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Some problems concerning Armstrong relations 
of dual schemes and relation schemes in the 

relational datamodeP 
J. Demetrovics* V. D. Thi* 

Abstract 
Several papers [3,5,6,7,8,9,11,12] have appeared for investigating dual de-

pendency. The practical meaning of dual dependency was shown in [5,6]. In 
this paper we give some new results concerning dual dependency. The concept 
of dual scheme is introduced. Some characterizations of dual scheme, such 
as closure, generator, generating Armstrong relation, inferring dual depen-
dencies, irredundant cover, normal cover are studied from different aspects. 
We give a characterization of Armstrong relations for a given dual scheme. 
We prove that the membership problem for dual dependencies is solved by 
a polynomial time algorithm. We show that the time complexity of finding 
an Armstrong relation of a given dual scheme is exponential in the number 
of attributes. Conversely, we give an algorithm to construct a dual scheme 
from a given relation R such that R is Armstrong relation of it. This paper 
gives some polynomial time algorithms which find closure, irredundant cover, 
normal cover from a given dual scheme. 

In the second part of this paper we present some results related to Arm-
strong relations for functional dependency (FD for short) in Boyce-Codd nor-
mal form. The concepts of unique relation and unique relation scheme are 
introduced. We prove that deciding whether a given relation R over a set of 
attributes U is unique is solved by a polynomial time algorithm. We show 
some cases in which FD-relation equivalence problem is solved .in polynomial 
time. 

K e y W o r d s and Phrases : relation, relational datamodel, dual dependency, 
dual scheme, generating Armstrong relation, inferring dual dependencies, mem-
bership problem, closure, closed set, irredundant cover, normal cover, minimal 
generator, Boyce-Codd normal form. 

1 Introduction 
Now we give some necessary definitions that are used in next sections. The next 
sections present our new results. 
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Definition 1.1 Let R = {hi,..., hm} be a relation over U, and A,B Ç U. Then 
we say that B dually depends on A in R denoted A B) iff 

R 

{Vhit h}- G R){3a G A) (MA) = M « ) ) (36 6 S ) (M&) = h}{b))) 

Let DR = { (A, B) : A, B C U, A-^B). DR is called the full family of dual 
R 

dependencies of R. Where we write [A, B) or A —• B for A —B when R, d are 
R 

clear from the context. 

Definition 1.2 A dual dependency (DD) over U is a statement of the form A —• 
B,where A, B Ç U. The DD A —* B holds in a relation R if A B We also say 
that R satisfies the DD A —> B. 

Definition 1.3 Let U be a finite set, and denote P(U) its power set. Let Y C 
P(U) X P{U). We say that Y is a d-family over U iff for all A,B,C,D ÇU 

(1) {A, A) € Y, 

(2)[A,B)eY,(B,C)eY=>[A,C)eY, 

(3) (A,B) G Y, C C A, B C D ==> (C, D) G Y, 

(4) [A, B) G Y, (C, D)eY=> (AUC, BUD) G Y. 

(5) (A, 0) G Y = > A = 0. 

Clearly, Du is a d-family over U. 
It is known ¡6,7] that if y is an arbitrary d-family, then there is a relation R 

over U such that DR = Y. 
Definition 1.4 A dual scheme P is a pair < U. D >, where U is a set of attributes, 
and D is a set of DDs over U. Let D+ be a set of all DDs that can be derived from 
D by the rules in Definition 1.3. It is easy to see that D+ is a d-family over U. 

Clearly, if P —< U, D > is a dual scheme, then there is a relation R over U 
such that DR = D+ ( see, [6,7]). Such a relation is called an Armstrong relation 
of P. 

In this paper we consider the comparision of two attributes as an elementary 
step of algorithms. Thus, if we assume that subsets of U are represented as sorted 
lists of attributes, then a Boolean operation on two subsets requires at most |Z/| 
elementary steps. 

Definition 1.5 Let I Ç P(U), U G I, and A, B G I => AnB G I. Let M Ç P[U). 
Denote M+ = {FLM : M Ç M). We say that M is a generator of I iff M+ = I. 
Note that U G M+ but not necessarily in M, since it is the intersection of the empty 
collection of sets. 

Denote N = {A € I : A^n{A'e I : AC A}). 
It is proved [7] that N is the unique minimal generator of I. Thus, for any 

generator Ar of I we obtain N C N . 
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Definition 1.6 Let D be a d-family over U, and (A, B) G D. {A,B) is called a 
maximal left-side dependency of D ifVA' : A C A',(A',B) G D => A' = A. 
Denote by M(D) the set of all maximal left-side dependencies of D. Then A is 
called a maximal left-side of D if there existst a B such that (A, B) G M(D). 
Denote by G(D) the set of all maximal left-sides of D. 

Definition 1.7 Let G C P(U). We say that G is a d-semilattice over U if$,U G 
G, A,B € G => AllB e G. 

Theorem 1.8 [6] Let D be a d-family over U. Then G(D) is a d-semi!attice over 
U. Conversely, if G is a d-semilattice over U, then there exists exactly one d-family 
D such that G{D) = G, where D = {(A, B) : VC e G : A 2 C => B % C}. 

Theorem 1.9 Let K be a Sperner system over U. We define the set of antikeys of 
K, denoted by i f - 1 , as follows: 

K~l = {A C U : {B e K) => (B 2 A) and(A c C ) = > ( 3 5 € K){B C C)} 

It is easy to see that K~l is also a Sperner system over U. 

2 Dual schemes 
Definition 2.1 Let R be a relation over U. Set N^j = {a 6 U : /i,(a) ^ hj(a)}, 
and NJI = {N{J : 1 < i < j < |i?|}. Then NR is called the non-equality system of 
R. 

According to definition of relation 0 ^ NR. 
Let P =< U, D > a dual scheme over U. Then D+ is a d-family over U, G{D+) 

is the set of all maximal left-sides of D+. Clearly, G{D+) is a d-semilattice over U. 
Denote by N[D+) the minimal generator of G ( D + ) . 

Now we present a characterization of Armstrong relations for a given dual 
scheme. 

Theorem 2.2 Let P =< U, D > be a dual scheme,R be a relation over U. Then R 
is an Armstrong relation of P if and only if N(D+) C NR U {0} C G(D+). 

Proof : ( = > ) : We assume that R is an Armstrong relation of P, i.e. DR = D+. 
According to Theorem 1.8 we obtain G(DR) = G(D+). Now we prove that for an 
arbitrary relation R G(DR) = (NR - U)+ U {0} holds. Because G(DR) is a d-
family over U, we have 0, i/ G G [ D r ) - Clearly, U G (NR - U)+. It is obvious that 
VJV,-y ^ 0. We suppose that Nij ^ i/.Because for any a G U — N^j we obtain /1,(0) = 

hj(a), but V6 € Nij: K(6) ^ hy(6),i.e. { a } U NiS-J* JViy. Hence, JV{y e G(DR), 

holds. Consequently, NR C G(Dr). Thus, we obtain (NR - U)+ U { 0 } C G(DR). 
Conversely, if A G G(DR) — {0, £/}, then if we suppose that for all hi,hj G R 

then there is a G A such that hAa) = h, (a). So U A which contradicts the 
R 

definition of A. Consequently, there is an index pair (i, j) such that A C jV,y. We set 
T = {Nij : A C Nij). If there exists an Nij : A = JVt-y then A G NR. In the converse 
case we set B = n Nij. If A C B then for all JV.y G T we have A C TV,,.So 

w.-yer 
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B A which contradicts A G G(DR) — {0, U}.Consequently, we obtain A = B. 

Hence, A E ( N R - U)+ U { 0 } holds . T h u s , G{DR) = (NR - U)+ U { 0 } ho lds . 
Consequently , we have G(D+) = (NR — U)+ U { 0 } . A c c o r d i n g to definit ion of 
m i n i m a l generator we obtain JV(Z> + ) C NR U { 0 } C G(D+). 

(<=):From N(D+) C NR U {0} C G(D+) we have G(D+) = (NR - U)+ U {0}. 
According to above part of proof we obtain G(DR) = G(£>+). By Theorem 1.8 R 
is an Armstrong relation of P. The theorem is proved. 

Let P =< U,D > be a dual scheme. We set HP(A) = {a G U : {a} A G £>+}. 
Let Z(P) = {A G P(U) : HP(A) = A} . It is easy to see that Z(P) = G(£>+). 
Clearly, for all A G P(U) : A C HP(A) = HP(HP(A)) and A C B => HP(A) C 
Hp(B). 

A l g o r i t h m 2.3 ( Compute HP(A) ) 

Input: P =< U,D — {AI BI : i = 1,..., M) > a dual scheme over U, A G P(U). 
Output: HP(A) 
Step 1: We set A(0) = A. 
Step t + 1: If there is an AJ —* BJ G D such that B3 C A(i) and AJ % -A(i'), then 

we set A(i+ 1) = A(z)U (UB c>i(i) •^•i)- converse case we set HP(A) = A( i ) . 
It can be seen that there is a t such t h a t A = A ( 0 ) C A ( l ) C . . . C A(t) = 

A(t + 1) = ... 
By rules (3) and (4) in Definition 1.3 it can be seen that the DD { a , i , . . . , a l t } —• 

B is equivalent to a set of DDs { { a t l } —̂  B,..., {a,-«} —• B}. Consequently, we can 
assume that D only contains the DDs form { a } —*• B. Clearly, if A ^ 0 then 
A 0£ D. 

In ¡2] the notion of a F-based derivation tree for functional dependency is in-
troduced, in the analogous way we present a derivation tree for dual dependency 
as follows. 

Def in i t ion 2.4 Let P =< U,D > be a dual scheme and D only contains the DDs 
form {a} —• B. The set of derivation trees (DT for short) over P is constructed as 
follows: 

1. A node labeled with a is a DT,where a 6 U. 

2. If a is label of a leaf of DT Q and {a} —• { 6 i , . . . , bt} G D. Then we replace 
this leaf in Q by the subtree whose root labeled with a and 6 i , . . . , 6t as chidren 
of root.An obtained tree is a DT. 

S. Nothing else is a DT. 

R e m a r k 2.5 Let P =< U,D > be a dual scheme and D only contains the DDs 
form { a } —* B. We call a sequence DDs fdi,..., dm) is a derivation of a DD E —• F 
over P if dm = E F and for each t ( l < t < m) one of the following holds: 

(1) di £ D or di = A A 

(2) di is the result of applying rule (2) to two of DDs di,..., 

(3) d{ is the result of applying rule (3) to one of DDs dlt..., 

(4) di is the result of applying rule (4) to two of DDs d\,..., i-

Where rules (2),(8),(4) in Definition l.S. 
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Propos i t ion 2.6 By Algorithm 2.3 we obtain Hp(A) = A(t) and the time com-
plexity of Algorithm 2.3 is polynomial in the size of P. 

Proo f : It is easy to see that the time complexity of Algorithm 2.3 is polynomial 
in the size of P. Now we have to prove that a £ A(t) iff a € Hp (A). 

( = > ) : We prove by the induction. It is obvious that a £ .4(0) = A C Hp (A). 
We assume that A(t) C Hp(A), and a £ + l ) - A(i). 

According to construction of Algorithm 2.3 there exists Aj —» Bj £ D such that 
Bj C A(i), a £ Aj - A(t'). By (2) and (3) of Definition 1.3 we have {a } Bj. By 
Bj C A(i) and (3) of Definition 1.3 Bj —*• A(t') holds. According to the inductive 
hypothesis A(i) —* A holds. Consequently, by (2) of Definition 1.3 we obtain 
{a } A. Thus, a £ HP(A) holds. 

(-£=): We can assume that D only contains the DDs form { a } —» B. By induc-
tion on the length of the derivation of { a } —* F we can show that if { a } —• F £ Dt 
then there is a DT with root labeled a and a set of leaves of this DT is a subset of 
F. This proof is in the analogous way as for functional dependency ,see [2], it will 
be omitted. From this consider and based on the notion of DT by induction on the 
depth of derivation trees we can show that if a £ Hp (A) then a £ A(t). This proof 
is easy, it will be omitted. Our proof is complete. 

It can be seen that A B £ D+ iff A C HP{B). From this and by Algorithm 
2.3 the following proposition is clear. 

Propos i t ion 2.7 (The membership problem ) 

Let P = < U, D > be a dual scheme. X —• Y is a dual dependency. Then there 
exists a polynomial time algorithm deciding whether X —• Y £ D+. 

Let D be a d-family over [/, G(D) is the set of all maximal left-sides of D. 
Denote by N(D) the minimal generator of G(D). Denote s(D) = rran{m: |i?| = 
m, Dr = D). 

Theorem 2.8 [11] [2\N[D)\)1/2 < s(D) < 2|JV(£>)|. 

Theorem 2.9 (Generating Armstrong relation for a given dual scheme) The time 
complexity of finding Armstrong relation of a given dual scheme P is exponential 
in the size of P. 

Proo f : Let P =< U,D > be a dual scheme. We set HP(A) = {a £ U : 
{ a } — A £ £>+}. Let Z(P) = {A £ P(U) : HP(A) = A } . It is easy to see that 
Z(P) = G[D+). Thus, N(D+) is the minimal generator of Z{P). First we con-
tract an exponential time algorithm that finds a relation R such that DR = D+. 
From P we compute Z(P) by Algorithm 2.3. After that we construct the minimal 
generator of Z(P). We assume that N(D+) = {Ai,..., A,}. Construct a relation 
R-= {h1,h2,...., h2t-i, h2,} as follows: 

Vt = 1,.. . ' , s Vo £ U: h2i-1 (a) = 2i - 1 

{ 2" - l 
if a '£ Ai 
otherwise. 

According; to Theorem 2.2 we obtain DR = D+. 
Let us take a partition U — XiU, , U.Xm U JV, where m = [n/3j, and |X,| 

(1 < t < m). ' . .. ' . 
We set 
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H = {B:\B\ = 2 , B C XI for some t} if \W\ = 0, 
H = {B:\B\ = 2, B C XI for some »' : 1 < i < m - 1 or B C XM U W) if 

\W\ = 1, 
H = {B: |B| = 2,BC Xi for some t" : 1 < i < m or B = W } if \W\ = 2. 
It is easy to see that 
H~L = {A: |Xn JCil = 1,V*> if \W\ = 0, 
H~1 = { A : | A n X i | = 1,(1 < t < m - 1} and \AC\(Xm UW)| = 1} if \W\ = 1, 
H-1 = = 1,(1 <i < m) and \A n W\ = 1} if \W\ = 2. 
It is clear that n - 1 <Lff| < n + 2,3ln/4l < We construct a dual scheme 

P =< U, D = {U B: B € H) > . Based on Definition 1.9 and by Algorithm 
2.3 we obtain H~l C N(D+). By Theorem 2.8 we have (2|AT(£>+)|)1/2 < s[D+). 
Consequently, we obtain 3 < s(D+). Based on the definition of s(D+) it can 
be seen that we always can construct a dual scheme P such that the number of 
rows of any Armstrong relation of P is exponential in the size of P. Our proof is 
complete. 

A lgor i thm 2.10 ( Inferring dual dependencies) 

Input: a relation R = {hi,..., hm} over U. 
Output: a dual scheme P =< U,D > such that DR = D+. 
Step 1: Find the non-equality system NER = {NIJ : 1 < t < j < m} , where 

NI3- = {a S U : hi(a) ? h^a)}, 
Step 2: Find the minimal generator N, where N = {A e NER : A ^ n { B € 

NER : A C 5 } } . 
Denote elements of N by A j , . . . , As. 
Step 3: For every B C U if there is A,- such that B C A,-, we compute C = 

HBC/I and set C —» B. In the converse case we set U —• B. 
Denote T the set of all such dual dependencies 
Step 4: Set D = T - Q, where Q = { X — Y E T : X = Y or there is 

X Y1 E T:Y' C Y). 

Clearly, according to Theorem 2.2, Algorithm 2.10 finds a relation scheme P 
such that a given relation R is an Armstrong relation of P. 

Definition 2.11 Let P =< U,D >, P' =< U, D' > be two dual schemes. We say 
that P' is a cover of P if D = D+. It is obvious that P also is a cover of P . 

It can be seen that if P, P' are dual schemes over U then based on Proposition 2.7 
and Algorithm 2.3 there is a polynomial time algorithm deciding whether D+ = 
D'+. 

Definition 2.12 Let P =< U,D >, D = {A, — Bi : i = 1 , . . . , m} be a dual 
scheme. We say that P is an irredundant cover if for all T C D : D+ ^ T + . 

Now we give an algorithm to find an irredundant cover of a given dual scheme. 

Algorithm 2.13 (Finding an irredundant cover) 

Input : Let P =< U,D = {Ai —* Bi : i = 1,..., m} > be a dual scheme. 
Output : P =< U,D > is an irredundant cover of P. 
Step 1: Set L ( l ) = D 
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Step (i+1) : Set Q = L{i) - {A< Bi), and 

+ ^ otherwise. 

Then we set D' = L(m + 1). 

Propos i t i on 2.14 < U, L(m + l ) > is an irredundant cover of P. 

Proo f : First we show that < U,L(i + l) > is a cover of < U, L(i) > . If £,(»' +1 ) = Q 
then by Ai -<• Bi & Q+ we have L(i)+ = L(i + 1)+ . If L(i -f-1) = L(i) it is obvious 
that L(i+ 1)+ = L{i)+. So we have D+ = L{l)+ = ... = L(m + l ) + = D' +. Now 
we show that < U, D > is irredundant. Suppose that there is an irredundant cover 
< U, L > of P such that L C L(m + 1). Thus, there is a DD Ay B} e L{m + 1) 
but Aj Bj 0 L, where 1 < j < m. From the definition of L[j + 1) we obtain 
A, Bj <£ Q+, where Q = L(j) - {Ay 5y} . Since L[m + l ) C L{j) it follows 
that A, Bj £ Q' + , where Q' = L(m + 1) - { A y Bj). Clearly, Q' C Q, 
L C L(m + 1) — { A y —• Bj) hold. Consequently, Ay —» Bj ^ L+. This conflicts 
with the fact that L+ = D+. Our proof is complete. 

Let P =< U, D > be a dual scheme. We can assume that the set D only 
contains the DDs form {a } —• B. Based on this we give the next definition 

Definition 2.15 Let P =< U,D> be a dual scheme. P is called a normal dual 
scheme if P is irredundant and the following properties hold : 

(1) D only contains the DDs form {a} —• B, where a €E U, B E P{U), 

(2) for all { a } — B e D and B' C B : < U,D - { { a } - > B } u { { a } ^ B'} > is 
not a cover of P. 

Propos i t i on 2.16 Let P —< U, D > be a dual scheme. Then there is an algorithm 
finding a normal cover of P. The time complexity of it is polynomial in the size of 
P. 

Proo f : (1) is clear. Consequently, we assume that D only contains the DDs form 
{a } —• B. Based on Algorithm 2.13 from P we construct an irredundant dual 
scheme P which is a cover of P. Assume that P =< U,D = {{a,-} Bi : i = 
1, . . . , t } > , and Bi — For each t'(l < t < t) we set 12(1) = Bi, for 

1 fc 

E(j + 1) = { - 6.7 if W - W ) - M e D,+ 

1 E(j) otherwise. 

Denote Ti = E(h+ 1). According to Algorithm 2.3 and Proposition 2.7 we compute 
Ti in polynomial time in the size of P'. By induction we can show that {a, } -+ Ti £ 
D + and VT C T we obtain {a^} —• T D +. This is clear and-so its proof will 
be omitted. Now we set P" —< U, D" = { {a» } Ti : t = 1 t } > . . . It is easy to 

. see that P is a normal cover of P. By Algorithm 2.13 and Algorithm 2.3 we can 
compute P" in polynomial time in the size of P. Our proof is complete. 
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3 Relation schemes in BCNF 
In this section we give some new results concerning relation schemes in BCNF. We 
show some cases in which FD-relation equivalence problem is solved by polynomial 
time algorithms. Now we give some necessary definitions. 
Def init ion 3.1 Let R = {h\,..., hm} be a relation over U, and A, B C U. 

Then we say that B functionally depends on A in R denoted (A-^-*B) iff 
R 

(Vfc,-, hi 6 R)(Va g A ) ( M " ) = /»y(a)) (V6 e B){hi(b) = hs[b))) 

Let FN = {(A,B) : A, B C U, A-^B). FR is called the full family of functional 
R 

dependencies of R. Where we write (A, B) or A —• B for A B when R, f are 
ii 

clear from the context. 
A functional dependency over U is a statement of the form A —» 1?,where 

A, B C U. The FD A B holds in a relation R if AuB. We also say that R 
R 

satisfies the FD A —* B. 
It is easy to see that FR satisfies the following properties: 
VB C A: A B E FR (pseudoreflexivity), if A B 6 FR and C C D, then 

{A U D) {B U C} (augmentation), if A B € FR and {B U C) D, then 
( i u C } - t £>(pseudotransitivity). 
Def init ion 3.2 A relation scheme S,or RS for short, is a pair < U,F >. Where 
U is a set of attributes, and F is a set of FDs over U. Let F+ be a set of all FDs 
that can be derived from F by the above rules. Denote A + = {a: A —* {a} € ,F+} . 
A + is called the closure of A over S.Denote Z(F+) = {ACU:A+ = A). 

Clearly, in [l] if S =< U, F > is a RS, then there is a relation R over U such that 
FR = F+. Such a relation is called an Armstrong relation of S. 

Let R be a relation, S =< U, F > be a RS, and A C U. Then A is a key of R 

(a key of S, respectively) if (A —• U € F+, respectively). A is a minimal 
R 

key of R(S, respectively) if A is a key of R(S, respectively), and any proper subset 
of A is not a key of R(S, respectively). Denote KR(KS , respectively) the set of all 
minimal keys of R(S, respectively). 

Clearly, KR,KS are Sperner systems over U. 
Let R be a relation,S = < U.F > be a RS.il, 5 are in Boyce-Codd normal 

form (BCNF) if for each A { a } e F+(€ FR,respectively) and a & A then 
A-* U 6 F+[E FR, respectively). 
Definit ion 3.3 Let S =< U,F > be a RS. We say that S is a k-RS over U if 
F = {Ki —• U,..., Km —> U}, where {Ki,..., Km} is a Sperner system over U. It 
is easy to see that Ks = {Kx,..., 

It can be seen that a relation scheme S =< U, F > is in BCNF iff VA C U 
either A+ = A or A+ = U. Clearly, if S =< U, F > is in BCNF then using the 
algorithm for finding a minimal cover we can construct in polynomial time a fc-RS 
s' =< U,F' > such that F+ = F' +, see [10]. Conversely, it can be seen that an 
arbitrary k-RS is in BCNF. Consequently, we can consider a RS in BCNF as a 
fc-RS. 
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Theorem 3.4 [4] Let Si =< U,FX > ,S 2 =< U,F2 > be two RS over U. Then 
FS = F2+ iff Z(Fi + ) = Z(F2+), and Fi+ C F2+ iff Z{F2+) C Z[Fi + ). 

Theorem 3.5 [4] Let K be a Sperner system and S =< U,F > be a RS over U. 
Then Ks = K iff 

{UYUK'1 C Z(F+)C{U}UG{K~1), 

where GfK-1) = {A C U : 3B € K~l:A C £ } . 
Based on Theorem 3.5 we have 

Theorem 3.6 Let K = {Ki,..., Kt} be a Sperner system over U. Consider the 
relation scheme S = (U, F) with F = {Ki -» U,.. ., Kt —• U}. 

Then Ks = K, and Z{F+) = GiKg1) U {U}. 

Let R be a relation over U. Denote AJ = {a € U:A —* { a } € -FR}, and 
Z(Fr) = {ACU:A+=A}. 

According to Theorem 3.5 we can give examples for which there are two RSs 
Si =< U,Fi >,S2 =< U,F2 > such that KSl = but F^ / F2+. Clearly, for 
relations this consider is the same. 

We give the following notion. 

Definition 3.7 Let S =< U,F > be a RS, R be a relation over U. We call S 
(R, respectively) is an unique RS ( relation,respectively) if for all RS S' =< U, F' > 
( relation R'¡respectively) : KS = KS• (KR = KR>¡respectively) then F+ = F'+ 

[FR = FRI,respectively). 

Propos i t ion 3.8 The time complexity of deciding whether a given relation R over 
U is unique is polynomial in the sizes of R and U. 

Proo f : Let R a relation over U. By [13] from R we can compute KR in polynomial 
time in the sizes of R and U, where KR is a set of all minimal keys of R. 

Denote elements of KR~1 by AX,...., AT. Set MR = {Ai~a:a 6 U,i = 1,, .., i } . 
Denote elements of MR by Bi,...,Bt. We construct a relation R' — 

{h0, hi,..., h,} as follows: 
For all a € U, h0(a) = 0, for each t = 1, . . . , s h{(a) = 0 if a e Bi, in the 

converse case we set hi (a) = t. 
By [10] R' is in BCNF and KR = KR>. 
We construct a relation R" = {Zo> h , - - - , l t } as follows: 
l0(a) = 0 for all o e U. For all j = 1 , . . . , t then l, (a) = j if a & Ay, 
in the converse case set Zy(a) = 0. 
It can be seen that KR '= KR• and Z(FR•) = (see Definition 1.5). 
It is easy to see that MR, R and R are constructed in polynomial time in the 

sizes of U and R. 
Based on Theorem 3.5 we see that R is unique iff FR> = FR». Clearly,^» = FR" 

can be tested in polynomial time in the sises of R' and R". The proposition is 
proved. 

Definition 3.9 [4] Let K be a Sperner system over U. We say that K is saturated 
if for any A £ K, {A} U K is not a Sperner system. 
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Theorem S.10 [4] Let S =< U,F> be a RS. If Ks is a saturated Sperner system, 
then S is an unique RS: 

Examples show that there is a Sperner system K ( / i r respect ive ly ) such that 
K r K - 1 , respectively) is saturated, but K~l (A",respectively) is not saturated. 

Now we define the next notion. 

Definition S . l l Let K be a Sperner system over U. We say that K is inclusive, 
if for every A € K there is a B & K~1 such that B C A. We call K is embedded 
if for each A € K there exists a B G H:A C B, where H~l = K. 

Theorem 3.12 [13] Let K be a Sperner system over U. Denote H a Sperner system 
for which H = K. The following facts are equivalent: 

(1) K is saturated, 

(2) K~l is embedded, 

(S) H is inclusive. 

Let S =< U, F > be a RS in BCNF,i? be a relation in BCNF. Then we say 
that S is an inclusive RS if Ks is inclusive and R an embedded relation if K^1 is 
embedded. 

It can be seen that the BCNF property of S is polynomially recognizable. By 
[13] we can compute KR1 in polynomial time in the size of R, and based on poly-
nomial time algorithm finding minimal cover we also construct Ks from a given 
BCNF relation scheme. On the other hand, by definitions of embedded,inclusive 
Sperner systems we obtain the following proposition. 

Propos i t ion 3.13 Let S — < U,F > be a RS ,R be a relation over U. Then 

1. Deciding whether S is an inclusive RS is solved in polynomial time in the size 
of S. 

2. There exists an algorithm deciding whether R is an embedded relation and the 
time complexity of it is polynomial in the sizes of U and R. 

It is easy to see that if S =< U, F >, S' =< U, F' > are two RSs then deciding 
whether F+ = F'+ can be tested in polynomial time in the sizes of S and S'. 

Now we introduct the next problem. 
Let S =< U, F >,S' =< U,F' > be two RSs. Decide whether Ks = Ks<• 

The following proposition is clear. 

Propos i t ion 3;14 Let S, S' be two RSs.If S is unique then deciding whether Ks = 
Ks1 is polynomially recognizable. 

In [10] the FD-relation equivalence problem is introduced as follows: 
Let S =< U,F > be a RS, R be a relation over U. Decide whether F+ = FR, 

i.e. Ji is an Armstrong relation of S. 

Definit ion 3.15 Let Ki,K2 be two Sperner system over U. We set K = K\ U 
and TK = {A e K: fiB € K: A C B}. We say that the union K = Kx U K2 is 
equality if VAi, A2 G Tff: |Ai| = |A2|. 
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Based on Definition 3.15 we give the next theorem related to the FD-relation 
equivalence problem . 

Propos i t i on 3.16 Let S =< U,F> be a relation scheme in BCNF and R a 
relation over U in BCNF. Ks = {Ai Ap} (K^1 = {B1,...,Bq}) is the set of 
minimal keys of S ( the set of antikeys of R). Then if Ks U K^1 is equality then 
the FD-relation equivalence problem is solved in polynomial time in the sizes of S 
and R. 

P r o o f : Clearly, by [13] from R we compute K^1 in polynomial time in the size 
of R, and from S we find a ¿-relation scheme that is a minimum cover of S. 
The minimum cover is constructed in polynomial time in the size of S, We set 
K = KS U KFT1. Because K is equality,we assume that = m, and |f/| = n. We 
compute the number C™. Clearly, K and K~l are uniquely determined by each 
other. By definitions of KS and K^1 we can see that if \TK | ^ C™ then KS ^ KR. 
Thus, in BCNF class we obtain F+ ^ FR. 

Now we assume that \TK\ — C™. If there is A , ( l < i < p) such that AI C 
B){ 1 < j < q) then Ks KR. Consequently,we can assume that AI g By for 
all i, j. For each j = 1,... ,q we compute B'f. It can be seen that for all D C U 
D+ is computed in polynomial time in the size of S. We set M = {Bj U {a } : a G 
U — Bj} = {Mi,..., Mt}. It is obvious that M is computed in polynomial time. 
If B t ± U and for all I = 1 , . . . , t Af,+ = U hold then Bj E Kg1 holds, otherwise 
we obtain Bj & Kg 1 . If there is a Bj: Bj & Kg 1 then by the definition of antikeys 
KR t̂  Ks.We assume that for all j=l , . . . ,q Bj E Kg1. For each i = 1 p we 
set N = {A ; — {a} : a E Ai} = {Ni,..., N,}. It can be seen that N is computed in 
polynomial time. If there is a iV„(l < n < s) such that Nn g Bj for all j = 1 , . . . , q 
then AI KR holds. In the converse case we obtain AI G KR. Clearly, if there 
is an AI ^ KR then Ks j1 KR. We assume that for each i = l , . . . , p we have 
AI E KR. We set 

Z = {Ai - {a}: a G Ait i = 1 , . . . , p ) , 

W = {A G Q: A = A+, {A U { a } ) + - U, Va G U - A), 

J = {Bj U {a } : a G U - Bj,j = 1 , . . . , q}, 
I = {B E J:B+ = U, {B - a}+ ± UWa G B}. 

Based on definition of -Ks and definition of K w e can see that if either there 
is an A G W such that A £ KZ1 or there exists a B E I but B 0 Ks then 
KS KR. It can be seen that W, I are constructed in polynomial time in the 
sizes of S,R, KS,K~L. Finally, we see that if for all t = 1 , . . . , p, j = 1 , . . . , q 
Ai G KR,Bj E Kg1, W C K~l, I C Ks hold then by \TK\ = C™ and according 
to definition of set of minimal keys and definition of set of antikeys we obtain 
KR = KS- Since S, R are in BCNF we have FR = F+. The proof is complete. 

Let K be a Sperner system over U. We say that K is pseudo-monotonous if for 
each Sperner system K' : K N K' = 0 and KU K' is a Sperner system over U then 
K'1 C {K U K'}"1 • 

We say that K is a changed Sperner system if for each H' : H' C H then there 
are AE K,B E H1-1 such that Ac. B, where i f - 1 = K. 
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Propos i t ion 3.1T Let S be a RS in BCNF, R be a relation in BCNF. Then if 
either Ks is pseudo-monotonous or K^1 is changed, then FD-relation equivalence 
problem is solved in polynomial time in the sizez of S and R. 

Proo f : First we assume that K ^ 1 is a changed Sperner system. Based on a 
polynomial time algorithm finding a minimal cover,we construct a set of all minimal 
keys Ks . It is known [13] that from R we compute K ^ 1 in polynomial time in the 
size of R. 

If there are A € Ks and B € K^1 such that AC B, then Ks ± KR. Thus,for 
all A G KS,B G KR1 we can assume that A £ B. We set X = {A - {a}: A G 
Ks, a G A } . If for all C G X, B G K w e obtain C C B then Ks C KR. In the 
converse case we have Ks KR. It is easy to see that X is computed in polynomial 
time. We assume that Ks C KR. 

For each B G KJ^1 we compute . If there is a B such that B+ = U then 
Ks t* KR. We assume that B+ ? U for all B G K^1. We set Y = {B U { a } : B G 
K^,a G U — B}. It is obvious that Y is computed in polynomial time. If for 
all- D G Y we have D+ = U then K^1 C Kg1. In the converse case we obtain 
Kx1 ± K^Because K and K'1 are uniquely determined by each other, we have 
KR ^ Ks- Now assume that K^1 C Kg1' and Kg Q KR. By hypothesis K^1 is a 
changed Sperner system. Consequently,if Ks C KR then there are B G K^1 and 
E € K^1 such that B C E. Hence, K^1 % Kg1 holds.Thus, Ks = KR. Because 
S, R are in BCNF, we obtain FR = F+. 

If 5 is pseudo-monotonous then the proof is the same. The proof is complete. 

4 Conclusion 
Our further research will be devoted to the following problems: 

1. What is the time complexity of finding a dual scheme P from a given relation 
R such that D+ = DR 

2. G.iven a relation scheme S and a relation R. What is the time complexity of 
deciding whether Ks = KR. 

3. Let Si, S2 be two relation schemes over U. What is the time complexity of 
deciding whether Ksx = K$2 . 

4. Let S be a RS. What is the time complexity of deciding whether 5 is an 
unique RS. 
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