec. In connection with his studies of logic characterizations of tree 
language families, Thomas [Tho84] answered this question positively; B (DRec) is a 
proper subclass of the chain definable tree languages which form a proper subclass 
of Rec. In this work we also prove the proper inclusion of 8 (DRec) in Rec, but 
directly using only the pidgeon hole principle. After that 8 (DRec) is compared 
with respect to the inclusion relation with the varieties Nil, D, RD, GD and Loc, 
where Nil is the Boolean closure of the family of finite tree languages, and the 
others consist of the definite, the reverse definite, the generalized definite and the 
local tree languages, respectively. Some of the definitions of these tree families were 
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given by Heater [Heu88,Heu89a,Heu89b] and they were shown to be varieties by 
Steinby [Ste92j. 

The notation is mostly from [GS84]. 

2 Preliminaries 
For a set A, we denote by pA the power set of A, that is the set of sill subsets of 
A, and by |A| the cardinality of A. If A C B, but A ^ B, then we write Ac. B. 

Let N be the set of natural numbers, N = {0 ,1 , . . . } . A ranked, alphabet £ is a 
finite set of operation symbols each of which has been assigned a unique rank from 
N. For m £ N. the set of m-ary operation symbols of E form a set denoted by 
E m . Thus E = (Jmgjv Two special cases are the trivial ranked alphabets, for 
which E = Eo, and the unary ranked alphabets satisfying E = Eo U Ei . 

In a E-algebra A = (A, E), A is a nonempty set, E is a set of operation symbols 
and every operation symbol a £ E m , where m > 1, is interpreted as a mapping 

aA : Am — • A, 

and every miliary symbol a £ Eo is interpreted as an element aA of A. If A = (A, E) 
and B = (B, E) are two E-algebras, then a homomorphism from A to B is a mapping 
4> : A —• B such that 

aA(a1,...,am)<f> = aB (ai<f>,..., am<f>) 

holds for all m > 0, a £ E m and a i , . . . , am £ A. In particular, if a £ Eo and <f> is 
a homomorphism, then aA<f> = crB. An equivalence relation 9 on A is a congruence 
of A, if for all m > 0, <j £ E m and a\,..., am,bi,..., bm £ A, 

arfbi,... ,am0bm implies aA (alt... ,am)9aA (blt... ,bm). 

An equivalence class of a congruence is called a congruence class and the congruence 
class of a £ A is denoted by ad. A congruence of A is said to saturate a subset 
L C A, if L = L9. This means that L is the union of some congruence classes of 9. 
If a congruence has finitely many congruence classes, then the congruence is finite. 

Let X be an alphabet, that is a finite set of letters, such that E D X = 0. We 
assume also that X u E o ^ 0- The set of all EX-trees is the smallest set containing 
every x £ X,a £ Eo and <r(ti,.. . , t m ) , where m > 1,(7 £ E m and t i , . . . , i m are 
EX-trees. A set of EX-trees is called a EX-forest or a EX-iree language. The 
set of all EX-trees is denoted by Fe (X ) . The complement of a E X - forest T is 
Tc = Fz(X) \ T. The height, root, subtrees and leaves of a tree t are denoted 
by hg(t), rootm, sub(i) and leaf(i) respectively. As usual, if t £ X U Eo, then 
hgifl = 0, rootft) = t and sub(i) = { t } . For t = er( i i , . . . , t m ) , where m > 0, 
hg(i) = 1 + m i X K , ^ hg(i<), root(t) = a and sub(i) = { i } u U ! < , < m sub(ti). The 
leaves of any tree are its subtrees of height 0. 

Let £ be a letter not in X u E . A tree p € F e ( X u { £ } ) is a special tree, if £ occurs 
in it exactly once. The set of all special trees is denoted by Sp^(X). The product 
of a special tree p £ Fe (X U {£ } ) and a tree t £ -FE(X) is a tree t p £ FE(X) , 
which is formed from p by substituting t for its leaf When p £ Sp^(X) and 
T C Fe(X ) , the p-translation of T is 

P(T) = {t e P |ter} 
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and the inverse p-translation of T is 

p-1(T) = {teFv{X) I t i P e T ) . 

The EX-trees form a E-algebra fz(X) = (.FE;(X), E) with operations from E 
defined as 

tr^1*» ( « ! , . . . , « „ ) = a ( t i , . . . , i m ) , 
where m > 0,ti,...,tm £ F^(X) and cr 6 E m . This E-algebra is called the E X -
term algebra. 

A set of trees which can be recognized by a frontier-to-root or a nondeterministic 
root-to-frontier recognizer [GS84] is called recognizable. The set of all recognizable 
EX-tree languages we denote by J2ec(E,X). 

A deterministic root-to-frontier H-algebra (a DR E-algebra) is a pair A = (A, E), 
where A is a nonempty set and every operation symbol cr £ E m with m > 0 is 
interpreted as a mapping 

aA : A - Am. 

If o £ Eoi then it defines a singleton cr* in A. An algebra A = (A, E) is called 
finite, if the set A is finite. 

Let X be an alphabet. A deterministic root-to-frontier EX-recognizer (a DR 
EX-recognizer) is a triple A = (A, oo, a), where 

f l ] A is a finite DR E-algebra A = (A, E), 
(21 ao £ A is the initial state and 
(3) a : X —• pA is the final assignment. 

The recognizer is also denoted by A = (A, E, X, a0 , a). The elements of the set A 
are called the states of the recognizer. 

Next we define the language which a DR EX-recognizer A = (A, a0l a) accepts. 
We need the mapping a : .FE(X) —• pA, which is defined as follows: 

(1) If x 6 X, then XOL = xa. 
Í2Í If a £ E0, then oa = {erA}. 
(3) If t = cr ( i 1 ) . . . , t m ) , where m > 1, then 

tá = {a 6 A\aA(a) 6 (tjá X . . . x t m 5 ) } . 

Now the forest recognized by A is the set 

T ( A ) = {teFz{X)\a0 eta}. 

A forest that can be recognized by a DR EX-recognizer is called DR-recognizable 
or simply a DRec-language. The set of all DR-recognizable EX-tree languages is 
DRec( E ,X ) . 

Because a deterministic recognizer can always be regarded as nondeterministic, 
a DR-recognizable language is also recognizable. Thus DRec(E,X) C Rec(E, X ) . 

L e m m a 2.1 / / E E0 U E ^ then DRec(E, X ) is properly included in Rec(E, X ) . 

P r o o f . We generalize a tree language originally due to Magidor and Moran [MM69] 
and simplified by Thatcher [Tha73]. Let x £ X U Eo and a £ E m for m > 2. Then 
the forest {cr(cr(x,..., x), x,..., x), ff(x,... ,x, cr(x,..., x ) ) } belongs to flec(E, X ) , 
but it is not DR-recognizable. • 
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Next we define the paths of a tree and the path closure of a forest. Using the 
path closure concept we can distinguish DiZec-languages among JZec-languages. 
Then we can easily see that any intersection of finitely many ¿3/Zee-languages is 
also a DiZec-language, but that the Boolean closure of £)iiec-languages properly 
contains the Diiec-languagea themselves. 

Let £ be a ranked alphabet. For every operation symbol a £ £ m (m > 0), we 
define a set of new unary operations Tier} = {cri , . . . , <rm} so that if a ^ r, then 
T(cr) n r(r) = 0. Then we form a new alphabet T = T0 U Ti, where 

(1) T0 = So and 

(2) R 1 = U{R(<R)|CREE M I M> 1} . 

The paths of a tree t £ FB(X) form the set <5(t) C F r ( X ) defined as follows: 

(1) For x £ X, let 6{x) = {x } . (2) For a £ Eoi let 6(a) — {cr}. (3) For t = a(tu...,tm), let 

m 

= I M ' f c ) ) -
t=l 

Now the set of the paths of a forest T C Fz (X) is 

5 ( T ) = U { 5 ( i ) | i £ r } 

and its path closure A (T ) is the forest 

A ( r ) = { t £ F E ( X ) | 5 ( t ) C 5 ( r ) } . 

For example, the path set of the tree t — cr(z,a(uj(y),x)) contains the el-
ements cr1(z),a2(°'i('Wi(y))) and o"2(o"2(sc)), and the path closure of the forest 
T = {CT(X, y ) , A(y, x ) } is A(T) = T U ^ ( x , x), A(y, y ) } . 

Some of the properties of the path closure are noted in the following lemma. 

Lemma 2.2 [VirSO]. IiT,Tx,T2 Q i ' s (X ) , then 

(1) T C A(T), 
(2) A(T) = A(A(T) ) and 

(3) Ti C T2 implies A(TX) C A(T2). • 

Theorem 2.3 [Cou78b,Vir80]. Let T £ Rec(E,X) and E0 = 0. Then 

T £ BRec(Z,X) iff A(T) = T. 
• 

Corollary 2.4 Let S,T C FE(X). Then 

S,T S DRec(Z,X) implies 5 n T £ DRec(T., X). 
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Proo f . We present a short proof in the case E 0 = 0. For a general ranked alphabet, 
a product of two DR-recognizers can be constructed that accepts the intersection. 
If S, T G DRec(Z, X), then S n T G Rec(E, X), because #ec(E, X) is closed under 
Boolean operations. 

Assume t G A ( S n T). Then S(t) C 8{S n T) C 5{S) n 6{T). Now t G A ( 5 ) n 
A(T) = 5 n T. Thus 5 n T G DRec(S, X ) . • 

Let 7 be a family of subsets of a set U. The Boolean closure B(7) of I is 
the smallest set Q of subsets of U which contains I such that X, Y G y implies 
X n Y; X U Y and U\X G We denote the complement U\X of X by Xc. The 
following theorem can be found, for instance, in [Sik64]. 

Theorem 2.5 Let 7 C pU be a family of subsets of a given set U. A subset 
T of U is in the Boolean closure of J iff there exist k > 1, ni,...,njt > 1 and 
m i , . . . , rr»fc > 0 such that T can be expressed in the form 

T = ( F n n F I 2 n • • • n Flmi n Ff>mi+1 n F i C
m i + 2 n • • • n f i C „ J u 

(F2i n F 2 2 n • • • n F3m, n Flmj+1 n Fftmi+2 n • • • n f 2
c „ J u 

(Fki n Fk2 n • • • n Fkmk n Fkcmt+1 n Fkcmt+2 n • • • n FkcnJ, 

where Fi}- G 7 for every 1 < t < k and every 1 < j < n^. • 

Corollary 2.4 and Theorem 2.5 give the following result. 

Corol lary 2.6 A setT C Rec(E,X) belongs to B{DRec(E,X)) iff there exist k > 
1 and ni,..., nk > 1 such that T can be presented in the form 

T = (TiinT^nT^n.-nT^Ju 

(T21 n T2
C

2 n T23 n • • • n T2
c

nj) u 

(Tfci n Tfcc2 n Tfcc3 n • • • n Tfcc„J, 

where for all 1 < i < k, 1 < j < n,-, the language Tij G DRec(E, X). • 

Since one-element tree language { t } is always DR-recognizable, every finite 
language belongs to B[DRec( E ,X ) ) . The language T = {a(a(x,... ,x),x,... ,x), 
cr(x,..., x, CT(X, . . . , z ) ) } does not belong to DRec[E, X) according to the proof of 
Lemma 2.1, but ets finite it is in B(DRec(E,X)). This observation gives Theorem 
2.7. 

Theorem 2.7 If E ^ E 0 U E x , then DReciE,X) is properly included in 
8{DRec(Z,X)). • 
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3 B(DRec) is a Variety 
Next we show that the Boolean closure of the DR-recognizable languages is a tree 
language variety. For a family of tree languages to form a variety it is required to be 
closed under Boolean operations, inverse translations and inverse homomorphisms 
[Ste79,Ste92]. 

Let E be fixed. If one has defined for every alphabet X a set V ( X ) of recogniz-
able EX-tree languages, then the family V = { V ( X ) } is called a family of regular 
E-tree languages. For instance. Rec = {Rec{Z,X)} itself, Triv = { { 0 , F E ( X ) } } 
and B(DRec) = {В(Г>Лес(£, X ) ) } are families of regular E-tree languages. 

Definit ion 3.1 Let E be fixed. A variety of E-tree languages is a family of regular 
H-tree languages V = {"V(X)} such that the conditions 

(1) 0 ф V(X) С Rec(E,X), 
(2) T £ l » m implies FE(X)\T £ V (X) , 
(S) T,Ue У (X) implies T П U £ У (X), 
(4) T £ У (X), p £ Spz (X) implies p~l{T) £ У (X), and 
(5) if ф : 7E(X) — 7Z(Y) is a morphism and T £ "У(У), then 

Т Ф - 1 £ V ( X ) 
are satisfied for all alphabets X and Y. 

For example, Triv and Rec are varieties of E-tree languages [Ste92], The family 
B(DRec) is closed under Boolean operations by definition. So we need to study 
the inverse translations and the inverse homomorphisms. 

A translation is based on the notion of a special tree. To show that an inverse 
image of a DR-recognizable language under a translation is again DR-recognizable 
we also need the concept of a run tree. The idea of a run tree is to associate with 
every node of a tree the state in which the recognizer has reached that node. Of 
course, the states associated depend on the initial state at the root. The run tree 
is defined using the alphabet X U { £ } to facilitate handling of special trees as well. 

Let A = (A, E, X, a0, a) be a DR EX-recognizer and £ £ X U E. Then the run 
tree of a tree t £ F E ( X u { i } ) in state a £ A is гип(Л, t, a) € / Ъ х л ( ( Х и { £ } ) x A) 
defined as follows: 

(1) If у £ X U {£ } . then гип(Л, у, a) = (у, a). 
(2) If a € E0 , then run(^,tr,a) = (a, a). 
(3) If t = <r(ti,..., tm), where m > 1 and <rA(a) = ( o j , . . . , a m ) , then 

гип(Л, t, a) = (а, а)(гш1(Л, t b o x ) , . . . , гип(Л, tm, a m ) ) . 

If the algebra A is clear from the context, we denote a run tree also by run(t, a). 
With the help of a run tree we get a new way to find out whether a DR-recognizer 

accepts a tree. 

L e m m a 3.2 Let A = ( ^ а о . а ) be a DR EX-recogntzer. Then 

teT(A) iff a & la for all (I, a) £ leaf(run(^, t, Oq)). 

Proo f . By tree induction on t one can first prove that 6 £ ta if and only if a £ la 
for all leaves (I, a) £ leaf(run(>i, t, 6)). Choosing then oo for b we get the claim. • 

Before the main theorem of this subsection we need to study the product of run 
trees. This is done using the £-depth of a special tree. 
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The £-depth dp(p) of a special tree p G Spc (X ) is the length of the path from 
the root to the £-leaf: 

il| If p = then dp(p) = 0. 
(2) If p = <r(Pi,...,Pi p m ) , where p,- G S p E ( X ) , then 

dp (p) = dp(p,) + 1. 

L e m m a 3.3 Let A = (A, E , X , ao,a) be a DR EX-recognizer. Lett G F^(X),p G 
Spj ; (X) and let a and b be states of A . If (£,b) G leaf(run(p, a)), then 

leaf(nin(i j p, a)) = leaf(run(t, 6)) U leaf(run(p, a))\{(£, b)}. 

P r o o f . By induction on the £-depth of the special tree p one can first verify 

run(i p, o) = run(t, 6) ( i ) 6 ) run(p, a), 

from which the claim follows. • 
T h e o r e m 3.4 Let p G 5 p E ( X ) and T C F^(X). If T is DR-recognizable, then 
also p - 1(T") is DR-recognizable. 

P r o o f . I f p _ 1 ( r ) = 0, then p _ 1 ( T ) G DRec(E,X). Thus we assume that p _ 1 ( T ) ^ 
0. 

Let A = (A, E, X, ao, a) be a DR EX-recognizer that recognizes the for-
est T. Because p _ 1 ( T ) ^ 0 there exists t G p - 1 ( T ) which means t ¿ p G 
T = T (A) . Then by Lemma 3.2 a G Ice for all (/, o) G leaf(run(.tf, t p,a0 ) ) . 
Since p is a special tree there exists exactly one state 6 G A such that (£, 6) G 
leaf(run(>i, p, ao)). Now according to Lemma 3.3 we have a G la specifically for all 
(l,a) G lea fO-unUp .aoJMí . f c ) } . 

Form the new recognizer B = (A, E, X, b, a) that differs from A only by its 
initial state. Of course, also B is a DR EX-recognizer. 

Now we show that T(B) = p _ 1 ( T ) and so p _ 1 ( T ) G DRec[E, X ) : for any 
EX-tree t, 

t G T(B) 
iff a G /5 for all (/, a) G leafíruníy?, t, 6)) 
iff a G la for all (I, a) G leaf(runM, t, fcjlU 

leaf(run(i,p,a0))\{(£,&)} 
iff a G lot for all (/, a) G leaf(run(.4, t p, ao)) 
iff t í p G T(A) 
iff t G p—1 (T). • 

The inverse image of a DR-recognizable forest under a homomorphism is studied 
in Theorem 3.5. 
T h e o r e m 3.5 Let <J> : ?E(X) be a homomorphism and let T G F^(Y), If 
T is DR-recognizable, then also T<f>_1 = {t\t<j> G T}(C Fj^(X)) is DR-recognizable. 

P r o o f . Let A = (A, E, Y, ao, a) be a DR EV-recognizer that recognizes the forest 
T. Form a new recognizer B = (A, E, X , ao, /9) which differs from A by its alphabet 
and its final assignment. The mapping : X —• pA is defined by putting x¡3 = x<f>á 
for all x G X . Also B is a DR EX-recognizer. 

A proof by tree induction shows that tfi = t<f>a for all t G F C ( X ) . Hence 
t G T(BJ if and only if t<{> G T(A) . This means that T ^ - 1 = T (B) is DR-
recognizaole. • 

According to Theorem 3.4 and Theorem 3.5, every 8(DRec{H, X ) ) satisfies the 
conditions of Definition 3.1. 
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Theorem S.6 The family 8{DRec) = {8{DRec(E,X))} is a variety of Z-tree 
languages. • 

4 B(DRec) is Properly Included in Rec 

Next we show that there is a recognizable tree language that can not be constructed 
from DR-recognizable languages by finitely many Boolean operations. The proof 
is based on the pidgeon hole principle and uses Corollary 2.6. 

In the beginning of this section we assume that E2 ^ 0 and that there are at 
least two variables in X, but later the results are generalized. 

A tree i € F^iJQ is balanced, if all its paths have the same length. Denote the 
set of all balanced £X-trees of height h by Bal(/i). 

Let <J € £2 and x,y € X. A balanced tree t € F^ jJX) is a left xy-tree, if 
hg(t) > 1 , {s e sub(f)|hg(s) < 1} C {cr(x,y),cr(y,x),x,y} and cr(x, y) does not 
appear in t to the right of an occurrence of o(y, x). Thus in a left xy-tree all its 
subtrees cr(x, y) are on the left-hand side and the subtrees a{y, x) are on the right. 
Denote the set of all left xy-trees of height h by BLxy(/i), where h > 1. Then 
BLxy(/i) C Bal(fc) n F { < r }(X). 

The trees in BLxy(y differ from each other according to where the leftmost 
subtree cr(y, x) occurs. This also determines how many subtrees cr(x, y) it has. We 
now denote the tree in BLxy(/I) with N — 1 subtrees CT(X, y) by b(h, N), and say that 
it has the leftmost subtree cr(y, x) at place n. The tree 6(3,4) is displayed in Figure 
1 later. 

A balanced binary tree of height h — 1 has 2h~1 leaves. When these leaves are 
then replaced by subtrees <T(X, y) and ER(y, x), the place for the leftmost subtree 
a(y,x) can be chosen in 2h-1 + 1 ways. So there exist 2 h _ 1 + 1 trees in BLxy(/i). 
Hence 

BLxy(h) = {b(h, n)|n = 1, . . . ,2h~l + 1}. 

We also need a mapping fi : BLxy(/i) —+ Bal(/i) which replaces the leftmost 
<r(y, x) by cr(x, x). If a tree has no cr(y, x) at all, then fi leaves the tree unaltered, 
i.e. fl(6(/i, 2h~1 + 1)) = b(h, 2h~1 + 1). Note that ii is an injection. 

Lemma 4.1 Let TB = {b(h, nx),. -., b(h, np ) } C BLxy(/i), where < n2 < • • • < 
np. Then 

n(TB\{b(h,np)))C A(TB). 

Proo f . Consider the tree ii(b[h, n,)), where 1 < t < p. At place n, it has a subtree 
<r(x, x), and this is the only place where it differs from the original tree b(h, n»), 
which has a subtree cr(y, x) at place n .̂ The tree b(h,np) has a subtree <r(x,y) at 
place n,. Thus Q(b(h,ni)) € A({6(/i, n,), b(h, np ) } ) C A [TB). • 

Lemma 4.2 Let 11 = b(h, ni) and t2 = b(h, n2), where ni < n2. Then 

ni < n < n2 implies n) € Atififtx), n(t2 ) } ) . 

Proo f . Consider a tree b(h, n), where ni < n < n2. Left to the place n it has only 
subtrees a(x, y) just like the tree fi(i2). At place n and right to it the tree b(h, n) 
has only subtrees cr(y,x) just like the tree n(tx). • 
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Lemma 4.3 Let o e E 2 ,x , y € X and T C F%(X). If no tree in T has a subtree 
o(x, x) and 

BLxy(h)\{b(h, l),b(h, 2 f c _ 1 + 1)} C T for all h>2, 

then T does not belong to 8(DRec(Z, X)). 

Proo f . Suppose that T e B(DRec(E, X)). Then there exist k,ni,... > 1 and 
languages Tiy e DRec(S, -X")(l < i < k and 1 < j < n,), such that 

T = (Tun^n-nrijU 

( r 2 1 n r 2 c 2 n - n r 2 c „ 3 ) U 

( r f c l n T f c c 2 n - n r f c c „ J . 

Denote m = maxi<j<k n .̂ 
For any h > 2, the forest BLxy(/i)\{6(/i, 1), b(h, 2 h _ 1 + l ) } is a subset of T and 

it has 2 h _ 1 — 1 elements. Choose then h. so big that 

2h~l - 1 > k(m + 1 ) . 

Then there exists an t € [l, fc] such that 

TB = (BLxy (h)\{b(h, 1), 2 / l—1 + 1)}) n ^ n ^ n - n Tfnt 

contains at least m + 1 trees. This means that \TB\ > n,- + 1. Note also that 
TB n Tij = 0, if 2 < j < n, . 

Consider the set fi(TB). Every tree in it has a subtree cr(x,x), so no tree in 
n(TB) belongs to T. Especially, no tree in n ( T 5 ) belongs to the set Tn n Tf2 n 

•nTfnr 
Let s = max{sj\b(h, s,) & TB}. By Lemma 4.1 

(l(TB\{b(h,s)}) C A (TB) C A (Tii) = Ti i . 

We can not have n, = 1; otherwise Tn = Tn D T^ fl • • • D Tfn. and the trees in 
Cl(TB\{b(h,s)}) would belong to T. Thus we assume n̂  > 2. Also we can deduce 
that no tree in Cl(TB\{b(h, s)}) belongs to T?2 n • • • n Tfn.. 

The injectivity of CI implies that \il(TB\{b(h, a)})| = ¡2\B\{6(/i, s)}\ = \TB\ -
1 > rii. This means that in TB\{b(h, s)} there are two trees t\ = b(h,si) and 
t2 = b(h, s2), where si < s2 , and one set T.- of the sets T^,... ,Tfni such that 
n(ti) , fl(t2) £ T^. In other words, i i( i i) , n(t2) <E TiS. By Lemma 4.2 

t2 = b(h,s2) e A ( {n ( i i ) , fi(t2)}) c A(Iiy) = Ti,: 

On the other hand, t2 S TB\{b(h, a)}. Thus TBnTiy / 0, which is a contradiction. 
This means that T does not belong to the Boolean closure of DR-recognizable 

languages. • 
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Next we study the case where there are no binary operators. Let r be an m-ary 
operator for some m > 2. First we expand the trees in BLxy(/i) by the following 
mapping $ : F M ( X ) - F{T][X) : 

(1) $(x) = i f o r a U i e X a n d 
(2) « ( * (t l t ta)) = r(«(*i) , * ( t a ) , x , . . . , x). 

In fact, $ is a linear tree homomorphism, but more importantly it is an injection. 
Moreover, it preserves the height of a tree, and the subtrees of $(BLxy(/i)) of height 
1 are in the set {r(x, y, x,..., x), r(y, x, x , . . . , x)}. The effect of $ is illustrated by 
Figure 1. 

X y X y \/ \/ 
a \ / G 

a . 

x y y x \ / \ / 
xyxx xyxx 
a n w 

x x x x 
X 

xyxx yxxx 
A N w 

Figure 1. The effect of $ on the tree 6(3,4). 

Lemma 4.4 Let m > 2,r 6 E m , x , y e X and T C ^ ( X ) . If no tree in T has a 
subtree T(X, x, x,..., x) and 

$(BLxy(A))\{$(i(fc, 1)), $(6(/i, 2h~l + 1))} C T for all' h> 2, 

then T does not belong to 8(DRec(H, X)). 

Proof . We repeat the proof of Lemma 4.3 using the modified mapping Q : 
$(BLxy(/i)) —• $(.?£(X)), which is defined to replace the leftmost r(y, x,x,..., x), 
by T(X, x, x,..., x). If a tree does not have a subtree r(y, x, x...., x), then H leaves 
it unchanged. Abo now 0 is an injection in the set $(BLxy(/i)). 

Throughout Lemma 4.1, Lemma 4.2 and Lemma 4.3 the trees $(6(/i, n)) are 
used instead of the trees 6(h,n). The proofs of the first two lemmas consider only 
the ordering of the leaves of subtrees of height 1, and from this point of view the 
trees b(h, n) and $(6(/i, n)) are essentially the same. 

Lemma 4.3 is based on the fact that BLxy(/i) can always be chosen sufficiently 
large by increasing h. Because $ is an injection, the number of trees in $(BLxy(/i)) 
have the same property. Otherwise the rest of the proof continues identically to 
the proof of Lemma 4.3. • 
Theorem 4.5 / / E ^ E0 U Ei and |X| > 2, then B[DRec(E,JQ) is properly 
contained in Rec(S, X). Hence, B(DRec) is a proper subvariety of Rec. 

Proof . If r 6 E m , where m > 2, and x, y € X, then the EX-tree language 

T = {t|{sesub(t)|hg(s)< 1} 

= Mx,« / , x , . . . , x ) , r ( y , x , x , . . . , x ) , x , y } } 

is recognizable, and it satisfies the conditions of Lemma 4.4. Thus it distinguishes 
the families B(DRec(E, X)) and Rec(E, X) . • 
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5 B(DRec) and Other Varieties 
In this section we define the tree language varieties D, RD, GD, Nil and Loc and 
compare B(DRec) with them. 

The inclusion relation of varieties is defined componentwise: if V = {"V(X)} 
and U = (Z/(X)} are varieties and V(X) C U (X) for every alphabet X , then we 
write V C U. The trivial variety Triv = { { 0 , F E ( X ) H and the variety Rec -
{Rec(E, X ) } of all recognizable languages awe the smallest and the largest tree 
language varieties and Triv C BlDRec) C Rec. The intersection of varieties U and 
V is U n V = {U(X) n V ( X ) } . 

Definite, reverse definite and generalized definite tree languages were defined by 
Heuter [Heu89b] and shown to form varieties by Steinby [Ste92j. 

Definite tree languages. In a definite tree language the membership can be 
tested by looking at the nodes near the root. These nodes form a part of a tree 
called the A:-root. 

The jfc-root rk(t) e F E ( I u E ) u {e} of a tree t G F^(X) is defined as follows: 

(1) r0 (t)=s 
(2) ri(t) = root(t) 
(3) Let k > 2. 

a) If hg(i) < k, then rk(t) = t. 
b) If hg(t) > k and t = ff(ti,..., i m ) , then 

rk{t) = cr(r f c_1(t1) , . . . ,r f c_i(tm)) . 

The special symbol e ^ X l l S means the empty tree. 
For example, the k-roots of a tree t = cr(cr(x, 7), y) sire r0(t) = e, r^i) = a, 

r2(t) = cr(cr, y) and rk(t) — t for all k > 3. 
Let it > 0. A forest T C Fz(X) is k-definite, if for all trees s, t g ^ ( X ) , 

( t S T and = rfc(t)) imply s e T. 

The family of all fc-definite EX-languages is denoted by D(k, X) . We write D(k) = 
D(k, X ) } . On the other hand, the family of definite ¿-tree languages is D = 
D(X) } , where D(X) = \Jk>0D(k,X). 

For example, the language (cr(x, y), cr(y, x)} belongs to D(2,X). Note that 
according to Lemma 2.1 it is not DR-recognizable. 

The definition of D(k,X) can be rephrased by means of a congruence 9k of the 
term algebra / e ( X ) which is defined so that, for any EX-trees s and t, 

s8kt iff rfc(s) = rfc(i). 

A EX-tree language T is A-definite iff it is saturated by 8k, i.e. T = TOk. 
The members of a i^-class have all the same k-root, which fully determines 

the class. For a fixed k, there are only finitely many fc-roots, and therefore the 
congruence 8k is finite. 

Reverse definite tree languages. To see whether a tree belongs to a reverse 
definite tree language only its subtrees lower than given height need to be known. 

Let h > 0 and t G FS[X). Denote by 

Sh(t) = (a esub(i)|hg(s) < /1} 
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all the subtrees of t of height at most h— 1. A EX-tree language is reverse h-definite, 
if for every s,t € Fe (X) , 

(i 6 T and Sh(s) = 5h(t)) imply s € T. 

For example, if t = a(u)(x),a[x,v)), then S0[t) = 0 ,Si( i ) = { x , y } ,S 2 ( t ) = 
{ w ( x ) , a ( z , í / ) , i , y } a n d 5 3 ( t í = 5 4 ( t ) = - = á u b ( í ) . 

Let h > 0. The set of all reverse /i-definite EX-languages is RD[h,X). Also 
we denote RD[h) = {RD(h,X)}. The family of áll reverse definite E-languages is 
RD = {RD(X)}, where RD(X) = (Jh>0 RD(h, X). 

As in the case of definite languages there exists a finite congruence 6 h of ( X ) 
that characterizes the reverse definite EX-tree languages. This relation is defined 
so that, for any s,t £ F j (X) , 

sBht iff Sh(s) = Sh{t). 

Now a tree language is reverse /i-definite if and only if it is saturated by 6h. 

Generalized definite tree languages. A tree language is generalized definite, if 
for some h, k > 0, the membership of a tree is determined only by the tree's fc-root 
and its subtrees of height less than h. 

For h,k>0 and EX-trees s and t, the relation 8 £ is defined so that 

s8Ít iff (Sh ( s ) = Sh(t) and rfc(s) = rfc(t)). 

Then is a finite congruence of 7D(X). 
A forest T Ç Fe (X ) is generalized h,k-definite if and only if for all s, t 6 F^(X), 

(teT and s6kt) imply s S T. 

Again, a tree language is generalized h, fc-definite if and only if it is saturated by 
the congruence 

The family of all generalized h, fc-definite EX-tree languages is GD(h,k, X ) . 
Then we write GD(h,k) = {GD(h, k, X ) } . Also 

GD(X) = U ( J GD(h,k,X). 
h>0k>0 

Now GD = {GZ>(X)} is the family of all generalized definite EX-tree languages. 

Comparison between definite varieties and B(DRec). It is easy to see that 
D(0) = RD(0) = GD(0,0) = Triv. For the general case, the connections be-
tween definite, reverse definite and generalized definite tree language families are 
established by 

Theorem 5.1 [Ste92], Leth,k>0. Then 

( / ) M 
M OB 
(S) RD 
(4) GD 

GD 
(5) GD 
(6) GD 

, RD(h),GD(h,k) and D, RD,GD are tree language varieties, 
Ç d\i\ Ç - CDC Rec, 

0) Ç RD{ 1) Ç-ÇRDC Rec, 
0,k 
h,0 
h, k' 
h, k' 

= D D{k), 
RDlh), 

Ç GD(h + 1, A;) D GD(h, k + 1) and 
C GDC. Rec. 
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If So = 0 and the ranked alphabet S is unary, then every forest is closed under 
A-operation, and DRec = Rec. Thus D, RD and GD are all included in B(DRec). 
That the inclusion is proper can be seen by considering the forest Ti = {i,- | i is 
even}, where 

(1) to = x and 
(2) tn+i = cr(tn). 

The language Tx is DR-recognizable, but it does not belong to any of 
D(k, X), RD(h, X) or GD{h, k, X) for any h, k>_0. 

if S is trivial, then the construction of inclusions of Theorem 5.1 collapses and 
Rec = GD{0,1) = GD(1,0) = GD(h, k) for all h, k ^ 1. 

We show now that for any S with So = 0 the varieties G D ( l , A;) for every k > 0 , 
and hence, also varieties D and iZ£)(l) are contained in B(DKec). 
T h e o r e m 5.2 Let S 0 = 0. For all k > 0, the variety GD(1, k) is included in 
B(DRec). 

P r o o f . Let X be an alphabet, k > 0 and T G GD( 1, k, X). Because T is saturated 
by 6 i t is the union of some ^¿-classes. This union is finite, since 0£ is finite. 
Therefore it suffices to show that any 0£-class belongs to B(DRec(S,X)). 

For t G JePO . let t$l be the &}.-class of t. Because t$l = td1 n tdk, we will 
prove t&l G B(DRec(E,X)) by studying tO1 and tdk separately. 

Firstly, the class tOk is recognizable. If s £ A(t0fc), then rk(s) = r^(i). So 
s G tdk. This means tdk is also DR-recognizable. 

Secondly, the trees in a i1-class have the same set of leaves, which the A-
operation can only reduce. Thus td1 can be written in the form 

tO1 = 1)|leaf(a) C leaf(i)}. 

The sets Aftfl1) are DR-recognizable. Namely, if the leaves of t are all the same, 
say leaf(i) = { x } , then Aftfl1) = {a | leaf(a) = { x } } = td1 is recognizable. But if t 
has at least two different leaves, then 

A ^ 1 ) = (J{u0 l|leaf(u) C leaf(i)} \ {a| |<5(a)| = 1}, 

where both the union of ^-classes and the set of chains {s||5(a)| = 1} are rec-
ognizable. This means that tB1 G B(DRec(E,X)). Hence, T G B(DRec(S,X)). 
• 

Next we show by generalizing the previously mentioned forest Ti that the in-
clusion of Theorem 5.2 is proper, if S is not trivial. 

Let x G X and a G E m , for m > 1. For each t > 0, we define the special trees 
a' so that 

(1) - e. 
(2) a1 = x , . . . , x) and 
(3) a n + 1 = sn x , . . . , x). 

Note that the superscript t indicates the height and also the number of cr-nodes 
in a*. The forest T = { z a* | t is even} is DR-recognizable, since A ( T ) = T. 
Lemma 5.3 shows that it is not generalized definite and thus neither definite nor 
reverse definite. 
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Lemma 5.3 The forest T = {x s' | t is even } is not generalized h,k-definite 
for any h, k > 0. 

Proo f . Assume that there exist h,k> 1 such that T g GD(h, k, X). Now t = x j 
s2h + 2k g J, j t8 Jfc_roo(. Jg = a.(3k-l an(J _ { j ; ^ a»' | i' = 0,1, . . . , / i - l } . 
On the other hand, the tree u = x •( s2h+*k+1 has the same k-root as t and the 
same set of subtrees of height at most h — 1. Therefore u belongs to T, which is 
contrary to the definition of T. 

If T g GD(h,k, X) for h < 1 or k < 1, then T g GD(h, k,X) for h,k > 1 by 
Theorem 5.1 (5). Thus the claim holds for all h, k > 0. • 

As a result we get 

Theorem 5.4 If E ^ 0, E0 = 0 and h, k > 0, then 

(1) DcB[DRec), 
(£) RD(1)C B{DRec), 
(S) GD(l,k) c B(DRec), 
(4) B(DRec) % RD(h), 
(5) B(DRec\ g GD(h, k), 
(6) B (DRec) g RD and 
(7) B(DRec) g GD. • 

To see that RD and GD are not included in B[DRec) we recall the language T 
of Theorem 4.5: 

T= {tgFE(X)| S2{t) = {T(x,y,x x),r(y,x,x,...,x),x,y}}. 

Now T is a reverse 2-definite tree language, and thus also a generalized definite 
tree language. Since T does not belong to the Boolean closure of DR-recognizable 
languages, we have the following 

Theorem 5.5 Let E / E0 U £ i . For h > 2 and k > 0, we have 

(1) RD(h) g B(DRec), 
(2) GD(h, k) g B(DRec), 
(8) RD g B (DRec) and 
(4) GD g B[DRec). • • 

Finite and cofinite tree languages. The tree language family Nil = 
is a variety of E-tree languages [Ste92l, where the family Nil[X) consists of all 
finite and cofinite EX-tree languages. This variety is contained in both D and RD 
and it itself contains Triv. 

Theorem 5.6 The variety Nil is contained in the variety B(DRec). The inclusion 
is proper if and only if E ^ EO- • 

Local tree languages. Local tree languages are the languages in the Boolean 
closure of strictly local tree languages. The membership of a tree in a strictly local 
language is determined, when the root and the forks of a tree are known. 

The forks of a tree t g Fj^(X) form a set fork(t) defined as follows: 

(1) If t g E0 U X, then fork(t) = 0. 
(2) If i =<T(tu...,tm), then 
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fork(i) = {<r(root(ti),... ,root(tm))} U |J fork(ii). 
•=i 

The set of all forks in EX-trees fork(E, X) is 

fork(E, X) = (J{fork(t) | t e F E ( X ) } . 

For example, the forks of t = ER(W(x), <R(x, J/)) are <R(W, CT), W(X) and CT(X, y). 
A forest T C Fz (X) is local in the strict sense or strictly local, if there exist a 

set of forks F C fork(E, X ) and a set of roots R C E U X such that 
teT iff (fork(t) C F and root(i) 6 R). 

Then we write T = SL(i2, F). 
For example, the languages L\ = {<7' | i > 1} and L2 = {c« | i > 1}, where 

cr* and a, denote the trees 

cr° = x, cr0 = x, 
and 

cxn+1 = o(on,x) crn+1 = cr(x,on), 

are local in the strict sense: they could be defined as L\ = SL({cr}, (cr(cr, x ) ,a( i , x)}) 
and L2 = SL({cr}, {cr(x, cr), cr(x, x)}) as well. But their union L = Li U L2 is not 
strictly local. Namely, though the tree cr(x, cr(cr(x, x), x)) has o as root and the 
forks of it are all forks of trees in L, it does not belong to L. 

On the other hand, the intersection Ti n T2 = SLiiZi n R2.Fi n F2) of two 
strictly local tree languages Ti, = SL(iZx, Fi) and T2 = SL(E2 ,F2) is strictly local. 
Note also that 0 = SL(0, 0) and F£(X) = SL(E U X , fork(E,X)) are strictly local. 
However, the previous remarks imply that the complement of a strictly local tree 
language is not always strictly local. 

A forest T C (X) is local, if it is built from local forests in the strict sense 
by using finitely many Boolean operations. The family of local E-tree languages is 
Loc = {Loc(X)}. 

The local forests in the strict sense and thereby the local forests are recognizable 
[GS84]. Furthermore, Loc is a tree language variety [Ste92]. 

Next we show that also the local tree languages have a characterizing family of 
congruences. It is easy to see that the relation 6 defined by 

s8t iff (root(a) = root (t) and fork(s) = fork(i)) 

is a finite congruence. 
Lemma 5.7 Let L C F^(X). Then L is local if and only if 8 saturates L. 
Proof . Let L e Loc(E, X) . Then there exist k > 1 and n > 2 such that L can be 
written in the form 

L = ( I n n Lfa fl • • • n JtfJ U 
(I21 n ¿22 n • • • n L%n) U 

{LklnLck2n-nL'n), 
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where for every 1 < t < k and 1 < j < n, L,y e SLf/i,/, 
Let t 6 L0. Then there exists an I E L such that root(t) = root(/) and fork(i) = 

fork(/). Now 
leLa n Lf2 n • •• D Lfn 

for at least one » E [1, A:]. Because I E L,n. then also t E The reason why 
I Lij for a 2 < y < n must be either root(Z) & J2,-y or fork(i) g F.-y. In both cases 
also t £ Lij. Together this means t e l . So L = L9. 

Conversely assume L = L9. This means that L is the union of some 0-classes. 
To show that L is local one only needs to verify that any d-class is local. It is, 
because if / € L, then 

19 = SL(root(/),fork(Z))\lJ{SL(root(/),.F)|.F c fork(i)}. 

• 

Now we are ready to compare Loc with DRec and B(DRec). 

Theorem 5.8 7/E ^ EQ, we have 

(1) DRec <£ Loc, 
(£) 8 (DRec) g Loc, and 
(S) Loc C Rec. 

Proof . Let x G X U £o and a € £ m for m > 1. The DR-recognizable forest 
T = {cr(cr(x,..., x), x,..., a:)} is not local, since 9 does not saturate it. • 

The tree language T\ — {a(x, y), a(y, i ) } is not DR-recognizable by Lemma 2.1, 
but clearly it is local. Hence, Loc g DRec. However, T\ does belong to the Boolean 
closure of DR-recognizable languages. So the question now is, whether this holds 
for all local languages. For this purpose we consider the following language. 

Let a 6 E m , where m > 2, and x,y E X. Define F as the set of forks F = 
{a ( f f , a, x,..., x),a(x, y,x,..., x),a(y, x, x,... ,x)}. Then the forest SL({CT}, F) sat-
isfies the conditions of Lemma 4.4 and thus does not belong to the Boolean closure 
of DR-recognizable languages. This leads us to 

Theorem 5.9 Let E ^ E0 U Ei. Then 

(1) Loc % DRec and 
(2) Loc g 8(DRec). • 

If E is unary and £o = 0, then Loc is contained in DRec = Rec. Theorem 5.8 
shows that this inclusion is proper. But if E is trivial, then every language is local 
and Loc = DRec = Rec. 

Figure 2 shows the inclusion relations of varieties for Eo = 0. If also E ^ EoUEj, 
the inclusions are proper and those varieties not connected are incomparable. 

Acknowledgment I am grateful to Professor Magnus Steinby for his expert guid-
ance and valuable suggestions during the course of this work. 
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Figure 2. Comparation of studied varieties. 
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