
Acta Cybernetica, Vol. 10, Nr. 4, Szeged, 1992

The Self-organizing List and Processor
Problems under Randomized Policies

T . Makjamroen*

Abstract
We consider the self-organizing list problem in the case that only one item

has a different request probability and show that transposition has a steady
state cost stochastically smaller than any randomized policy that moves the
requested item, found in position t, to position j with some probability dij, i >
j. A random variable X is said to be stochastically smaller than another
random variable Y, written X <„ Y if Pr{X > Jfc} < Pr{Y > k}, for any
k. This is a stronger statement than E[X] < E[Y|. We also show that the
steady state cost under the policy that moves the requested item i positions
forward is stochastically increasing in t. Sufficient conditions are given for the
steady state cost under a randomized policy A to be stochastically smaller
than that under another randomized policy B. Similar results are obtained
for the processor problem, where a list of processors is considered.

OPTIMAL LIST ORDER; MEMORY CONSTRAINTS; TRANSPOSITION
RULE; RAMDOMIZATION

0 Introduction
A self-organizing list problem is characterized by a sequential list of n items subject
to a reordering policy. At the beginning of each time period, an item is requested
and the list is searched sequentially from the first position until the requested item
is found. Each of these n items has an unknown probability of being requested.
Let p = (pi,p2, • • • ,Pn) be the request probability vector, where p,- is the request
probability of item t,i = 1 , . . . , n, and 0 < p,- < 1, Pi — 1. At the end of each
period, the items on the list are reordered according to the reordering policy. The
cost of each period is taken to be the position where the requested item is found.
We are interested in the steady state costs under various policies. A reordering
policy is called optimal if it minimizes the expected steady state cost for any given
request probability vector p. The self-organizing list problem will now be called
the list problem and the policy will mean the reordering policy.

Kan and Ross [6] define a no-memory policy as a reordering policy that depends
only on the position of the requested item and the current ordering. Some of
the most studied examples of the no-memory policies are the transposition, move-
to-front, and move-i-position policies. Keeping the relative positions of all other

'Department of Economics, Thammasat University, Bangkok, Thailand 10200

283

284 T. Makjasnroen

items unchanged, the move-»-position policy moves the requested item » positions
closer to the front if the requested item is found at position j,j > i, otherwise the
requested item is moved to the first position. Transposition is just move-l-position
and move-to-front is move-(n— Imposition for a problem of n items. Hendricks [3,4]
gives the steady state probability distributions of states under move-to-front ana
transposition. See Hester and Hirschberg [5] for a recent survey of the list problem.

Anderson, Nash and Weber [l] show by counterexample that transposition is
not optimal. However, their counterexample not only moves the requested item
but also changes the positions of other items. So it is still an open question if
transposition is optimal among policies that move only the requested item, leaving
the relative ordering of the rest unchanged.

In the special case where only one item has a different request probability, Kan
and Ross [6] and Phelps and Thomas [7] show that transposition is indeed optimal
among policies that move only the requested item. We will show in Section 1.2 that
transposition is optimal in a stronger sense. In particular, by extending the induc-
tion argument used by Phelps and Thomas, we can show that transposition has
a steady state cost stochastically smaller than that of any randomized policy. Let
C(p; A) be the steady state cost of the list problem with request probability vector
p under policy A. Then C(p; A) is stochastically smaller than C(p ;B) , written
C (p ; A) <. t C(p; B), if P r { C (p ; A) > k) < P r { C (p ; B) > k}, k = 1, 2 , . . . , n.
It follows immediately that E[c7(p; A)] < E[C(p;B)|. A randomized policy is a
policy which, when an item is requested and found at position », moves that item
to position j with some probability a^, £ y = i a-ij = 1, leaving the relative ordering
of others unchanged.

Section 1.1 defines the randomized policy and shows its properties. By the
introduction of the randomized policy, we also show in Section 1.2 that move-
i-position has a steady state cost stochastically increasing in i. This partially
supports the conjecture of Gonnett, Munro, and Suwanda [2]. Their conjecture
says that if A and B are two no-memory policies such that if tne requested item is
found at position t, it is moved forward A(t) and B(i) positions by the policies A
and B respectively, and A(i) < B(i),i = 1 , . . . , n, then the expected steady state
cost under A is smaller than or equal to that under B, but B converges to its
asymptotic behavior more quickly than A. Furthermore, it also follows that if the
cost is taken to be an increasing function of the position where the requested item
is found, move-t-position will have an expected steady state cost increasing in i.
A special case of this situation is found in the paging problem as also discussed by
Phelps and Thomas [7] where for a fixed integer m , l < m < n , the cost is taken to
be zero if the requested item is found in a postion less than m, and one otherwise.

Tenenbaum and Nemes [9] consider two spectra of policies. Assuming that only
one item has a different request probability, the policies in each of the two spectra
are ordered by the values of their expected steady state costs. Each spectrum has
transposition at one end with the minimum expected steady state cost and move-
to-front at the other with the maximum expected steady state cost. We will show
in Section 1.2 that the steady state costs of these policies in each spectrum are
stochastically smaller or larger than each other.

A problem related to the list problem is called the processor problem which was
studied by, among others, Topkis [10]. In the processor problem, we consider a
sequential list containing an ordering of the n processors. Each of these processors
has an unknown probability that it will successfully process a given job. At the
beginning of each time priod, there is an arrival of a job to be processed. The job is
attempted by the processors successively according to the ordering in the list until
either one of the processors succeeds or all of them fail. Then the job is dismissed.
The cost in each period is taken to be the number of processors attempted until

The Self-organizing List and Processor Problems under Randomized Policies 285

the job is processed, or, in the case that all n processors fail, it is taken to be n.
At the end of each period, a reordering policy is applied in the same manner as
in the list probelm. For example, we might move the successful processor to the
beginning of the ordering (move-to-front), or we might just move it one position
closer to the front (transposition).

Topkis [10] gives the steady state probabilities of the move-to-front and move-
to-back policies and shows that move-to-front has a steady state cost stochastically
smaller than move-to-back, which in turn, has a steady state cost stochastically
smaller than the random policy where processors are equally likely to be in any of
the n! orderings.

Section 2.1 shows the properties of randomized policy when applied to the pro-
cessor problem with only one processor having a different success probability. In
this special case, Ross [8] shows that the expected steady state cost under trans-
position is smaller than or equal to that under move-to-front. In Section 2.2, we
also use randomized policies to obtain results closely parallel to those of the list
problem. That is, the steady state cost under transposition is stochastically smaller
than that under any randomized policy. Furthermore, the steady state cost under
move-t-position is stochastically smaller than that under move-(t + Imposition. The
steady state costs under the policies in the two spectra proposed by Tenenbaum
and Nemes [9] are also ordered such that the steady state cost of each policy is
stochastically smaller or larger than its neighbors in the same spectrum.

1 The List Problem
When only item 1 has a different request probability, the expected steady state
cost can be written in terms of the expected position of the item 1. That is, by
conditioning on whether item 1 is being requested,

E[C(p; A)] = C p E [y l (p ; A)] + P ^ - 1) E ' 1 + 2 + • + n ~ y i (p ; A) '

p(c - l)E[yi (p ; A)] +

n - 1
pn(n + 1)

where Yi(p; A) is the steady state position of item 1 of the list problem with request
probability vector p under policy A , p i = cp,p2 — p,... ,pn = p, and c > 0.

So when c > 1, we want to minimize E[yx(p; Aj] , and maximize it when c < 1.
For the rest of the paper, we assume that c > 1. The results for c < 1 will be just
the opposite.

1.1 Randomized Policy
A randomized policy is characterized by a matrix A = [A,yj„xn, where A,-y =
Ylk=i fltki a n d Oij is the probability that given an item is requested and found at
position t, it is moved to position j , where = 1 f ° r all t, and 0 < o,-y < 1.
So Ai j is the probability that given the requested item is found at position t, it is
moved to a position less than or equal to j .

Given a policy A defined in a system of n items, define a related policy A d in
a system of n — 1 items as follows.

A < i = Wy] (n - l)x (n - l) ,

286 T. Makjasnroen

where Af}- = Ei=i afk, and

ad = I ° i + 1 ' 1
0 I <*+ij.

+ «¿+1,2 , 3 = 1
j + i , 3 > 2. (1.1)

Let ir^ be the steady state probability that item 1 is at position t under policy A .
That is, = Pr{Yi(p; A) = t'}. Alternatively, we can say F i (p ; A) < , t Y i (p ; B)
by using the notation { * / } <> t Define K * = Lemma 1.1 to Lemma
1.4 below show the relationships between {ir/1} and {*fA} under the assumption
that (Pi,P2i • • • Pn-i) = (cPd> Pd} • • •, Pd)• Lemma 1.1 and Lemma 1.2 «ire also
obtained by Phelps and Thomas [7], where they consider only policies that move
the requested item, found at position t, to a fixed position r(t),r(t) < i.

Lemma 1.1 Under policy A, for i = 2 , . . . , n,

-.A ¡ A _ if A _ dA / dA

Proo f . The transition matrix, showing only columns 1, r + 1 and n can be written
as

CP + P E E aij
i=23=2

cpa21
cPa31

cpanl

0
n r

P E E a.'j t=r+iy=l

cPar+l,r+l +
cpar+2,r+i

epan< r + i
p(l - a „ „)

cpann + p(n - 1)

(1 .2)

where 8 = r + £ E °ty
i=r+2 j'=r+2

Except the first column, column r + 1 contains zeros from row 1 to row r. Using
the (r + l)8 t column of the transition matrix and suppressing the superscript A ,
we have

cPar+l,r+l +p8

+ E .cP°«>+i ,r»i
t=r+2

for r = 1 , . . . , n — 1.

The Self-organizing List and Processor Problems under Randomized Policies 287

Since p = , the above equation becomes

\ t = r + l / = l)

— "V+l

— "V+l

c + n - 1 - CO r+l , r+l - f r + aO)
\ « = r + 2 / = r + 2)

n »

n -I- c (l - o r + 1 > r + i) - (r + 1) - Yh Z)
t ' = r + 2 j ' = r + 2

— Z) c o».r+l*«
i = r + 2

n
— C ^ Oĵ +iTT,-,

t = r + 2

(1.3)
where r = 1 , . . . , n — 1.

For policy AD, using the r th column of the transition matrix of n — 1 items and
noting that pd = we have in the same manner as (1.3) above

"-(siH
c + n — 2 — ca*r — i r — 1 + Y l J 2

V i = r + l j = r + l

n-1 i
„ + c (l - d ? r) - (r + l) - E 4

i=r+lj=r+l

caln?
n - l

— y 1 -"•ir-'t
i=r+1

n - l

Ed d

i = r + l

where r = 2 , . . . , n — 1. By the definition of af}- given in (l . l) , (1.4) becomes

1

\i=r + iy=l /

(1.4)

= *V n + c (l - a r + 1 , r + 1) - (r + l) -] C
i=r+2j'=r+2

- c Y! a « > + i , , f - i >
• = r + 2

(1.5)
where r = 2, . . . , n — 1. FVom (1.3) and (1.5), (x2 , . . . , i r n) and (fl^, • • •
satisfy the same set of equations. We will use this fact to show that Ki = Kf_lti =
2 , . . . , n, and this proves the Lemma. Since Kn = = 1 by definition, we use
the induction hypothesis that Ki — Ki_ l t x = r + 1 , . . . , n. We will show that it
is also true for i = r. But this follows immediately by dividing both sides of (1.3)
and (1.5) by irn and ^ - i respectively. •

If we know r f , » = 1 , . . . , n, then we know *fA, i = 1 , . . . , n — 1. The exact
relationship is given in Lemma 1.2.

288 T. Makjasnroen

L e m m a 1.2 Under policy A, for i = 2 , 3 , . . . , n,

P r o o f . Prom Lemma 1.1, we need to show that = (1 — H j 1) * ^ ! . By suppressing
superscript A ,

n—1 n— 1 n
1 = E ^ = E = <-1 E * = ^-li1 - *!)/*»•

1 = 1 t '= l 1=2

•
Conversely, given ir?A, » = 1 , . . . , n — 1, we can compute nf, i = 1 , . . . , n, using

Lemma 1.2 and the following Lemma 1.3.

Lemma 1.3 Under policy A,

A C(A2LF2 + «31^3 + ANL""N)
= .

«21 + «31 + h a„i

P r o o f . The Lemma is proved by using the first column of the transition matrix
(1.2) and noting that p = •

FVom Lemma 1.1 and Lemma 1.3, Lemma 1.4 below says that we can write Äy
in terms of Äy+i, Äy+2, • • •, K n . Note that An = a n , i = 2 , . . . , n. So Lemma 1.3
and Lemma 1.4 are equivalent when j = 1.
Lemma 1.4 Under policy A, for j = 1, 2 , . . . , n — 1,

Kf =
c(A3+1JKf+1 + AJ+2,,Kf+2 + -.. + An]K£)

3 Ai+1,} + ^y+2,y H 1- A. nj

Proo f . From Lemma 1.1, K2 = K*, K3 = = Kf,..'., Ks = K? ' . By exactly
the same argument, we have = K^'+i — • •• = -Ky+k-i, k = 2 , . . . , n — j + 1.
From Lemma 1.3,

c { 4 : l K t l + 4 r * t x + • • • +
" l = di-i , di-' , . adi~* 21 ^ °31 ^ ^ n—y+1,1

Now, by definiton (1.1),

S21 — a31 + a32
- a4 1 + a4 2 + o 4 3

= ° y + l , l + ° i + l , 2 + • • • + a / + l , y

= Al + U-

Similarly, = i4y+fc_i,y, k = 3 , . . . , n — j + 1. So follows the Lemma. •

The Self-organizing List and Processor Problems under Randomized Policies 289

1.2 Comparison of the Steady State Costs and Probabili-
ties of Two Lists under Two Different Policies

Let S be the set of policies that the resulting probability distribution { t « } is
decreasing in t when pi > p and increasing in t otherwise. The question of how to
determine if a policy is in 5 will be addressed later. We are now ready to prove
the following Theorem that compares {*<} of two different policies.

Theorem 1.5 Let A and B be two policies such that, ¡or j = 1 , 2 , . . . , n — 1, k =
j + 1,..., n,

A y + i ,y + A y + 2 , y + H AKy -By+i ,y + -By+2,y + H BK]

AJ+I,} + A y + 2 , y + • • • + A „ y ~~ -By+i .y + - S y + 2 , y + h BN)- '

(1.6)
and at least one of these two conditions holds:

(a) A S S and Bij is decreasing in i for all j = 1 , . . . , n,
(b) B S S and A{j is decreasing in i for all j = 1 , . . . , n.

Then <„t { f l f } for any p = (cp, p,..., p), c > 1.

Proo f . We will prove this Theorem by induction. It is easily checked that the
Theorem is true for n = 2. Assume that it is true for the problem of n — 1 items.
Now given such policies A and B , their corresponding policies A d and B d also
satisfy all the conditions above. We can check this by first noting by that by (1.1)

Aij — aii + ai2 H 1" aij = a « + i , i + ° t + i , 2 + Oi+1,3 + H a » + i , y + i = A i + i , y + 1 .

Therefore, Af - is also decreasing in t, and

A3+l,3 + AJ+2,J + • • • + Akj + Ad + • • + Ad_ 1,3- 1
AJ + 1,J + A)+2J + " • • + A „ y ¿1,3- 1 + A1+1,3-1 + • • 1,3- 1

Bd-^ 3,3-1+Bf+1,3-1 + • •• + Bd_ 1,3- 1
Bd. 3,3- 1 + Bf+1,3-1 + Bd. 1,3- 1

Secondly, since A e 5, vA > > ••• >irA. B u t from Lemma 1.2, vfA =
A

YZ^x, so > ir$A > > jr^lj . This means A d g S. So we have the induction
hypothesis that

From Lemma 1.2, ^ + + • • • + r A = (1 - + * f A + • • • + n ^ J .
All we need to show is that * A > ir f . From Lemma 1.2 and Lemma 1.3,

>1 (1 A , A 21*IA + A 3 i ^ A + • • • + AnlTTdA1 TTj = C^l — TTj J .
A 2 1 + A 3 1 + h A„ 1

290 T. Makjasnroen

A B
Since > 7rf if and only if j ^ x > i - ^ » , we need to show that

A21w*A + A31*jA + • • • + A^x*^ > B21 <B + + ••• + nni<B-i
A2i+A31+ - + Anl ~ B21+B31+- + Bnl

Assume first that (a) holds. Then', by (1.6) with j — 1 and, because Ad G
S, *FA>*$A>-~>*F£I,

B2i*iA + B 3 ^ + • • • + B n i n ^ i
B2\ + B3\ + 1- Bn 1

B21**B + B31**B + • • • +
B2i + B3i + 1- Bn 1

The second inequality follows from the assumption that B n is decreasing in t
and from the induction hypothesis that { n f A } <> t { n f B } .

Similarly, if (b) holds,

+ A31x$A + --- + Anl > A2 l 7rfB + A31x*B + ••• +
A 2 i + A 3 1 + 1- A n l ~ A 2 1 -I- A 3 1 H h A r e l

> B21xjB +B31**B + -- + Bnln*Bx

~ B21 + B31 + • • • + B„i

•
A consequence of this Theorem is that the steady state cost under policy A is

stochastically smaller than the steady state cost under policy B .
Corol lary 1.6 Under the conditions of Theorem 1.5, C (p ; A) <„ t C (p ; B) .

P r o o f . Conditioning on whether item 1 is at the first position, for k = 2

P r | c (p ; A > Jfcj

= n A P r|c (p ; A) > A i n t p j A) = l } + (l - ^ t) P r { c (p ; A) > A ^ f a A) ? l }

- x J * P r { c (p ; B) > fc|n(p;B) - l } + (1 - ^) P r { c (p ; A) > A ^ f a A) ? l } .

Now given that item 1 is not at position 1, the probability that it will be at
IT*4 . . dA position t, 2 < i < n, is ' x , which is exactly by Lemma 1.2. That is, given

. 1

item 1 is not at position 1, its probability distribution over { 2 , 3 , . . . , n) is the same
as the probability distribution of over { l , 2 , . . . n — 1}. Using the induction
hypothesis that the Corollary is true for the list of size n — 1, we have

P r { c (p ; A) > fcinipjA) / l } = (1 — p) P r | c (p d ; A d) > fc — l j

< (l - p) P r { c (p d ; B < ,) > f c - l }

= P r j c f a B j ^ f c l Y k f o B) ? * ! } .

A 2 i * r + A31n«A + • • • + A „ 1 j t „ _ 1

A 2 I + A 3 1 + •• • + A nl

>

The Self-organizing List and Processor Problems under Randomized Policies 291

Therefore,

Pr{<7(p;A) > fc}

< T* P r j c (p ; B) > fc|n(p;B) = l } + (1 - P r { c (p ; B) > ¿ ^ f o B) ft l }

< * f Pr j c (p ; B) > fc|Fi(p;B) = l } + (1 - * ?) P r { c (p ; B) > ¿ ^ f o B) ft l }

= P r { (p ; B) > f c } .

The second inequality follows from the fact that irf > 1rf and, when pi > p,
P r { c (p ; B) > fc|yx(p;B) = l } < Pr{(7(p;B) > fc|Yi(p;B) ft l } . •

By Lemma 1.2 and Corollary 1.6, transposition is optimal in the sense that it
has a steady state cost stochastically smaller than any randomized policy. Let T
denote the transposition policy.

Corollary 1.7 For any policy A , C (p ; T) < t i C(p; A) .

Proo f . Given c > 1, Phelps and Thomas [7] show that n j > nf for any policy
Z that moves the requested item strictly forward by using the fact that =
(l — 7r Since this fact also holds for any randomized policy A as shown in
Lemma 1.2, so irj" > and thus { t ^ } } by the same induction argument
in Theorem 1.5. The Corollary then follows by Corollary 1.6. •

The next question is how we know if A G S. The counterexample below shows
that not every policy A is in S even with Ai}• nonincreasing in t for all j.
A counterexample:

Let A be a policy characterized by the following matrix.

A =

0

1

1 — £

0

0

1

1 - e

0 0

0

1

1 - e
e

Let e be some small number. The policy A almost always moves the requested
item one position closer unless the requested item is founded at position 2 where
it stays put with probability 1 — e and moves to position 1 with probability e. By
selecting small enough e, we can get the values of Ki, as given by Lemma 1.4, to
approach cn~' arbitrarily close for t > 2. The value of K i t as also given by Lemma

292 T. Makjasnroen

1.4, is

c(ecn~2 + e c n - 3 + h ec + e)

c j c " - 1 - 1)
(n - l) (C - l) '

With c = 3 and n = 6, = 72.6 while K2 = 34 = 81. So here K{ is not
decreasing in i when c > 1. Thus not every policy has {«",-} decreasing in i when
c > 1. •

The following Proposition gives a sufficient condition for A 6 5 , This sufficient
condition turns out to be true for any policy A under which the distribution of
the number of positions to move the requested item is independent of the position
where it is found. In other words, there is only one distribution for all positions.
Call these policies position independent. One can interpret a position independent
policy as one that uses a mixture of move-t-position, t = 1 , . . . , n — 1.
Propos i t ion 1.8 A policy A 6 5 if, for j = 1,... ,n — 1,

Aj + iJ ^ Anj < Ai+i,j H y An-i,j < . . . < A1++ 3
Aj + 2,j + l + 1" An,j+1 A]+ 2,3 + 1 + 1- An_i i J + x Ay+ 2 , j + l

(1.7)

Proo f . Since Af j = A i + i j + i , a condition similar to (1.7) holds for A d . By the
induction hypothesis, AD £ 5 and n f A > IRDA > • • • > ^n- i - So by using Lemma
1.1 we have > nf > •• • > k a and > > • • • > K * . Thus it remains to
show that 7TJ4 By Lemma 1.3, this means we have to show

A2lK$ + + ''' + > A21 + A3 i + • • • + Anl

K* + • • • + An2^A A32 + A*2 + h An2

Rewrite the nominator on the left hand side of the above inequality as follows.

A21KA +A31Ka +-+AnlKA = KA{A21 + A31+-+Anl)

+ (KA_, - Ka)(A21 + A 3 I + • • • + A N - I . I) +

••• +(^-Ka)(A21 + A31) + (Ka-Ka)A21

The left hand side of the last inequality becomes

K£(A21 + A3i + 1- Ani) + (KA_X ~ K*)[A2i + A 3 ! + ••• + A n _ l t l) + - • •
^ (A 3 2 + A42 + - - + A n 2) + - •

• • • + [KA - Ka){A21 + A3X) + [Kf - K*)A21
• • + (KA_i ~ Ka)(A32 + A4 2 + • • • + A „ - 1 i 2) + -•• + № - K*)A32'

and because KA — > 0, » = 2 , . . . , n — 1, it is greater than the right hand side
if

A 2 I + A 3 1 + H AnI A 2 I + A 3 1 H H A N _ X | I < A 2 I + A 3 1

A32 + A 4 2 + H A„2 — A 3 2 -T- A42 + B

The Self-organizing List and Processor Problems under Randomized Policies 293

which is just (1.7) with j = 1. This follows from the fact that, f < f^a if f < g,
where a, 6, c and d are positive. •

We will show next that (1.7) holds for any position independent policy that
moves, with probability a,-, X -̂TQ1 = requested item i positions forward
if it is found at a position greater than or equal to i + 1. Otherwise the policy
moves the requested item to the first position. Thus, a,-y = Oi-i>j > 1, and
ciii = o,-_i + a,- + • • • + an_ i . Let A; = °fc be the probability that the
requested item is moved more than or equal to t positions. Thus,

An = a,i + cm + • • • + oi}- = (o,-_i + (- a„_ j) + Oi-2 H h a,_y = A,_y.

So (1.7) becomes

Ai + A 2 + < A j + A 2 + • • • + A n - 2 < _ < A t + A 2

AI + A2 + • • • + 3 „ - 2 ~ Ai+A2 + H A „ _ 3 Ai '

which can be shown to be true by just cross-multiplying terms on each side of each
inequality and noting that A,- is decreasing in t by its definition. Thus we have
proved the following Lemma.

L e m m a 1.9 Let A. be a position independent policy that moves requested item i
positions with probability ai, ^"Jq1 â = 1. Then A S S.

When a0 > 0, we can look at the embedded Markov chain when the items
actually change positions. The probability that item 1 is at position t in this
embedded Markov chain will be equal to the proportion of time item 1 is at position
t in the original chain. The policy governing the embedded chain is characterized
by

ai — i_'ao > * — Ij • • • i ni a n d a0 — We can, without loss of generality, restrict
ourselves from now on to the position independent policies that always move the
requested item at least one position closer to the front, unless it is already at the
first position.

When two position independent policies A and B are compared, (1.7) of Propo-
sition 1.8 becomes, for k = 1 , . . . , n — 1,

M + A2 + • • • + Ak B i + B 2 + - + B k

Ax + A2 + ... + An_! ~ Bj. + B2 + ... + Bn_!' (L8)

An interpretation of this condition (1.8) is as follows. Let XA be the renewal
time of some renewal process with Pr{X j 4 = »} = o<, t = 1 , . . . , n — 1, and ao = 0.
Then the equilibrium renewal time of XA, called XA, will be distributed by

pr{x* < *} = 3 + 3 + - - - + 3
- A 1 + A 2 + - + A „ _ 1

Therefore, (1.8) means XA <„t Xf. Theorem 1.5 combined with Corollary 1.6
can be restated for position independent policies as follows.

Theorem 1.10 Given two position independent policies A and B such that
XA <,t X*, then <st } and C (p ; A) < (t C (p ; B) for p =
[cp,p,...,p),c > 1.

294 T. Makjasnroen

Proo f . Direct application of Theorem 1.5, Corollary 1.6 and Lemma 1.9. •

Note that the condition that is decreasing in » in Theorem 1.5. becomes A{
is decreasing in t which is true by its definition. An immediate result of Theorem
1.10 is that moving » positions closer is better than moving » + 1 positions closer.
Formally,

Corollary 1.11 The steady state cost under move-i-position policy is stochastically
smaller than that under move-(i + 1)-position policy.

Proo f . Direct application of Theorem 1.10. •

Tenembaum and Nemes [9] examine two spectra of policies. For each spectrum,
they show that the policies are ordered by their expected steady state cost, having
tranposition at one end of the spectrum with minimum expected steady state cost
and move-to-front at the other with maximum expected steady state cost. It can be
shown that this also results directly from Theorem 1.5 and Corollary 1.6, and not
only are the policies ordered by their expected steady state cost but their steady
state costs are also stochastically smaller or larger than each other.

The first is a spectrum of policies POS(A;), k — 1 , . . . , n where the requested item
found at position j is moved to position k if j > k, and it is moved one position
closer to the front if j < k. We can write the matrices A and B representing
policies POS(fc + 1) and POS(fc) respectively as follows.

1
1 1

0 1

0 1

A = 1 1
O i l

1

1

0 0 0 1 1
1 1
1 1 1

Col. (!) • •• (A: + 1)

The Self-organizing List and Processor Problems under Randomized Policies 295

1

1 1

0 1

B =

0 0 0 1 1
1 1
1 1 1

Col. (1) . . . (*) . . . (n)

The upper triangles of both matrices A and B consist of zeros. It can be easily
checked that both policies A and B are in S as they satisfy (1.7) of Proposition 1.8.
Moreover, all the conditions of Theorem 1.5 are also satisfied. We can then make
a stronger statement that the steady state cost under POS(fc 4-1) is stochastically
smaller than the steady state cost under POS(fc).

The second is a spectrum of plicies SWITCH(A;),k — l , . . . , n , where the re-
quested item found at j is moved one position closer if j > k, and is moved to the
first position if j < k. A1 the conditions of Theorem 1.5 and (1.7) of Proposition
1.8 are satisfied by the following matrices A and B representing SWITCH(fc) and
SWITHC(fc + 1) respectively.

Row

A =

•• 1
1 l 1 1
0 0 0 1 1
; 0 1 '•

0 . 1

* 1
0 0 • • 0 0 0 • • 0

1
1 1

(1)

(k)

in)

296 T. Makjasnroen

Row

B =

0 0

1
1 1
0 1

: o

0 0 0

1 1
O i l

(1)

(f c + 1)

(n)

The upper triangles of A and B also consist of zeros. Similarly, the steady state
cost under SWITCH(ifc) is stochastically smaller than that under SWITCH(Jb + 1).

2 The Processor Problem
Let C(p; A) now be the steady state cost and Yi(p; A) the steady state position of
processor 1 of the processor problem with success probability vector p under policy
A . When only processor 1 has a different success probability, the expected steady
state cost, conditioning on the position of processor 1, can be written as

n
£ [C (p ; A)] = JS7 [C(p; A) j (p; A) = »] ^

; = i

= [l + î i (l + g + - - - + gB - 3)] ir i

+ E [(i + « + ••• + <Tx) + a (g- 1 + j + • • • + g" - 2)] * t = 2

+ (l + g + ' + g " - 1) * »

i - g i g " 1 pi - p sr i-1
= — - P —

where p = (pi ,p , . . . ,p), gi = 1—Pi, g = 1—p and -K, is the steady state probability
that processor 1 is at position ». Prom (2.1), since g* is decreasing in t, if pi > p
and the position of procesor 1 under policy A is stochastically smaller than under
policy B, the expected steady state cost under policy A will be smaller than the
expected steady state cost under policy B . For the rest of the paper, we assume
that pi > p.

The Self-organizing List and Processor Problems under Randomized Policies 297

2.1 Randomized Policy
Define the randomized policy A and its related randomized policy Ad in exactly
the same way as in the list problem. Also let -rf be the steady state probability
that processor 1 is at position i under policy A . Define Kf = xf/ic*. Lemma 2.1
to Lemma 2.4 below show the relationships between and { n f A } under the
assumption that (p?, pi,..., p ^) = (pi, p , . . . , p).

L e m m a 2.1 Under policy A , for i = 2,..., n,

= = 1.

P r o o f . Similar to Lemma 1.1, the Lemma is proved by using the column r + 1 of
the transition matrix, which is given by

1 - qr +qrPlar+1<r+i + qrqlP £ " = r + 2 ?*'~r~2 Ey = r + 2 aH +

9r+1Piar+2,r+l

? r + 1 Pl a » ,r+i

•

L e m m a 2.2 Under policy A, for i = 2,3,..., n,

P r o o f . Same as Lemma 1.2. •

L e m m a 2.3 Under policy A,

WA = Eil(a21*2 + 1a31*3 + •" • + \
1 hP\ a2i + 7a3i + h qn~2anl J'

P r o o f . Similar to Lemma 1.3, the Lemma is proved by using the first column of
the transition matrix, which is given by

P I + 9 L P E , N = 2 ? , 2 E Y = 2 °»Y + 9 " V
9Pla21
i2Pla31

i " 1Piani

•

298 T. Makjasnroen

Lemma 2.4 Under policy A , for j = 1 , 2 , . . . , n — 1,

^ = Piff (A > + ^ K U i + + • • • + q n ~ } ~ 1 A n] K A \
' qiP \ Ay+1,y + gAy+2,y + -- +qn-'~1An,- J'

P r o o f . Same as Lemma 1.4. •

2.2 Comparison of the Steady State Costs and Probabili-
ties of Two Problems under Two Different Policies

We can now state a result similar to Theorem 1.5 that compares the steady state
probability {jr,-} under two different policies. As in the list problem, let S be the
set of policies under which the resulting probability distribution {«¿ } is decreasing
in t when pi > p and increasing in t otherwise.

Theorem 2.5 Let A and B be two policies such that, for j = 1, 2 , . . . , n — 1, k =
j + 1 , . . . , n,

Ay+i,j + gAj+3,y + • • • + qk-j-1Akj > 5y+1 ,y + <?fly+2,y + • • • + g^^By
Ay+1,y + gAy+2,y + • • • + qn~>-lAnj - Bj + u + qBJ+2,j + • • • + qn->~xBni '

(2.2)

and at least one of these two conditions holds:

(a) A 6 S and Bij is decreasing in i for all j = 1 , . . . , n,
(b) B g S and A,y i*5 decreasing in i for all j = 1 , . . . , n.

Then <Jt { jrf } for any p = (pi, p , . . . ,p),pi > p.

P r o o f . Same as Theorem 1.5 because if A,y is decreasing in t for all j then so is
A,-y. _ •

It should be noted that (1.6) and (2.2) are not equivalent when Â y and Bi j
are decreasing in t for all j, even though (2.2) gives (1.6) when q = 1. A simple
counterexample can be constructed as follows. Suppose (1.6) is true. Let j = 1
and A2 i + A31 + 1- Anl = B21 + B31 + • • • + Bnl, with A2 i = B21. So by
(1.6), (A21, A 3 1 , . . . , A „ i) majorizes (B2i, B31,..., Bnl). With the fact that q* is
decreasing in t, we have

A21 + qA31 + ••• + q"-2Anl > B21 + qB31 + • •• + qn~2Bnl,

which means

A21 ^21
A21 + qA31 + • • • + qn~2Anl ~ B21 + qB31 + • • • + qn~2Bnl'

This contradicts (2.2) for j = 1 and k = 2.
A consequence of Theorem 2.5 is that the steady state cost under policy A is

stochastically smaller than the steady state cost under policy B.

Corol lary 2.6 Under the conditions of Theorem 2.5, C (p ; A) < , t C (p ; B) .

The Self-organizing List and Processor Problems under Randomized Policies 299

P r o o f . Same as Corollary 1.6. •
By exactly the same reason as in Corollary 1.7, transposition has a steady state

cost stochastically smaller than any randomized policy.

Corol lary 2.7 For any policy A , C (p ; r) < (t C(p; A) .

P r o o f . Same as Corollary 1.7. •
A counterexample similar to that in Section 1.2 can be made to show that not

every randomized policy is in S. A sufficient condition for a policy A to be in S
turns out to be the same as in the list problem. That is, when pi > p, {i",^} is
decreasing in t when (2.3) below, which is (1.7) of Proposition 1.8, holds.

Propos i t i on 2.8 A policy A 6 S if, for j = 1 , . . . , n — 1,

Aj+i ,y H h Any < Ay+i.y H V A „ - i , y < < Ay+1|y + Ay+2 ,y

Ay+2,y+i + f" A„,y+i Ay+ 2 ,y+l + V A n _ l j + i Ay + 2 , y + i

(2.S)

Proo f . By the same argument as in Proposition 1.8, A S S if, for k

Ay+i,y + gAy+2 ,y + • • • + qk~i-1 Akj

Ay+2,y+i + 9Ay+3>y+1 + • •• + qk-i~2 AkJ+1

< Ai+1,3 + <lAj+ 2,y + • • • + g fc~y~2Afc-i,y

~ ^y+2,y+i + 1A}+3,j+i + • • • + qk~:>-3Ak-u+1 '

It is then sufficient to show that (2.3) implies (2.4). By cross-multiplying and
rearranging terms, (2.4) is equivalent to

gAfcy Ay+i,y + h Afc_i,y
Ay+i,y + ?Ay+ 2 ,y + h qk~3~2Ak-it]- Ay+i,y + h A fc_i,y

= j + 3 , . . . , n ,

(2.4)

< Afc,y y+1 Ay+2,y+l + 1- Afc_i,y y+i
Ay+2,y+1 + gAy+3,y+i + 1- qk 3 3At-i,y+i Ay+2,y+i H h Afc-i,y+i

(2.5)

Now,
Afc,y + i

Ay +1,y + h A f c - i j Ay+ 2 ,y+i + 1- A f c _ l i J + 1

Ay+i,y H H Afcy
Ay+2,y+1 H 1" Afc,y+1

< Ay +1,y + h A f c - i ,y
AJ+2,3+1 + ' ' " + Afc_i,y+i

(2.6)

300 T. Makjasnroen

where the inequality on the right hand side of the equivalence is given by (2.3).
Also from (2.3), for m < k — 1,

A] + H h Amy ^ A y + 2 , y + l + • • • + A m > y + 1

A3 + l,3 + 1- -¿fe-io -¿j'+i.y+i + 1- -4fc-l,y+l

and because q% is decreasing in t we have

A]+i,j + gAy+2,y + •-• + q k ->~ 2 A k - l t y
Ay+i,y + Ay+2,y H h Ajt_i,y

?^y+2,y+i + ?2Ay+3,y+i + • • • + qk~3~2Akti+i >
A»"+2,y+l + ^y+3,y+l H 1- -¿k,y+l

(2.7)

Then (2.5) follows from (2.6) and (2.7). •
Thus for the processor problem, by the same argument as in Lemma 1.9, any

position independent policy is also in S. Formally,

Lemma 2.9 Let A. be a position independent policy that moves the succesful pro-
cessor I positions with probability a,-, a»' = 1- Then A E S.

Proo f . Same as Lemma 1.9. •
We can then restate Theorem 2.5 combined with Corollary 2.6 for position

independent policies as follows.

Theorem 2.10 Given two position independent policies A and B such that, for
k = l , . . . , n - 1 ,

At + qA2 + • • • + g^Afc > Bx + qB 2 + • • • + gfc_15fc

A1+qA2 + -- + qn~2 An-i B1+qB2 + -- + qn~2Bn

(2.8)

then { a / } <,t {wf } and C(p; A) <,< C(p;B) for any p = (P l , p , . . . , P) , P l > p.

Proo f . Direct application of Theorem 2.5 Corollary 2.6 and Lemma 2.9. •
There is no obvious interpretation of (2.8), unlike (1.8), as in the list problem.

However, (2.8) yields the same monotonicity result as in the list problem that
move-t'-position has a steady state cost stochastically smaller than move- (t + 1)-
position. Let A and B represent the move-t-position and move-(t + Imposition
policies respectively. Then,

Ai = A2 = • • • = Ai = 1, Ai+i = Ai+1 = • • • = An-i = 0

B\ = B2 = • • • = Bi+i = 1, Bi+2 = Bi+3 = • • • = = 0.

The Self-organizing List and Processor Problems under Randomized Policies 301

Therefore, for k = 1 , . . . , n — 1,

Ai + g A 2 + - + g f c ~ 1 A f c _ 1 + q+-+qk~l

A1 + gA2 + --- + g " - 2 A „ _ 1 ~ 1 + g + • • • + g - 1

> 1 + g + • • - + gfc~x

1 + g + • • • + g«'
J31 + qB2+-+ qk~^k

Bx + qB2 + ••• + g"-25„_r (2-9)

We have proved the following Corollary.

Corol lary 2.11 The steady state cost under the move-i-position policy is stochas-
tically smaller than that under the move-{i + Imposition policy.

P r o o f . By (2.9) and Theorem 2.10. •
By Theorem 2.5, it also holds, as in the case of the list problem shown in Section

1.2, that the policies in the two spectra of Tenenbaum and Nemes [9] tire ordered
such that the policies in each spectrum have steady state costs stochastically smaller
or larger than each other.

Acknowledgements . I would like to thank my advisor Prof. Sheldon M. Ross,
Anandhamahidol Foundation and Thammasat University.

References
[lj Anderson, E.J., Nash, P., and Weber, R.R. A counterexample to a conjecture

on optimal list ordering. Journal of Applied Probability, Vol. 19, No. 3 (1982),
730-732.

[2] Gonnett, G.H., Munro, J.I., and Suwanda, H. Exegesis of self-organizing linear
search. SI AM Journal on Computing, Vol. 10 (1981), No. 3, 613-637.

[3] Hendricks, W.J. The stationary distribution of an interesting Markov chain.
Journal of Applied Probability, Vol. 9, No. 1 (1972), 231-23.

[4] Hendricks, W.J. An account of self-organizing systems. SI AM Journal on Com-
puting, Vol. 5 (1976), No. 4, 715-723.

[5] Hester, J.H., and Hirschberg. D.S. Self-organizing Linear Search. Computing
Surveys, Vol. 17, No. 3 (1985), 295-311.

[6] Kan, Y.C., and Ross, S.M. Optimal list order under partial memory con-
straints. Journal of Applied Probability, Vol. 17, No. 4 (1980), 1004-1015.

[7] Phelps, R.I., and Thomas, L.C. On optimal performance in self-organizing
paging algorithms. Acta Cybernetica, Vol. 5, No. 1 (1980), 88-85.

[8] Ross, S.M. Processor reordering rules. Probability in the Engineering and In-
formation Science, Vol. 4, No. 2 (1990), 181-186.

302 T. Makjasnroen

[9] Tenenbaum, A., and Nemes, R.M. Two spectra of self-organizing sequential
search algorithms. SIAM Journal on Computing, Vol. 11, No. 3 (1982), 557-
566.

[10] Topkis, D.M. Reordering heuristics for routing in communication networks.
Journal of Applied Probability, Vol. 23, No. 1 (1986), 130-143.

Received October 21, 1991

