
Acta Cybemetica, Vol. 11, No. 1-2, Szeged, 1993

A Lower Bound for On-Line Vector-Packing
Algorithms*

G. Galambos* H. Kellerer * G. Woginger*'

Abstract
In this paper we deal with the vector-packing problem which is

a generalization of the well known one-dimensional bin-packing
problem to higher dimensions. We give the first, non-trivial
lower bounds on the asymptotic worst case ratio of any on-line
cf-dimensional vector packing algorithm.

K e y w o r d s , vector-packing, worst-case analysis, on-line algorithms,
lower bounds, competitive algorithms.

1 Introduction
We consider the following problem, called vector-packing: Given a list Ln =
{ai,... an) of n elements where each element is a a! dimensional vector (d > 1).
The i-th vector in the liste is denoted by «(a,-) = (wj (a,-),. . . , «¿(a,-)), where
0 < wy(a>) < 1 for j = 1,2, ...,d. The goal is to pack all elements into the
minimal number of bins in such a way that for any non-empty B bin of the packing
and for any index 1 < j < d

a.eB
For d = 1, this problem is the famous "classical" bin-packing problem, which is
known to-be NP-hard. Hence, we are mainly interested in 'good' approximation
algorithms.

The quality of an approximation algorithm is usually measured by its asymptotic
worst-case ratio that is defined as follows. For an arbitrary vector-packing algorithm
A and an arbitrary list of d-dimensional vectors L, we denote by L* the minimal
number of bins needed to pack the list L and by A[L) the number of bins which
algorithm A uses to pack the elements of L. Let R.A{k) denote the supremum of
the ratios A(L)/L* over all lists L with L* = k. The asymptotic worst case ratio
RA is defined by the equation

RA = lim sup RA [k).
k • oo

' T h i s research was supported by a grant from the Hungarian Academy of Sciences (O T K A Nr.
2037) and by the Christian Doppler Laboratorium fur Diskrete Optimierung.

^Department of Computer Sciences, Teacher Trainer College, Szeged, Hungary.
^Institute of Mathematik, University Grass, A-80X0 Graz, Austria
^Institute of Mathematik, Technical University Graz, A-8010 Graz, Austria

23

24 G. Galambos

The first approximation algorithms for vector-packing were designed by Kou and
Markowsky [31 . They defined so-called irreducible algorithms as-follows. During
the packing of an irreducible algorithm, for any two non-empty bins Bp and Bq
there exists an index j, 1 < j < d with

£ « / (o) + J2«/(«) >
a€Bp a£B,

(This means that the algorithm only opens a new bin if a newly arrived item can not
be packed into any old bin.) Kou and Markowsky proved the following proposition.

Proposi t ion 1.1 (Kou and Markowsky, [3]) The asymptotic worst case ratio of
any irreducible algorithm fulfills

RA<d+ 1.

Garey, Graham, Johnson and Yao [l] generalized the First-Fit (F F) and the
First-Fit Decreasing (FFD) algorithms to the d-dimensional case. They proved
that

RFF = D+W>

3
d < RFFD < d+ — ~ r e u ~ io

Note that both of these algorithms are irreducible and hence fulfill the statement
of Proposition 1.1.

Now let us turn to lower bounds on the worst case ratios of heuristics. Yao
in [6| studied the following class of the "decision-tree" algorithms. Let A be an
algorithm for the vector-packing problem. For each n > 0, the action of A on a
list L can be represented by a ternary tree Tn(A). Each internal node of Tn(A)
contains a test. For any input L, the algorithm moves down the tree, testing and
branching according to the result of the test, until it reaches some leaf. At the leaf,
a packing valid for all lists that lead to this leaf is produced. The cost of A for
input size n, Cn(A), is defined to be the number of tests made in the worst-case.
(In fact, this is the height of Tn(A)). Yao proved that if A is such an algorithm for
which Cn(A) = o(nlogn) then RA > d.

In this paper we deal with the class of the on-line algorithms: If an algorithm A
is in this class then it packs the elements one by one in the order given by the list
L. After having packed an element into some bin, the element will be never moved
again. E.g. algorithm FF mentioned above is an on-line algorithm. For d > 2 FF
has the best worst case ratio among all known on-line heuristics for «¿-dimensional
vector-packing.

As a consequence of the classical result of Liang [5| for one-dimensional on-
line bin-packing algorithms, the inequality RA > 1.5364... holds for all d > 1.
Till today there is no better results were known. In this paper we will prove a
d-dependent lower bound for on-line vector-packing algorithms. A formula for our
lower bounds is given in Theorem 2.1. Table 1 depicts the numerical values for
some small dimensions.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries and describes the construction of a bad item list for on-line heuristics.
Section 3 gives a rigorous proof for the lower bound. Section 4 finishes with the
conclusions.

A Lower Bound for On-Line Vector-Packing Algorithms 25

d Lower Bound d Lower Bound
2 1.67072 7 1.87504
3 1.75098 8 1.88891
4 1.80035 9 1.90002
5 1.83348 10 1.90910
6 1.85722 oo 2.00000

Table 1: Our lower bounds, rounded to five decimal places.

2 The construction
We start with defining the following sequence for any fixed d > 1. (Note that for
every d, the reciprocal values l/i,(<i) sum up to 1/2 d).

t0{d) = 2d+ 1
U{d) = tii^iU^id) - 1) + 1, t > 1.

A similar sequence introduced by Golomb [2] became one of the main tools in on-line
bin-packing. Lee and Lee [4] used it to design a good one-dimensional bin-packing
heuristic, and Liang [5] based his lower bound proof on the Golomb sequence.
With this definition, our main result may be stated as follows.

Theorem 2.1 For any on-line d-dimensional vector-packing algorithm A, its
asymptotic worst case ratio is at least

R U)> I
> ~ V ° ° .1 | A i 1 • 2-1) = \ <y(d)-l + d + 2

Remark . If we set d = 1 in Theorem 2.1, we exactly arrive at the well-known
lower bound of Liang [5].

The exact values for 2 < d < 10 are depicted in Table 1. As d tends to infinity,
the lower bound tends to 2. The remaining part of this paper is devoted to the
proof of Theorem 2.1.

Intuitively speaking, the underlying idea of our paper is as follows. We construct
an adverse strategy that forces every on-line algorithm A to behave poorly on a
special item list L or on some prefix of L. In the first step, we give A a list of very
small items to pack. In case A spreads these items on many bins, it does not receive
any further item and looses the game. In case A produces a 'reasonable' packing for
the small items, it receives another list of items. Again, A has the choice between
either producing a bad packing and loosing the game immediately, or producing a
(currently) good packing and receiving another list. Then in the final step, A gets
a list of big items. Now it turns out that everything it did before was wrong. It
had better packed the smaller items in such a way that remained enough space to
pack the big items. A looses the game against the adversary.

Now we start with the definition of the item lists. Let d > 1 and r > 1
be arbitrarily fixed integers. We consider the following lists, each consisting of n
elements.

26 G. Galambos

LQ L$ LÍ L3 L2 Li - Ll I?

«1(0

v2()

vs(-)

i + i f + i 0 0 0 0

í + 5 Í + 5 l + s 0 0 0

i + 5 i + 5 f + 5 | + 5 I + Í i + 5

0 0

0 0

ÍT + TiW + £2

Table 2: The elements used in the lists for d = 3 and r = 2

1. For any j £ { l , . . . , r } and a £ L3,

7 o i f i c d

2. For any k € { 1 , . . . , ci} and a £ L2k-i,

! 0 if i < d - k
2 ^ + 5 if t' = d - f c + l
Yi+6 if i = d-k + p,p = 2,...,k.

3. For any k £ {1, •.. ,d} and a £ ¿2*,

/ 0 if
& + Í if

i < d — k
i = d— k + p,p — 1,... ,k.

where

S <
4d(tr+1(d) - 1)'

« l W < 2r(í r + 1 (d) - 1) '
and

W)
The lists are presented to the on-line heuristic in the following order: First there
come the lists L} with j going down from r to 1, and afterwards there come the
lists Lj with j going up from 1 to 2d. The lists V with superscript contain the
very small items (all components of the corresponding vectors are zero with the
exception of the component with index d). The.lists L j with subscript, 1 < j < d
contain the larger items; Ust L^j is the list with the big items that arrive in the
final step. An illustration for d = 3 and r = 2 is given in Table 2.
Convention. Next we shall work under a fixed dimension d and a fixed r. To
simplify our notations, we shall use tj and Cj instead of t}-(d) and £y(r).

A Lower Bound for On-Line Vector-Packing Algorithms 27

3 The Proof
In this section we prove that any on-line heuristic must perform poorly on the list
L = Lr ... L1 L± ... L2d (as defined in the preceding section) or on some prefix of

Observation 3.1 For any integer 1 < j < r,

P r o o f . It can be proved by induction from definitions of t,-, e,- and S. •

L e m m a 3.2 For any integer n > 0, if (i r+i — l)|n

{Lr _JL_ 1 < j < r.

P r o o f . In this case (j = 1 ,2 , . . . , r) are positive integers. On the other hand,
by Observation 3.1, we can pack ty — 1 items of each of the lists Lr,..., L3 together
into one bin. •

Now for any integer 1 < j < 2d, let us define the set N}- in the following way:

N1=N2 = {k{tr+1-l):k=l,2,...},

Nj = {n(2d+l-j) :n€ Nj-i} 3 < j < 2d.

It is clear that Nx D N2 2 • • • 2 N2d.

L e m m a 3.3 For any 1 < j < 2d and n e JVy,

[U...LiLi...Ljy

P r o o f . The statement is proved by induction on j. First, the simple cases j = 1
and j = 2 are considered; the induction step is structured into two subcases. All
we have to do that is to give a feasible packing. Note that Observation 3.1 yields .

•=i

(j = 1). Let n € Ni be arbitrary. By the definition of JVy, 2d\n. So we always
pack 2d elements from each list of (L r ... L1Li) together into one bin B. If i < d
then for any a G B tij(o) = 0 holds, and if * = a we have

£ «,<«) < 2 d ^ + 5 +. - 2ds) < 1.

Hence we have a legal packing, using bins.

28 G. Galambos

(j = 2). Let n € N2 be arbitrary. Then d|n. Let us pack together d elements
from every list. For i < d u;(o) = 0 holds for each о 6 (LT ... Ь-Ь\Ь2), and for
г = d we have

Therefore we obtain a feasible packing, using ^ bins.

(Induction step) Now let 3 < j < 2d and assume that for any positive integer
j' < j, the statement is valid. Let n 6 Nj be arbitrary. We shall distinguish two
cases depending on whether j is odd or even.

A . j = 21 — 1 for some 2 < I < d. In the sequel we say that a non-empty bin has
type т = (r r , . . . r1 , Ti,..., r2d) if it contains exactly r* resp. r̂ elements from the
list LX resp. L{. Let us pack the elements of the concatenated list If . . . L1 Li... LJ
together into a bin В with type

2l+r-2 2d-2l+l
First, we will prove that this gives a legal packing, i.e. the following claim holds
for the bin B.
Claim 3.4

£ v , (a) < l 1 < »' < ci.
a€B

Proo f . The proof of this claim is divided into cases (i) thru (iv).
(i) If г < d - I, then Za€B « ¿ И =
(ii) If t = d — I + 1 then only the elements of L2I- 1 have non-zero coordinates

and therefore

£ v,(a) = {2d- 21 + 2)(ы _ 1 з + S) < 1.
a6B

(iii) If d - I -1-1 < t < d then

X>,(a) . = (2d-2l+2)(±-i+6) + (2i~2-2d+j)(±-.+6)
aSB

+

= (K - ,) (I + <) + (5 f l T + i) < 1 .

(iv) If г = d then

X) « i (a) < (2 d - 2 I + 2) (i + ff) + 0 " - 2) (^ + i)
a&B

'2d ' v 2d

2d — 1 1 1 _
2d + 2d+ l + 2d(2d + 1) ~ '

A Lower Bound for On-Line Vector-Packing Algorithms 29

This completes the proof of Claim 3.4 •
To get a feasible packing for (L r ...L1Li... Lj), we first take 2 d _^ [+ 2 = 2d-j+1

pieces of r type bins. By the definition of Nj, we know that 2d + 1 — j\n, and so,
we can pack all the elements of Lj into 2d+i-j bins. From the other lists, there
remain n = n — 2 d + " _ j . = (2d —j) items. By the definition of Nj, n g iVy-i.
But then, by our induction hypothesis, these remaining items can be packed into
n ^ j - bins. Therefore, we can pack all elements of (Lr ... L1 L\... Lj) into

n • = 2 < f + (j - l) (2 d - j) ~ = J_
2d-j + l n 2d n (2d + 1 — j)2d "2d

bins, and case A is settled.

H. j = 21, 2 < J < d. In this case we are going to pack d — l+l items using the
bin type below:

r = (l ^ ^ M - I + 1, d - I + 1 , 0 i l ^ L 0) .
2! + r-2 2d—21

Claim 3.5

< 1 l<i< d.
A€B

Proo f . The proof is done in a similar way as the proof of Claim 3.4:
(i) if i < d — I holds then the above sum is equal to 0,

(ii) if i = d — I +' 1 then only the lists £21-1 and L2\ have positive coordinates
on the position t

E '«*(«) •= (d- j + +«) + (<*-' + lJtrr^T + S) < 1,
06B

(iii) i f t f - / + l < » < d then

£>(a) = (2d-2l + 2)(^ + S) + (2i-3-2d+j)(^ + 6) + (^ ~ + S)

= (K _ 1) (^ + 0 + (_ L _ + i , < i ,

(iv) if t = d then

30 G. Galambos

Thus, Claim 3.5 is true.
To obtain a feasible packing for (Ly.,. LtL\... Lj), we first take pieces of

r type bins. By the definition of Nj, from n 6 Nj it follows that n = (2d+l—j)(2d+
2-j)n' with n- e N¡-2, provided that j > 4. But then n = 2(2d+l-j)(d-l+1)n\
Therefore, d — I + l|n, and so, we can pack all the elements of Ly- i and Lj into
d _ " + 1 bins. After this packing each list from (L r , . . . , L1, L\,..., Lj-2) contains n
unpacked elements where n = n — d_1+ 1 — d_"+1(<f — I).

Now let us observe that n 6 Nj-2. Then, by our induction hypothesis, the
unpacked items can be packed into n ^ j - bins. Therefore, we can pack all elements
of (Lr...L1Ll...LJ), into

" -3-2 = 2d + (/ — 2)(d— I) _ J_
d-l+l 2d n (d-l + l)2d n2d

bins, which completes the considered case and the proof of Lemma 3.3 too. •

Lemmas 3.2 and 3.3 give us upper bounds for the number of bins in the optimal
packings. Next, we will investigate the potential behaviour of arbitrary on-line
algorithms on the constructed list L. We introduce the following notations:

o fi = { 2 ? i , . . . , " . . . L i L i . . , L 2 i) } denotes the final packing of the concate-
nated list (L r ... L1 Li... L2d) produced by the on-line heuristic A. For any
type t = (rr ... t1 Ti... T2d), the number a(r) equals the number of bins of
type r in the packing p.

o, The subset /?* resp. /?y, contain only those bins which were used for the first
time by the on-line heuristic A during the packing of the list V resp. Lj (i.e.
their first item comes from Ll resp. Lj). Moreover, define for every 1 < t < r
and 1 < j < 2d the sets:
T® = {T : there exists a bin of type r in /? '} ,
Tj = { r : there exists a bin of type r in /?y},
and
T = {r : there exists a bin of type r in ¡3} — Ui<i< r u Ui<y<2<i •

Now we investigate the number of bins used by an arbitrary on-line algorithm
A while A is packing the elements of the concatenated list (LT ... L1 Li ... Lj).

A{L'...Li)=j2I2*(r)> l < t < r , (1)
<=t rer '

A{U ... L1 Lx ... Lj) = £ ¿2 + E E «(0 1 < J < 2d (2)
1=1 t€t< / = i r e r ,

and the number of the packed elements for each t resp. j, 1 < t < r, I < j < 2d :

A Lower Bound for On-Line Vector-Packing Algorithms 31

тёт

n = 2 » i - a (r) , l<]<2d. (4)
тет

Let us multiply the equations of (3) by f ^ j - Summarizing the equations of (l)
- (2) and subtracting the multiplied equations of (3) and (4) we get:

2d r + i
JZA(Lr...Li) + J2MLr...L1L1...LJ)-2dn-n'£=

• = i]=l » = i '

r 2d
= E(2 d+»') E « м + E (2 d - > + 4 E «(*) - (5)

•=i тег1 y=i г ег,-

E - w E ^ + f r , .) .

т е г ¿ = i 1 j=i

L e m m a 3.6 The right hand side of (5) is non-negative.

P r o o f . The proof is constructed into three parts. A . First we prove that for any 1 < t < r and r € Г*

. = i z > 1 « = i

Since т 6 ? , 7r = . . . = T , + 1 = 0 and r* > 0. Now if we have some component
r„ > 0 for some v (i.e. some item from Lv is contained in the corresponding
bin), then we replace this item by 2d elements of L1. After the replacement we
obtain a feasible packing of the considered bin and a new bin type f which is not
neccessarily contained in T*, but its first nonzero component is (?) ' . On the other
hand, it is easy to check that the weighted sums on the left hand side do not
decrease. Therefore, it is enough to prove that for any bin type т of the items from
the lists Lr,...,L1,L1,..., L2d, if r r = . . . = r< + 1 = 0, then

y^2d+ s , , .
> -t' <2d + i:

t _ i —
« = i l * 1

Now we replace each element of Lu by tu — 1 elements of Lu+1. This replacement
results a feasible packing, since

(tu - l) (- i - + e „ + 1) < + e u .

32 G. Galambos

On the other hand, the weighted sum in the newly constructed packing increases:
. 2cf + u + 1 2d + u+ 1 2 d + u

('« - — — r = — ; > 7 - = T -

Repeating this procedure for every u < t, we finally obtain a feasible packing
with only items from Ll and with an increased weighted sum. Since for every
feasible packing in a bin, r' < i,- — 1 holds, we obtain the desired result.
B . Secondly, we prove that for any 1 < j < 2d and r G Tj

2d 2d

«=1 v=)

B l . Let us consider the subcase j — 2k, 1 < k < d. We examine the (d- k+ l)-th
coordinate of the list Lj,..., L2d- Because of the definitions, it follows for each list
that for any a 6 [Lj !.. L2d), Vd-k+1(®) = 2d-j+2 s o statement is true.

B2 . If j = 2k — 1 then we again consider the (d — k + l)-th coordinate. Now
the smallest elements in this coordinate are those ones which belong to the list Lj :
if a 6 Lj then = 2d-j+2 an<^ s o desired inequality holds.

C. Finally, we prove that the right hand side of (5) is nonnegative. Indeed, by
case A , we obtain

r r

£ (2 d + t) £ a(r) = £ E +
• = 1 TGT* i=l T6T'

t'=l T€T{ « = 1 * « = 1

= E +
r e u ^ ^ T - «=i * «=i

On the other hand by the case B, 2d 2d

3=1 r e TJ j=I RETJ

2d 2d

* E E « w (E M
j=lr€Tj «=1

2d

E «(')£>•>•

Let us observe that for any 1 < j < 2d and r € Tj, Tr — ... = r1 = 0 , and so

t€U i<,<Mr, «=1 *

A Lower Bound for On-Line Vector-Packing Algorithms 33

Therefore the last three inequalities give us that the considered right hand side is
nonnegative which completes the proof of Lemma (3.6). •

Now we are ready to prove of Theorem 2.1. For this reason let n €E N2d be arbitrary.
Lemma 3.6 together with equation (5) yields

2d r 2d + t
^A{Lr ...U) + J2A{Lr •••L1L1...L3) >2dn + n^—!— (6)

y = i i = l

A[U...D)

« = i y = i

We define
A(T/ T.*\

1 < i < r
(Lr... L')*

_ A(Lr ...LiLx...Lj)
{Lr... L1Li... Lj)*

and

1 < j < 2d

R = max I max r*, max r}-1.

Now plugging R into (6) and using the results stated in Lemmas 3.2 and 3.3, we
get

r i 2 d r OJ , „ \—^ 1 „ n . . , v—N ¿d + i.

i = l ; = 1 i '=l

Finally, dividing by n and making r —• oo yields the statement of Theorem 2.1
•

4 Conclusion
In this paper we derived the first non-trivial lower bound for ¿-dimensional on-line
vector packing algorithms. The best on-line algorithm known today, the First-Fit
algorithm has asymptotic worst case ratio d + In relation to this result, our
lower bound is not too attractive, as it remain beneath 2 for any given d and there
is a wide gap to the upper bound.

Of course, the main open (and probably very hard) problem consists in giving
a better lower bound for on-Ime approximation algorithms that tends to infinity
as d tends to infinity, e. g. O(%/d) or Oflogd). Moreover, we invite the researchers
to design better on-line algorithms with smaller asymptotic worst-case ratios. A
good candidate might be the vector-generalization of the Harmonic Fit algorithm
analysed by Lee and Lee [4].
Acknowledgment . We thank Gunter Rote and Balazs Imreh for constructive
criticisms on the earlier version of this paper.

34 G. Galambos

References
[l] M.R.Garey, R.L.Graham, D.S. Johnson and A.C.C. Yao, Resource constrained

scheduling as generalized bin packing, J. Comb. Th. Ser. A. 21, (1976), 257-
298.

[2j S. Golomb, On certain non-linear sequences, American Math. Monthly 70,
(1963), 403-405.

[3] L.T. Kou and G. Markowsky, Multidimensional Bin Packing Algorithms, IBM
Journal of Research and Development, (1977), 443-448.

[4] C.C. Lee and D.T. Lee, A Simple On-line Bin Packing Algorithm, J. Assoc.
Comp. Mach. 32, (1985), 562-572.

[5] F.M. Liang, A Lower Bound for On-line Bin Packing, Inf. Proc. Letters 10,
(1980), 76-79.

[6] A.C.C.Yao, New Algorithms for Bin Packing, J. Assoc. Comp. Mach. 27,
(1980), 207-227.

(Received May SO, 1991.)

(Revised September 10, 1993 and November 15, 1993.)

