Structuring grammar systems by priorities and hierarchies*

Victor Mitrana ${ }^{\dagger} \quad$ Gheorghe Păun ${ }^{\ddagger}$ Grzegorz Rozenberg ${ }^{\text {§ }}$

Abstract

A grammar system is a finite set of grammars that cooperate to generate a language. We consider two generalizations of grammar systems: (1) adding a priority relation between single grammar components, and (2) considering hierarchical components which by themselves are grammar systems. The generative power of these generalized grammar systems is investigated, and compared with the generative power of ordinary grammar systems and of some well-known types of grammars with regulated rewriting (such as matrix grammars). We prove that for many cooperating strategies the use of priority relation increases the generative capacity, however this is not the case for the maximal mode of derivation (an important case, because it gives a characterization of the ETOL languages). We also demonstrate that in many cases the use of hierarchical components does not increase the generative power.

1 Introduction

A cooperating grammar system (introduced in [7], and motivated by considerations related to two level grammars), is a set of usual Chomsky grammars which cooperate in rewriting sentential forms. In [7] a component that is currently rewriting a sentential form cannot quit until it introduces a symbol which it cannot rewrite (the current sentential form is not a sentential form of this component). Only one component at a time rewrites a sentential form. The set of terminal strings obtained in

[^0]this way is the language generated by the system. It is shown in [7] that this type of cooperating grammar systems (equiped with a control over the sequencing of the individual components) generates the family of programmed languages (which is equal to the family of languages generated by matrix grammars).

The cooperating grammar systems were rediscovered in [1], under the name of modular grammars (a term related to the time varying grammars). A rather intensive study of cooperating grammar systems has been initiated in [2], where the grammar systems were related to the notions from artificial intelligence, such as the blackboard model in problem solving [9]. (See also Chapter 1 of [3] for further links between grammar systems and topics in artificial intelligence, computer science, and cognitive psychology.) Within this framework, more conditions on enabling and disabling of individual components were considered. Two, quite basic, examples of this type are: the step limitations (a component must work exactly, or at least, or at most a given prescribed number of steps), and the maximal competence strategy (a component must work as long as it can) - this is similar in some extent to the stoping condition from [7]. The latter strategy is particularly interesting, because it yields a characterization of the family of ETOL languages.

A number of novel cooperating strategies has been considered recently - forming the teams of components, as in [6] and [9], is one of such strategies.

In this paper we consider two quite natural modifications of the basic model. The first of these is adding a priority relation between the components of a system. A component can become active only when no other component with a greater priority can rewrite the current string. The other modification consists of allowing components which by themselves are grammar systems, or systems of grammar systems, etc.

We demonstrate that neither of the two modifications increases the generative capacity when maximal competence strategy is used. For the other strategies, adding the priority relation strictly increases the generative power.

We end this section by pointing out that both modifications of grammar systems we consider in this paper, viz. priorities and hierarchies, are very natural. Adding priorities in rewriting systems in order to ensure the deterministic applicability of rules is a rather standard mechanism - e.g. it is used in regulated rewriting in context-free grammars and in term rewriting systems. Also, the way that a computation in a grammar system is defined on the base of computations of basic units (grammars) may be seen as just a specific cooperation mechanism. In order to understand its power, it is natural to consider the bootstrapping of this mechanism

- take grammar systems as basic units and obtain "grammar systems of depth 2^{n} by organizing their work together by a given cooperation mechanism,
and proceeding inductively
- take grammar systems of depth $i \geq 2$ and organize their work together by a given cooperation mechanism obtaining "grammar systems of depth $i+1$ ".

Then a way to understand a given cooperation mechanism as defined in grammar systems is to investigate the relationship between the generative power of grammar systems of different depth. This leads one then to hierarchical grammar systems.

2 Basic definitions

For an alphabet V, V^{*} denotes the free monoid generated by V; the empty string is denoted by λ, and $|x|$ denotes the length of $x \in V^{*}$. The families of context-free, contextsensitive and recursively enumerable languages are denoted by $C F, C S$, and $R E$, respectively; $E T O L$ denotes the family of ETOL languages.

A matrix grammar is a construct $G=(N, T, S, M, F)$, where N, T are disjoint alphabets, $S \in N, M$ is a finite set of sequences, called matrices, $\left(A_{1} \rightarrow x_{1}, \ldots, A_{n} \rightarrow\right.$ $\left.x_{n}\right), n \geq 1$, of context-free rules over $N \cup T$, and F is a set of occurrences of rules in matrices of M.

For $m=\left(A_{1} \rightarrow x_{1}, \ldots, A_{n} \rightarrow x_{n}\right) \in M$, and $w, w^{\prime} \in(N \cup T)^{*}$, we define $w \Longrightarrow_{m} w^{\prime}$ iff there are $w_{1}, w_{2}, \ldots, w_{n+1}$ in $(N \cup T)^{*}$ such that $w=w_{1}, w^{\prime}=w_{n+1}$, and for each $i, 1 \leq i \leq n$, either $w_{i}=w_{i}^{\prime} A_{i} w_{i}^{\prime \prime}, w_{i+1}=w_{i}^{\prime} x_{i} w_{i}^{\prime \prime}$, or A_{i} does not occur in $w_{i}, w_{i+1}=w_{i}$ and $A_{i} \rightarrow x_{i}$ appears in F.

If $F=\emptyset$, then the grammar is said to be without appearance checking (and the component F is omitted from the specification of G).

We denote by $M A T_{a c}$ (respectively, $M A T_{a c}^{\boldsymbol{\lambda}}$) the family of languages generated by λ-free (arbitrary) matrix grammars; when the appearance checking feature is not present we remove the subscript ac.

A (context-free) ordered grammar is a construct $G=(N, T, S, P, \succ)$, where N, T, S, P are as in a context-free grammar, and \succ is a partial order relation over P. A rule $A \rightarrow x$ in P can be used for rewriting a string w only if no rule $B \rightarrow y$ in P with $B \rightarrow y \succ A \rightarrow x$ can rewrite the string w. The family of languages generated by λ-free ordered grammars is denoted by $O R D$, and $O R D^{\lambda}$ is used for the case when λ-rules are allowed.

It is known that

$$
\begin{aligned}
& C F \subset M A T \subset M A T_{a c} \subset C S \\
& M A T \subset M A T^{\lambda} \subset M A T_{a c}^{\lambda}=R E, \\
& C F \subset E T O L \subset O R D \subset M A T_{a c}
\end{aligned}
$$

For the basic elements of formal language theory the reader is referred to [11]; for Lindenmayer systems we refer to [10] and for regulated rewriting to [4].

Definition 1 A cooperating distributed (cd, for short) grammar system is a construct

$$
\Gamma=\left(N, T, S, P_{1}, P_{2}, \ldots, P_{n}\right)
$$

where N, T are disjoint alphabets, $S \in N$, and $P_{i}, 1 \leq i \leq n$, are finite sets of context-free rules over $N \cup T$.

The sets P_{i} are called the components of Γ; we also say that Γ is a cd grammar system of degree n.

For a component P_{i} from a grammar system Γ as above, $\operatorname{dom}\left(P_{i}\right)=\{A \in N$ $\left.A \rightarrow x \in P_{i}\right\}$, and we define the derivation relation $\Longrightarrow P_{i}$ in the usual way. Then we can consider derivations in P_{i} of exactly k successive steps, of at least k steps, at most k steps, and of an arbitrary number of steps; they are denoted by $\Longrightarrow \overline{\bar{P}}_{i}^{k}, \Longrightarrow{ }_{P_{i}}^{k}, \Longrightarrow{\frac{1}{P_{i}}}^{k}$, and $\Longrightarrow{ }_{P_{i}}^{*}$, respectively. Another important relation is

$$
x \Longrightarrow \Longrightarrow_{P_{i}}^{t} y \text { iff } x \Longrightarrow_{P_{i}}^{*} y \text { and there is no } z \in(N \cup T)^{*} \text { such that } y \Longrightarrow_{P_{i}} z
$$

(the derivation is maximal in the component P_{i}).

In this way we have specified stop conditions for the components, i.e. conditions under which an active component must/can become inactive.

For $f \in\{*, t\} \cup\{\leq k,=k, \geq k \mid k \geq 1\}$ the language generated by Γ in the f mode is defined by

$$
\begin{aligned}
L_{f}(\Gamma)= & \left\{x \in T^{*} \mid S \Longrightarrow{ }_{P_{i}}^{\prime} x_{1} \Longrightarrow{ }_{P_{i,}}^{f} x_{2} \Longrightarrow{ }_{P_{i},}^{f} \cdots \Longrightarrow{ }_{P_{i},}^{f} x_{r}=x,\right. \\
& \left.r \geq 1,1 \leq i_{j} \leq n, 1 \leq j \leq r\right\} .
\end{aligned}
$$

The family of such languages, generated by systems with at most n components (all of them without λ-rules) is denoted by $C D_{n}(f)$ (if λ-rules are allowed, then we write $C D_{n}^{\lambda}(f)$). The union of the families $C D_{n}(f)$ for all n is denoted by $C D_{\infty}(f)$.

In [2] and [3] it is proved that:

$$
\begin{aligned}
& C F=C D_{\infty}(=1)=C D_{\infty}(\geq 1)=C D_{\infty}(*)=C D_{\infty}(\leq k), k \geq 1, \\
& C F \subset C D_{n}(=k) \cap C D_{n}(\geq k), n \geq 2, k \geq 2, \\
& C D_{\infty}(=k) \subseteq M A T, C D_{\infty}(\geq k) \subseteq M A T, k \geq 1 \\
& C F=C D_{1}(t)=C D_{2}(t) \subset C D_{n}(t)=E T 0 L \\
& \left.\quad \text { (hence also } C D_{n}^{\lambda}(t)=E T 0 L\right), n \geq 3
\end{aligned}
$$

3 Introducing orderings and hierarchies into grammar systems

We introduce now new classes of grammar systems which will be investigated in this paper.

Definition 2 A grammar system with priorities (pcd grammar system) is a construct $\Gamma=\left(N, T, S, P_{1}, \ldots, P_{n}, \succ\right)$, where $N, T, S, P_{1}, \ldots, P_{n}$ are as in a cd grammar system, and \succ is a partial order relation over the set of components. For a derivation mode f, two strings $x, y \in(N \cup T)^{*}$, and a component P_{i} of Γ we write $x \Longrightarrow{ }_{P_{i}}^{(f,>)} y$ if and only if $x \Longrightarrow{ }_{P_{i}}^{f} y$ and for no component P_{j} with $P_{j} \succ P_{i}$ and no string $z \in(N \cup T)^{*}, x \Longrightarrow{ }_{P_{j}}^{f} z$ holds.

Note that if $x \Longrightarrow{ }_{P_{i}}^{f} y$, then no P_{j} with $P_{j} \succ P_{i}$ can rewrite x in the f mode - but there may be P_{j} with $P_{j} \succ P_{i}$ that can rewrite x in some way (e.g. P_{j} can make only one rewriting step on x while $f=" \geq 2^{n}$).

We denote by $P C D_{n}(f)$ the family of languages generated by (λ-free) pcd grammar systems of degree at most n in the derivation mode f. Again, we add the superscript λ when also λ-rules may be used, and we replace n with ∞ when the degree is not bounded.

Here is an example of a pcd gramar system. Let

$$
\begin{aligned}
\Gamma= & \left(\left\{S, A, B, A^{\prime}, B^{\prime}, A^{\prime \prime}, B^{\prime \prime}\right\},\{a, b, c\}, S, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, \succ\right), \\
& P_{1}=\left\{A \rightarrow a A^{\prime} b, B \rightarrow c B^{\prime}\right\}, \\
& P_{2}=\left\{A \rightarrow A^{\prime \prime}, B \rightarrow B^{\prime \prime}\right\}, \\
& P_{3}=\left\{A^{\prime} \rightarrow A, B^{\prime} \rightarrow B, A^{\prime \prime} \rightarrow a b, B^{\prime \prime} \rightarrow c\right\}, \\
& P_{4}=\left\{A^{\prime} \rightarrow A^{\prime}, B^{\prime} \rightarrow B^{\prime}, A^{\prime \prime} \rightarrow A^{\prime \prime}, B^{\prime \prime} \rightarrow B^{\prime \prime}\right\}, \\
& P_{5}=\{A \rightarrow A, B \rightarrow B, S \rightarrow A B\}, \\
\text { and } & P_{4} \succ P_{1}, P_{4} \succ P_{2}, P_{5} \succ P_{3} .
\end{aligned}
$$

Then

$$
L_{f}(\Gamma)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
$$

for all $f \in\{*, \geq 1\} \cup\{\leq k \mid k \geq 2\}$ (and also for $f \in\{=2, \geq 2\}$).
Indeed, take a string $a^{n} A b^{n} c^{n} B, n \geq 0$; after using P_{5}, the component in which we must start any derivation, we have $n=0$. We can apply either P_{1} or P_{2}, using only one or both rules from each of these components. If we use only one rule, then we obtain either $a^{n+1} A^{\prime} b^{n+1} c^{n} B$ or $a^{n} A b^{n} c^{n+1} B^{\prime}$ when using P_{1}, and we obtain either $a^{n} A^{\prime \prime} b^{n} c^{n} B$ or $a^{n} A b^{n} c^{n} B^{\prime \prime}$ when using P_{2}. In all cases, both P_{4} and P_{5} can be used afterwards (and one of them has to be used, because they have the priority over P_{1}, P_{2}, P_{3}). However, nothing changes then in the current string, and so the derivation is blocked. Consequently, when using P_{1}, P_{2} we must use both rules from each of them, thus obtaining either $a^{n+1} A^{\prime} b^{n+1} c^{n+1} B^{\prime}$ or $a^{n} A^{\prime \prime} b^{n} c^{n} B^{\prime \prime}$. Now P_{4} is applicable and it changes nothing, but it does not forbid the use of P_{3} (P_{5} is not applicable). If, using P_{3}, only one of A^{\prime}, B^{\prime} in $a^{n+1} A^{\prime} b^{n+1} c^{n+1} B^{\prime}$ is replaced by A, B, respectively, then again the derivation is blocked in the components P_{4}, P_{5}, hence we must produce $a^{n+1} A b^{n+1} c^{n+1} B-$ this is a string of the form that we have started with, hence the derivation can be iterated. If from $a^{n} A^{\prime \prime} b^{n} c^{n} B^{\prime \prime}$ we produce either $a^{n+1} b^{n+1} c^{n} B^{\prime \prime}$ or $a^{n} A^{\prime \prime} b^{n} c^{n+1}$, then the only applicable components are P_{3} and $P_{4} ; P_{4}$ changes nothing, hence we eventually will use P_{3} again, and get in this way a terminal string $a^{n+1} b^{n+1} c^{n+1}$.

Definition 3 A hierarchical grammar system (hcd grammar system) of depth $h, h \geq 0$, is

1. a context-free grammar $\Gamma=(N, T, S, P)$ if $h=0$,
2. a construct $\Gamma=\left(N, T, S, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right), m \geq 1$, if $h \geq 1$, where $\Gamma_{i}=$ ($\left.N, T, S, \gamma_{i}\right), 1 \leq i \leq m$, are grammar systems of depth $h-1$.

Thus, at the bottom level of a hcd grammar system we have sets of context-free rules, on the next level it contains sets of such sets, then sets of sets of sets and so on. The systems $\gamma_{1}, \ldots, \gamma_{m}$ from the specification of Γ in point 2 of the above definition are called components or subsystems of Γ of depth $h-1$.

Here is an example of a hod grammar system of depth 2:

$$
\begin{aligned}
\text { level two }: & \Gamma=\left(\left\{S, A, B, A^{\prime}, B^{\prime}\right\},\{a, b, c\}, S, \gamma_{1}, \gamma_{2}\right), \\
\text { level one }: & \gamma_{1}=\left\{\gamma_{1,1}, \gamma_{1,2}\right\} \\
& \gamma_{2}=\left\{\gamma_{2,1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\text { level zero : } \gamma_{1,1} & =\left\{A \rightarrow a A^{\prime} b, B \rightarrow c B^{\prime}\right\} \\
\gamma_{1,2} & =\left\{A^{\prime} \rightarrow A, B^{\prime} \rightarrow B\right\} \\
\gamma_{2,1} & =\{S \rightarrow A B, A \rightarrow A, A \rightarrow a b, B \rightarrow c\}
\end{aligned}
$$

We known how to define a derivation step in a system of depth 0 (this is a usual derivation step in a context-free grammar), and we know how to define the derivation modes $\Longrightarrow{ }_{P}^{f}$, for $f \in\{*, t\} \cup\{\leq k,=k, \geq k \mid k \geq 1\}$ in a set P of rules. Then, for a system of depth $h \geq 2, \Gamma=\left(N, T, S, \gamma_{1}, \ldots, \gamma_{m}\right)$ we define, for the component $\gamma_{j}, 1 \leq j \leq m$,

$$
\begin{aligned}
& x \Longrightarrow{ }_{\gamma_{j}}^{=k} y \text { iff } x \Longrightarrow{ }_{\gamma_{j, i_{1}}}^{=k} x_{1} \Longrightarrow{ }_{\gamma_{j, i_{2}}}^{=k} \ldots \Longrightarrow{ }_{\gamma_{j, i_{k}}}^{=k} x_{k}=y, \\
& \gamma_{j, i r}, 1 \leq r \leq k \text {, are components of } \gamma_{j} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{j, i_{r}}, 1 \leq r \leq s, \text { are components of } \gamma_{j}, r \leq k,
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{j, i_{r}}, 1 \leq r \leq s, \text { are components of } \gamma_{j}, r \geq k, \\
& x \Longrightarrow{ }_{\gamma_{j}}^{*} y \text { iff } x \Longrightarrow_{\gamma_{j, i_{1}}}^{*} \Longrightarrow_{\gamma_{j, i_{2}}}^{*} \ldots \Longrightarrow_{\gamma_{j, i},}^{*} x_{0}=y \text {, } \\
& \gamma_{j, i r}, 1 \leq r \leq s, \text { are components of } \gamma_{j}, r \geq 0, \\
& x \Longrightarrow_{\gamma_{j}}^{t} y \text { iff } x \Longrightarrow_{\gamma_{j}}^{*} y \text { and there is no } z \in(N \cup T)^{*} \\
& \text { such that } y \Longrightarrow{ }_{\gamma_{j}}^{=1} z \text {. }
\end{aligned}
$$

Continuing the previous example, let us consider the $=2$ derivation mode. Starting from S, we must use γ_{2}, which contains only one subsystem, hence

Hence after using $S \rightarrow A B$ and $A \rightarrow A$ (three times) we obtain $x=A B$. Now γ_{1} must be applied, that is we must find a derivation

$$
A B \Longrightarrow{ }_{\gamma_{1, i}}^{=2} y_{1} \Longrightarrow \underset{\gamma_{1, j}}{=2} y_{2},
$$

for $i, j \in\{1,2\}$. The only possibility is $i=1, j=2$, hence we get

$$
A B \Longrightarrow \gamma_{\gamma_{1}}^{=2} a A b c B \text {, because } A B \Longrightarrow \gamma_{\gamma_{1,1}}^{=2} a A^{\prime} b c B^{\prime} \Longrightarrow \gamma_{\gamma_{1,2}}^{=2} a A b c B .
$$

This step can be iterated, obtaining $a^{n} A b^{n} c^{n} B, n \geq 0$, and then γ_{2} can be used for replacing A, B with $a b, c$, respectively. If the current string contains only one nonterminal, then γ_{1} cannot be applied, hence after using γ_{2} either a nonterminal string as above is produced or a terminal string must be obtained. It is easy to see that the generated language is

$$
L_{=2}(\Gamma)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} .
$$

We denote by $H_{h} C D(f)$ the family of languages generated by grammar systems of depth at most $h, h \geq 1$, in the derivation mode f; we also set $H_{0} C D(f)=C F$, for all f.

4 The generative power of grammar systems with priorities

In this section we will consider the effect of adding a priority relation on the generative power of grammar systems.

The next results follow directly from the definitions.

Lemma $1 C D_{n}(f) \subseteq P C D_{n}(f), P C D_{n}(f) \subseteq P C D_{n+1}(f), n \geq 1$, for all $f \in$ $\{*, t\} \cup\{\leq k,=k, \geq \vec{k} \mid k \geq 1\}$.

The example from the end of the previous section implies that $P C D_{n}(f)-C F \neq$ \emptyset, for $n \geq 5, f \in\{*, \geq 1\} \cup\{\leq k \mid k \geq 2\}$. Since $C D_{n}(f)=C F$, for all $n \geq 1$, and f as above (see the end of Section 2), this demonstrate that adding priorities strictly increases the generative power. This result can be extended also to modes of derivation other than t.

Theorem $1 P C D_{n}(f)-C D_{\infty}(f) \neq \emptyset, n \geq 10, f \in\{*\} \cup\{\leq k,=k, \geq k \mid k \geq 1\}$.
Proof. Consider the system

$$
\Gamma=\left(\left\{S, A, A^{\prime}, B, B^{\prime}, B^{\prime \prime}\right\},\{a\}, S, P_{1}, P_{2}, \ldots, P_{10}, \succ\right)
$$

with the components and the priority relations given in the following figure, where the components P_{i}, P_{j} are in relation $P_{i} \succ P_{j}$ iff P_{i} is placed above P_{j} in one of the "composite boxes" below:

$P_{1}: \stackrel{B^{\prime}}{B^{\prime \prime} \rightarrow B^{\prime}} \rightarrow B^{\prime \prime}$
$P_{2}: A \rightarrow A$
$A \rightarrow A^{\prime} A^{\prime}$

$P_{3}: B \rightarrow B$
$P_{4}:$$A^{\prime} \rightarrow A^{\prime}$ $A^{\prime} \rightarrow A$

$P_{7}: A^{\prime} \rightarrow A^{\prime}$
$B_{8}: B^{\prime} \rightarrow B^{\prime}$
$B^{\prime} \rightarrow B$
$B^{\prime} \rightarrow B^{\prime \prime}$

$$
\begin{array}{|c|}
\hline P_{9}: \begin{array}{l}
B \rightarrow B \\
B^{\prime} \rightarrow B^{\prime}
\end{array} \\
\hline P_{10}: \begin{array}{l}
A \rightarrow A \\
A
\end{array} \\
\hline
\end{array}
$$

Notice first that the components $P_{1}, P_{3}, P_{7}, P_{9}$ consist of rules of the form $X \rightarrow$ X only, hence their application does not change the current string. The same is true for P_{5}, except for the first step of a derivation, because S never appears later in a sentential form. Therefore, all components $P_{1}, P_{3}, P_{7}, P_{9}$ (as well as P_{5} after the first step) check the appearance of the corresponding nonterminals and block the components $P_{2}, P_{4}, P_{8}, P_{10}$ (and P_{6}), respectively. For this reason we will call $P_{1}, P_{3}, P_{5}, P_{7}, P_{9}$ the control components and $P_{2}, P_{4}, P_{6}, P_{8}, P_{10}$ the rewriting components.

The derivation starts in P_{5} by producing the string $A B$ (if we have a derivation mode $=k$ or $\geq k$ for $k \geq 2$, then we can use $k-1$ times the rule $A \rightarrow A$; this is true for all rewriting components, because they contain rules of the form $X \rightarrow X$, which do not modify the current string). Assume then that we have already generated a string $A^{n} B, n \geq 1$. The presence of the rules $A \rightarrow A$ and $B \rightarrow B$ in P_{5} and P_{9} forbides the use of components P_{6} and $P_{10} ; P_{4}$ and P_{8} are not applicable to A and B. Thus P_{2} is the only component which changes the current string. The obtained string will contain occurrences of both A and A^{\prime} (and of B). Due to the presence of A we cannot use P_{6}, and due to the presence of B we cannot use P_{4} and $P_{10} ; P_{8}$ is not applicable. Therefore we must again use P_{2} until all occurrences of A are replaced by A^{\prime}. The so obtained string is of the form $A^{\prime 2 n} B$. Now the only applicable component which changes the string is P_{6}, and its use leads to a string of the form $A^{\prime 2 n} B^{\prime}$, which allows the use of P_{4} (and only of P_{4}, with the exception of control components like P_{7} and P_{9} which do not change the string under rewriting) which replaces occurrences of A^{\prime} by A. As long as A, A^{\prime} and B^{\prime} are present, the only possibility is to continue to apply P_{4} until each A^{\prime} is replaced by A, obtaining in this way $A^{2 n} B^{\prime}$. Now one can apply P_{8} (and only P_{8} with the exception of P_{1}, P_{5}, P_{9} which do not change the string under rewriting). If $A^{2 n} B$, is obtained, then the above process can be iterated. If $A^{2 n} B^{\prime \prime}$ is obtained, then the only applicable component (which changes the string) is P_{10}; it must be then used until each A is replaced by a. When A is not present anymore, one can use P_{6}, finishing the derivation by replacing $B^{\prime \prime}$ with a.

Consequently,

$$
L_{f}(\Gamma)=\left\{a^{2^{n}+1} \mid n \geq 1\right\}
$$

Since $L_{f}(\Gamma)$ is not context-free, it is not in $C D_{\infty}(f)$, for $f \in\{*,=1, \geq 1\} \cup$ $\{\leq k \mid k \geq 1\}$. Moreover, it is proved in [5] that the length set of every infinite language in $C D_{\infty}(f)$, for $f \in\{=k, \geq k \mid k \geq 1\}$, contains an infinite arithmetical progression. This implies that $L_{f}(\Gamma)$ is not in $C D_{\infty}(f)$, for $f \in\{=k, \geq k \mid k \geq 1\}$, which concludes the proof.

Our proof of the above theorem holds for $n \geq 10$. The question: "what is the smallest n for which Theorem 1 holds ?" remains open. Of course, the equalities $P C D_{1}(f)=C D_{1}(f)=C F$ are true for all f. Moreover, $P C D_{2}(=1) \subseteq C F$. Indeed, for $\Gamma=\left(N, T, S, P_{1}, P_{2}, \succ\right)$ with $P_{1} \succ P_{2}$ (the same argument holds for $P_{2} \succ P_{1}$) we may assume that $\operatorname{dom}\left(P_{1}\right) \cap \operatorname{dom}\left(P_{2}\right)=\emptyset$ (the rules $A \rightarrow x \in P_{2}$ with $A \in \operatorname{dom}\left(P_{1}\right)$ can never be used, hence they can be eliminated). Thus $L_{=1}(\Gamma)=$ $L(G)$ for $G=\left(N, T, S, P_{1} \cup P_{2}\right)$ (the derivations in G and in Γ are the same up to a change of the order of using the rules).

The above language $\left\{a^{2^{n}+1} \mid n \geq 1\right\}$ is probably not in the family $M A T$ (it is conjectured already in [11] that the one-letter matrix languages are regular). Since $C D_{\infty}(f) \subseteq M A T$ for all f as in Theorem 1 (and in some cases, $C D_{\infty}(f)=C F$), the increase in generative power by adding priorities is quite considerable for those derivation modes. Hence it is somewhat surprising that for the t mode of derivation adding a priority relation does not increase the generative power.

Theorem $2 P C D_{\infty}(t)=C D_{\infty}(t)$.
Proof. We have to prove only the inclusion \subseteq.
For a pcd grammar system $\Gamma=\left(N, T, S, P_{1}, \ldots, P_{n}, \succ\right)$, we construct the cd grammar system Γ^{\prime} as follows.

$$
\Gamma^{\prime}=\left(N^{\prime}, T, S^{\prime}, P_{0}, P_{1}^{\prime}, P_{1}^{\prime \prime}, P_{2}^{\prime}, P_{2}^{\prime \prime}, \ldots, P_{n}^{\prime}, P_{n}^{\prime \prime}, P_{n+1}\right)
$$

$$
\begin{aligned}
& N^{\prime}=N \cup\{S, X, \#\} \cup\left\{X_{i} \mid 1 \leq i \leq n\right\}, \\
& P_{0}=\left\{S^{\prime} \rightarrow S X\right\} \cup\left\{X_{i} \rightarrow X \mid 1 \leq i \leq n\right\}, \\
& P_{i}^{\prime}=P_{i} \cup\{X \rightarrow \#\} \cup\left\{X_{j} \rightarrow \# \mid 1 \leq j \leq n, j \neq i\right\}, 1 \leq i \leq n, \\
& P_{i}^{\prime \prime}=\left\{X \rightarrow X_{i}\right\} \cup\left\{A \rightarrow \# \mid B \in \operatorname{dom}\left(P_{j}\right), P_{j} \succ P_{i}, 1 \leq j \leq n\right\}, 1 \leq i \leq n, \\
& P_{n+1}=\{X \rightarrow \lambda\} \cup\{A \rightarrow \# \mid A \in N\} .
\end{aligned}
$$

Once introduced in a sentential form, the symbol \# cannot be removed (it is a "trap-symbol"). The symbols X_{1}, \ldots, X_{n} identify the components P_{1}, \ldots, P_{n} of Γ. In the presence of X_{i} the component P_{i} will be simulated by P_{i}^{\prime} and X_{i} can appear (introduced by $P_{i}^{\prime \prime}$) only when no component P_{j} with $P_{j} \succ P_{i}$ is applicable to the current string.

Let us see how these principles work in Γ^{\prime} by examining in some detail a derivation. Consider a sentential form $w X$ (initially we have $w=S$, obtained after using P_{0}, which is the only component which can be applied to S^{\prime}). The component P_{n+1} can be used only if $w \in T^{*}$ - hence only as the final step of the derivation. A component P_{i}^{\prime} introduces the trap-symbol \#. If P_{i} is maximal with respect to the relation \succ among the components which can be applied to w, then $P_{i}^{\prime \prime}$ can be used without blocking the derivation; it changes X into X_{i}, thus leading to $w X_{i}$. Now to a string $w X_{i}$ we can apply either P_{0}, replacing again X_{i} with X (hence not achieving anything) or the component P_{i}^{\prime}, which will simulate the application of P_{i} to w. The string $w^{\prime} X_{i}$ obtained in this way can be rewritten only by P_{0}, which leads to $w^{\prime} X$, and so the process can be iterated. In the presence of X_{i}, every component $P_{j}^{\prime}, j \neq i$, will introduce the trap-symbol. Consequently, $L_{t}(\Gamma)=L_{t}\left(\Gamma^{\prime}\right)$. (Note that the λ-rule in P_{n+1} causes no problem, because $C D_{\infty}(t)=C D_{\infty}^{\lambda}(t)=E T 0 L$.)

Let us return to families $P C D_{\infty}(f)$ for $f \neq t$. It is quite natural to compare these families with $O R D$, the family of languages generated by ordered grammars. Given an ordered grammar $G=(N, T, S, P, \succ)$, it is obvious that we have $L(G)=$ $L_{=1}(\Gamma)=L_{\leq 1}(\Gamma)$ where Γ is a pcd grammar system obtained by considering each rule of P as a separate component and the relation \succ defined as in G. Therefore $O R D \subseteq P C D_{\infty}(=1)=P C D_{\infty}(\leq 1)$. This implies that the families $P C D_{\infty}(f)$, $f \in\{=1, \leq 1\}$, strictly include $E T 0 L$ (and hence $C D_{\infty}(t)$).

A similar result is obtained for the $=k$ and $\leq k$ modes of derivation for all $k \geq 1$.

Theorem 3 ORD $\subseteq P C D_{\infty}(f), f \in\{\leq k,=k \mid k \geq 1\}$.
Proof. For $k=1$ the statement follows by the argument as above. Consider $k \geq 2$. Let $G=(N, T, S, P, \succ)$ be an ordered grammar with

$$
P=\left\{r_{1}, \ldots r_{n}\right\}, r_{i}: A_{i} \rightarrow x_{i}, 1 \leq i \leq n, n \geq 1
$$

We construct the ped grammar system

$$
\Gamma=\left(N^{\prime}, T, S, P_{0}, P_{1}, P_{2}, \ldots, P_{n}, \succ\right)
$$

where

$$
\begin{aligned}
& N^{\prime}=N \cup\left\{A_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq k-1\right\} \\
& P_{0}=\left\{A_{i, j} \rightarrow A_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq k-1\right\} \\
& P_{i}=\left\{A_{i} \rightarrow A_{i, 1}, A_{i, 1} \rightarrow A_{i, 2}, \ldots, A_{i, k-2} \rightarrow A_{i, k-1}, A_{i, k-1} \rightarrow x_{i}\right\}, 1 \leq i \leq n,
\end{aligned}
$$

and

$$
\begin{array}{ll}
P_{0} \succ P_{i} & \text { for all } 1 \leq i \leq n, \\
P_{i} \succ P_{j} & \text { iff } r_{i} \succ r_{j} \text { in } G .
\end{array}
$$

Then $L(G)=L_{=k}(\Gamma)=L_{\leq k}(\Gamma)$.
Indeed, if we have a sentential form w to which P_{0} can be applied, then on the one hand no other component of Γ can be used for rewriting w, while on the other hand the use of P_{0} does not change the string w. Consequently, the derivation is blocked, and P_{0} is a trap-component. As P_{0} can be applied whenever any of the symbols in $N^{\prime}-N$ is present, it follows that the components $P_{i}, 1 \leq i \leq n$, upon completing their derivations cannot produce strings containing symbols in $N^{\prime}-N$. This implies that using a component $P_{i}, 1 \leq i \leq n$, in $\leq k$ or in $=k$ mode of derivation, means to use all the rules from P_{i} exactly once, hence to replace an occurrence of A_{i} first by $A_{i, 1}$, then by $A_{i, 2}, \ldots$, then by $A_{i, k-1}$, and finally by x_{i}. This is exactly the effect of using the rule $A_{i} \rightarrow x_{i}$. As the priority relation among the components P_{i} of Γ corresponds to the order relation among the rules of G, the equalities $L(G)=L_{=k}(\Gamma)=L_{\leq k}(\Gamma)$ follow.

It is an open question whether or not Theorem 3 holds also for the $\geq k$ mode of derivation.

We will now demonstrate that all the families $P C D_{\infty}(f)$ with $f \neq t$, are included in $M A T_{a c}$. In view of the strong generative power of matrix grammars with appearance checking this inclusion is somewhat expected, however is really cumbersome to write the detailed proof of this result. This is due to the fact that we have to check whether or not all the components greater than a given component (in the sense of the \succ relation) are applicable to a given string in a specified mode of derivation. This is easy for modes $*_{1}=1, \geq 1, \leq k$, for all k, but much more difficult for the cases $=k, \geq k$, for $k \geq 2$, when all combinations of k rules in a component must be checked. For this reason the proof of the following theorem will be rather sketchy, but certainly containing enough information so that the interested reader may complete it to a detalied proof.

Theorem $4 P C D_{\infty}(f) \subseteq M A T_{a c}, f \in\{*\} \cup\{\leq k,=k, \geq k \mid k \geq 1\}$.
Proof. (1) For $f \in\{*\} \cup\{\leq k \mid k \geq 1\}$, consider a system $\Gamma=(N, T$, $\left.S, P_{1}, \ldots, P_{n}, \succ\right)$, and construct the matrix grammar

$$
\begin{aligned}
G= & \left(N^{\prime}, T \cup\{c\}, S^{\prime}, M, F\right), \\
& N^{\prime}=N \cup\left\{X, S^{\prime}, \#\right\} \cup\{[i, j] \mid 1 \leq i \leq n, 0 \leq j \leq k\}, \\
& M=\left\{\left(S^{\prime} \rightarrow S X\right)\right\} \cup \\
& \cup\left\{\left(X \rightarrow[i, 0], A_{1} \rightarrow \#, \ldots, A_{s} \rightarrow \#\right) \mid\left\{A_{1}, \ldots, A_{s}\right\}=\right. \\
& \left.\left\{A \in \operatorname{dom}\left(P_{j}\right) \mid P_{j} \succ P_{i}, 1 \leq j \leq n\right\}, 1 \leq i \leq n\right\} \cup \\
& \cup\{([i, j] \rightarrow \mid i, j+1], A \rightarrow x) \mid A \rightarrow x \in P_{i}, 1 \leq i \leq n, \\
& 0 \leq j \leq k-1\} \cup \\
& \cup\{([i, j] \rightarrow X) \mid 1 \leq i \leq n, 0 \leq j \leq k\} \cup \\
& \cup\{(X \rightarrow c)\}, \\
& F \text { contains all rules } A \rightarrow \#(\# \text { is a trap }- \text { symbol }) .
\end{aligned}
$$

We have $L(G)=L_{\leq k}(\Gamma)\{c\}$. The first component of nonterminals $[i, j]$ specifies the simulated component, while the second one counts the used rules. The symbol X is replaced by $[i, 0]$, starting the simulation of P_{i}, only when no component P_{j} with $P_{j} \succ P_{i}$ can use at least one of its rules for rewriting the current sentential form. After using j rules of P_{i}, for some $0 \leq j \leq k$, the symbol $[i, j]$ can be replaced by X and another component of Γ can be simulated.

If all symbols $[i, j]$ are replaced by $[i]$, and no reference is made to the number of used rules, then we obtain $L(G)=L_{*}(\Gamma)\{c\}$. As $M A T_{a c}$ is closed under restricted morphisms, the new symbol c can be erased, and so $L_{f}(\Gamma) \in M A T_{a c}$, for $f \in$ $\{*\} \cup\{\leq k \mid k \geq 1\}$.
(2) In the case of the derivation mode $=k$, starting from $\Gamma=\left(N, T, S, P_{1}, \ldots\right.$ $\left.\ldots, P_{n}, \succ\right)$ with $N=\left\{A_{1}, \ldots, A_{0}\right\}$, we shall use again the closure of the family $M A T_{a c}$ under restricted morphisms. We construct a matrix grammar G with appearance checking working as follows. The new axiom S^{\prime} introduces a string $S X$, where S is the axiom of Γ and X a control symbol; X or its variants will be present during all derivation steps. Moreover, for each symbol $A \in N$ we have its copy A_{c}. In order to be able to check whether a component P_{j} can be applied to the current string w, we introduce a copy of each nonterminal appearing in w, obtaining in this way a string w_{c} scattered among the symbols of w; we try to use the rules of P_{j} on w_{c} so that the original string w is not destroyed.

Here is a "sub-routine" for such a copying, called for by the control symbol X_{c} (here and in the matrices below, \# is a trap-symbol):

$$
\begin{aligned}
& \left(X_{c} \rightarrow X_{c}, A \rightarrow A^{\prime} A_{c}\right), \text { for each } A \in N, \\
& \left(X_{c} \rightarrow X^{\prime}, A_{1} \rightarrow \#, \ldots, A_{s} \rightarrow \#\right), \\
& \left(X^{\prime} \rightarrow X^{\prime}, A^{\prime} \rightarrow A\right), \text { for each } A \in N, \\
& \left(X^{\prime} \rightarrow X^{\prime \prime}, A_{1}^{\prime} \rightarrow \#, \ldots, A_{s}^{\prime} \rightarrow \#\right) .
\end{aligned}
$$

(In the presence of X_{c}, each symbol $A \in N$ is replaced by $A^{\prime} A_{c}$; when all symbols $A \in N$ have been so replaced, X_{c} can be replaced by X^{\prime}, and then in the presence of X^{\prime} each A^{\prime} is rewritten back to A; when this has been completed, X^{\prime} is removed and the symbol $X^{\prime \prime}$ is introduced.)

Then, the control symbol $X^{\prime \prime}$ will guess a component, say P_{i}, to be used, by changing to X_{i}. Now all the components $P_{j} \succ P_{i}$ must be tested and if any of them can be used, then the derivation is blocked. This can be done as follows.

Having an ordered list $G R\left(P_{i}\right)=\left(P_{j_{1}}, \ldots, P_{j_{t_{i}}}\right)$, of components that are "greater" than P_{i}, we inspect them in this order $P_{j_{1}}, \ldots, P_{j_{i}}$. If some $P_{j_{r}}$ is applicable, then the derivation is blocked; if $P_{j_{r}}$ is not applicable, then we pass to $P_{j_{r+1}}$. Finally when also $P_{j_{t_{i}}}$ is not applicable, the control symbol is changed to some Y_{i}, which leads to the simulation of P_{i}. This is done as in the $\leq k$ mode, introducing a counter which terminates the simulation of P_{i} when exactly k rules were used; then again the "general controller" X is introduced in order to start the simulation of another component. The derivation terminates (the control symbol, the copy symbols and their variants are replaced by the new terminal c) when no nonterminal from N is present in the current string.

Hence to complete the proof of the theorem for the $=k$ mode we have to show how to test whether or not a given component P_{j} is applicable in the $=k$ mode to the current string w (hence to the corresponding nonterminal string w_{c} containing copies of the nonterminals in w).

Consider the set P_{j}^{k} of all sequences of k rules in P_{j},

$$
\begin{aligned}
P_{j}^{k}= & \left\{m_{1}, m_{2}, \ldots, m_{q}\right\}, q=\left(\operatorname{card}\left(P_{j}\right)\right)^{k} \\
& m_{l}=\left(A_{l_{1}} \rightarrow x_{l_{1}}, \ldots, A_{l_{k}} \rightarrow x_{l_{k}}\right), A_{l_{r}} \rightarrow x_{l_{r}} \in P_{j}, 1 \leq r \leq k
\end{aligned}
$$

We have to check all these sequences - if at least one of them is applicable, then P_{j} is applicable. By appropriately modifying the control symbol, we check, one by one all the sequences $m_{1}, m_{2}, \ldots, m_{q}$. If some m_{l} is applicable, then the derivation is blocked by introducing the trap-symbol \#; if m_{l} is not applicable, then we pass to m_{l+1}. Finally, when m_{q} is not applicable, then we conclude that P_{j} is not applicable.

We explain now the basic idea behind the checking whether or not some $m_{l}=$ $\left(A_{l_{1}} \rightarrow x_{l_{1}}, \ldots \ldots, A_{l_{k}} \rightarrow x_{l_{k}}\right)$ is applicable. Assume that the current string contains the control symbol $[i, j, l]$ (meaning: ${ }^{n}$ for using P_{i}, we must be sure that $P_{j} \succ P_{i}$ is not applicable, and we will try the sequence m_{l} in $P_{j}^{k n}$). Consider the set of all sequences $C\left(m_{l}\right)$ associated with m_{l} as follows

$$
\begin{aligned}
C\left(m_{l}\right)=\{ & \left(A_{l_{1}} \rightarrow \alpha_{l_{1}}, \ldots, A_{l_{k}} \rightarrow \alpha_{l_{k}}\right) \mid \alpha_{l_{r}} \in\left\{x_{l_{r}}, \#\right\} \\
& \left.1 \leq r \leq k, \text { and at least for one } r \text { we have } \alpha_{l_{r}}=\#\right\} .
\end{aligned}
$$

If m_{l} is applicable, then each sequence in $C\left(m_{l}\right)$, considered as a matrix with the rules $A \rightarrow$ \# used in the appearance checking manner, will introduce at least one occurrence of \#. Conversely, if m_{l} is not applicable, then there is exactly one sequence in $C\left(m_{l}\right)$ which can be used without introducing the trap-symbol.

Indeed, take a rule $A_{l_{r}} \rightarrow x_{l_{r}}$. If it is applicable in m_{l} to the current string w, then it is also applicable in all sequences of $C\left(m_{l}\right)$, whether or not it is replaced by $A_{l_{r}} \rightarrow$ \#. If it is applicable in m_{l} to a symbol not in w, but introduced by a previous rule $A_{l_{p}} \rightarrow x_{l_{p}}$, with $x_{l_{p}}$ containing $A_{l_{r}}$, then we examine this rule, $A_{l_{p}} \rightarrow x_{l_{p}}$. If it remains unchanged in a sequence of $C\left(m_{l}\right)$, then it introduces $A_{l_{r}}$, hence also $A_{l_{r}} \rightarrow \alpha_{l_{r}}$ is applicable, introducing \# when $\alpha_{l_{r}}=\#$. If it is replaced by $A_{l_{p}} \rightarrow \#$, then the above argument can be iterated again, considering two possible cases for $A_{l_{p}}$: either it appears in w or it is introduced by a previous rule. Since each sequence in $C\left(m_{l}\right)$ contains at least one rule $A_{l_{g}} \rightarrow$ \# whenever m_{l} is applicable, at least one \# is introduced. When m_{l} is not applicable, at least one of its rules is not applicable. If we replace all not applicable rules by $A_{l_{g}} \rightarrow \#$, then we obtain a sequence in $C\left(m_{l}\right)$ which can be applied in the appearance checking mode without introducing the trap-symbol.

Consequently, for checking whether or not m_{l} is applicable it suffices to guess which sequence in $C\left(m_{l}\right)$ is applicable in the appearance checking mode (if the guessing is incorrect, then the derivation is blocked).

To this aim, the current control symbol $[i, j, l]$ is non-deterministicaly replaced by $[i, j, l ; h]$, where h is the label of a sequence $\left(A_{l_{1}} \rightarrow \alpha_{l_{1}}, \ldots, A_{l_{k}} \rightarrow \alpha_{l_{k}}\right)$ in $C\left(m_{l}\right)$. Here is the "sub-routine" for this step:

$$
\left([i, j, l ; h] \rightarrow[i, j, l ; O K],\left(A_{l_{1}}\right)_{c} \rightarrow\left(\alpha_{l_{1}}\right)_{c}, \ldots,\left(A_{l_{k}}\right)_{c} \rightarrow\left(\alpha_{l_{k}}\right)_{c}\right)
$$

where $\left(\alpha_{l_{r}}\right)_{c}=\#$ if $\alpha_{l_{r}}=\#$ and it is obtained by replacing in $x_{l_{r}}$ (whenever $\alpha_{l_{r}}=x_{l_{r}}$) all nonterminals $B \in N$ by their copies B_{c} and removing all the terminals; the terminal rules $B \rightarrow x$ are replaced by $B_{c} \rightarrow D$, where D is a special nonterminal (we do not introduce λ-rules).

Then, because the copy symbols have been altered, we replace all of them by D and for checking the next sequence in P_{j}^{k} (namely m_{l+1}) we produce a new series of copy symbols, using the following matrices:

$$
\begin{aligned}
& \left([i, j, l ; O K] \rightarrow[i, j, l ; O K], A_{c} \rightarrow D\right), A \in N, \\
& \left([i, j, l ; O K] \rightarrow[i, j, l ; c o p y],\left(A_{1}\right)_{c} \rightarrow \#, \ldots,\left(A_{s}\right)_{c} \rightarrow \#\right), \\
& \left([i, j, l ; c o p y] \rightarrow[i, j, l ; c o p y], A \rightarrow A^{\prime}, D \rightarrow A_{c}\right), A \in N, \\
& \left([i, j, l ; c o p y] \rightarrow[i, j, l ; c o p y], A \rightarrow A^{\prime} A_{c}\right), A \in N, \\
& \left([i, j, l ; c o p y] \rightarrow\left[i, j, l ; c o p y^{\prime}\right], A_{1} \rightarrow \#, \ldots, A_{s} \rightarrow \#\right), \\
& \left(\left[i, j, l ; c o p y^{\prime}\right] \rightarrow\left[i, j, l ; c o p y^{\prime}\right], A^{\prime} \rightarrow A\right), A \in N, \\
& \left([i, j, l ; \text { copy }] \rightarrow[i, j, l+1], A_{1}^{\prime} \rightarrow \#, \ldots, A_{s}^{\prime} \rightarrow \#\right) .
\end{aligned}
$$

In this way the new copies of nonterminals in the current string of Γ as simulated in G use "the places" of the old copies (the order is not relevant if matrices are used only for testing their applicability); new places for copies of nonterminals are introduced only when we do not have enough occurrences of the "place holder" symbol D (this is important when we pass from the simulation of P_{i}, which can introduce new nonterminals, to the simulation of another component). Therefore the length of the string is not increased more than by a factor of three (more exactly, for a string $x \in L_{=k}(\Gamma)$ we can obtain in $L(G)$ a string with the length less than $2|x|+1)$.

We believe that the description of G given above allows one to give a formal (quite tedious) construction of a matrix grammar G with appearance checking such that $L_{=k}(\Gamma)=h(L(G))$, where $h:(T \cup\{c\})^{*} \longrightarrow T^{*}$ is a 3-bounded morphism defined by $h(a)=a$ for $a \in T$, and $h(c)=\lambda$. Consequently, $L_{=k}(\Gamma) \in M A T_{a c}$.

The modifications for the $\geq k$ mode of derivation concern only the counting of rules used in P_{i} whenever the use of P_{i} is permitted. (A component $P_{j} \succ P_{i}$ is applicable in the $\geq k$ mode if and only if it is applicable in the $=k$ mode, hence the "checking part" of the construction from the above proof remains unchanged.)

5 The power of hierarchical grammar systems

We begin by pointing out the relations which follow directly from definitions:
Lemma $2 C F=H_{0} C D(f) \subseteq H_{1} C D(f)=C D_{\infty}(f) \subseteq H_{2} C D(f) \subseteq H_{3} C D(f)$ $\subseteq \ldots, f \in\{*, t\} \cup\{\leq k,=k, \geq k \mid k \geq 1\}$.

For many derivation modes, this hierarchy is finite.
Theorem $5 \quad H_{h} C D(t)=H_{1} C D(t)$, for each $h \geq 1$.
Proof. We only have to prove the inclusion $H_{h} C D(t) \subseteq H_{1} C D(t)$, and to this aim it suffices to show that $H_{2} C D(t) \subseteq H_{1} C D(t)$ (by induction: having a system of arbitrary depth $h \geq 2$, if its subsystems of depth $h-1$ can be reduced to systems of depth 1, then we replace them by such systems and obtain in this way a system of depth 2 equivalent with the initial one; then again using the reduction from depth 2 to depth 1, we prove the theorem).

Hence consider a system $\Gamma=\left(N, T, S, \gamma_{1}, \ldots, \gamma_{m}\right)$ of depth 2 , with $\gamma_{i}=\left\{\gamma_{i, 1}, \ldots\right.$ $\left.\ldots, \gamma_{i, r_{i}}\right\}, r_{i} \geq 1,1 \leq i \leq m$, where $\boldsymbol{\gamma}_{i, j}$ are sets of context-free rules over $N \cup T$. We construct the system Γ^{\prime}, of depth 1 , with the nonterminal alphabet

$$
\left.N^{\prime}=\{S, \#\} \cup\{\mid A, i] \mid A \in N, 1 \leq i \leq m\right\}
$$

the terminal alphabet T, the axiom S^{\prime}, and the following components:

$$
\begin{aligned}
P_{1}= & \left\{S^{\prime} \rightarrow[S, 1], S^{\prime} \rightarrow[S, 2], \ldots, S^{\prime} \rightarrow[S, m]\right\} \\
P_{i, j}= & \left\{[A, i] \rightarrow h_{i}(x) \mid A \rightarrow x \in \gamma_{i, j}\right\}, 1 \leq i \leq m, 1 \leq j \leq r_{i}, \\
P_{i, j}^{\prime}= & \left\{[A, i] \rightarrow[A, j] \mid A \in N-\left(\cup_{b=1}^{r_{i}^{\prime}} \operatorname{dom}\left(\gamma_{i, s}\right)\right) \cup\right. \\
& \cup\left\{[A, i] \rightarrow \# \mid A \in \cup_{s=1}^{r_{i}} \operatorname{dom}\left(\gamma_{i, s}\right)\right\}, 1 \leq i, j \leq m, i \neq j,
\end{aligned}
$$

where, for each $1 \leq i \leq m, h_{i}:(N \cup T)^{*} \longrightarrow\left(N^{\prime} \cup T\right)^{*}$ is the morphism defined by $h_{i}(A)=[A, i]$ for all $\bar{A} \in N$, and $h_{i}(a)=a$ for all $a \in T$.

Each derivation in Γ^{\prime} begins by a rule $S^{\prime} \rightarrow[S, i]$, which selects a component γ_{i} of Γ which is simulated first. Assume we use now a component $P_{i, j}, 1 \leq j \leq r_{i}$. All the introduced nonterminals will be of the form $[A, i], A \in N$. The derivation will be maximal in $P_{i, j}$, hence it corresponds to a maximal derivation in $\gamma_{i, j}$. After finishing the derivation in $P_{i, j}$, another component $P_{i, s}$ for $1 \leq s \leq r_{i}$, can be used, and so on. At each moment, all the nonterminals present in the current string are of the form $[A, i]$, for the chosen i. When no component $P_{i, j}, 1 \leq j \leq r_{i}$, can be used (this corresponds to a maximal derivation in γ_{i}), a component $P_{i, j}^{\prime}, j \neq i$, of Γ^{\prime} can be used. It changes all nonterminals in the sentential form from $[A, i]$ to $[A, j]$. A component $P_{i, j}^{\prime}, i \neq j$, can be used without blocking the derivation only when no derivation step in $P_{i, s}, 1 \leq s \leq r_{i}$, can be done, that is the corresponding derivation in γ_{i} is maximal (otherwise a rule $[A, i] \rightarrow \#, A \in \operatorname{dom}\left(\gamma_{i, s}\right)$, for some $1 \leq s \leq r_{i}$, can be used, which introduces the trap-symbol \#). Consequently, the terminal derivations in Γ^{\prime} simulate derivations in Γ.

Conversely, it is obvious that each derivation in Γ can be simulated in Γ^{\prime}.
Consequently, $L_{t}(\Gamma)=L_{t}\left(\Gamma^{\prime}\right)$, that is $H_{2} C D(t) \subseteq H_{1} C D(t)=C D_{\infty}(t)$, which concludes the proof.

Theorem $6 H_{h} C D(f)=H_{1} C D(f)=C F$, for $f \in\{*,=1, \geq 1\} \cup\{\leq k \mid k \geq 1\}$, and $h \geq 1$.

Proof. We proceed again as in the previous proof, reducing the problem to the inclusion $H_{2} C D(f) \subseteq H_{1} C D(f)$; because we know that $H_{1} C D(f)=C F$, for f as in the statement of the theorem, we shall prove the relation $H_{2} C D(f) \subseteq C F$.

Consider a system of depth $2, \Gamma=\left(N, T, S, \gamma_{1}, \ldots, \gamma_{m}\right)$, with $\gamma_{i}=\left\{\gamma_{i, 1}, \ldots\right.$ $\left.\ldots, \gamma_{i, s_{i}}\right\}$, for each $1 \leq i \leq m$, where $\gamma_{i, j}$ is a set of context-free rules, $1 \leq j \leq s_{i}$. Let G be the context-free grammar $\left(N, T, S,\left\{A \rightarrow x \mid A \rightarrow x \in \gamma_{i, j}, 1 \leq i \leq m, 1 \leq\right.\right.$ $\left.j \leq s_{i}\right\}$).

Every derivation in Γ ammounts to the use of rules from sets $\gamma_{i, j}$, hence the inclusion $L_{f}(\Gamma) \subseteq L(G)$ is obvious (and actually holds for all modes of derivation, and not only for the modes f as in the statement of the theorem). Conversely, every derivation in G is correct with respect to the f mode in Γ, because we can reproduce all derivations in G as $=1$ derivations in Γ. Consequently, $L(G)=L_{f}(\Gamma)$, that is $L_{f}(\Gamma) \in C F$.

It is an open problem whether Theorem 6 can also be extended to the derivation modes $=k$ and $\geq k$, for $k \geq 2$. This question seems to be related to the unsolved problems about usual grammar systems concerning (1) the relations between families $C D_{\infty}(=k)$ and $C D_{\infty}(=j)$ for $k \neq j$, and (2) the strictness of the inclusions $C D_{\infty}(\geq k) \subseteq C D_{\infty}(\geq k+1)$ for $k \geq 2$ (weak inclusions are proved in [3]). In the example from Section 3 we have seen that a derivation in the $=2$ mode at the level of the system corresponds, in some sense, to a derivation in the $=4$ mode at the level of components: two rules from the first sub-component and two rules from the second sub-component are used.

We will demonstrate now that the result analogous to Theorem 3 holds for hcd grammar systems.

Theorem $7 H_{h} C D(f) \subseteq M A T$, for all $h \geq 0$ and for $f \in\{=k, \geq k \mid k \geq 2\}$.
Proof. First of all notice that for each f as in the statement of the theorem, $H_{0} C D(f)=C F$, and $H_{1} C D(f)=C D(f)$-thus (see also the end of Section 2) $H_{0} C D(f) \subseteq M A T$ and $H_{1} C D(f) \subseteq M A T$. Hence we may assume that $h \geq 2$.

Let Γ be a hed grammar system of depth $h, \Gamma=\left(N, T, S, \gamma_{1}, \ldots, \gamma_{m}\right)$. Using a component γ_{i} in the $=k$ mode for $k \geq 2$, means to use k of its subsystems. This in turn means that k sub-subsystems are used, and so on until one reaches the level 0 (of sets of rules) where we use k rules from each set chosen by the previous steps. This means that from the sets P_{j} on the level 0 we use sequences in the sets P_{j}^{k}; then "concatenating" such sequences, we obtain sequences corresponding to the next level and so on. The so obtained sequences are matrices of rules, and so the work of Γ in the $=k$ mode can be simulated in a matrix grammar which is defined as follows.

For a sequence of matrices of context-free rules, $m_{i}=\left(r_{i, 1}, \ldots, r_{i, s_{i}}\right), 1 \leq i \leq$ p, we define $\left(m_{1}, \ldots, m_{p}\right)=\left(r_{i, 1}, \ldots, r_{i, 1_{1}}, r_{2,1}, \ldots, r_{2, a_{2}}, r_{3,1}, \ldots, r_{p, a_{p}}\right)$, which is again a matrix of rules.

For a set P of context-free rules let $\operatorname{mat}(P, k)=P^{k}$ (all matrices, in all orders and combinations, of k rules in P), and then, for a system $\delta=\left(N, T, S, \delta_{1}, \ldots\right.$ \ldots, δ_{q}) of depth $h \geq 1$, we define recursively

$$
\operatorname{mat}(\delta, k)=\left\{\operatorname{mat}\left(\delta_{1}, k\right), \operatorname{mat}\left(\delta_{2}, k\right), \ldots, \operatorname{mat}\left(\delta_{a}, k\right)\right\}^{k} .
$$

The matrix grammar $G=(N, T, S, \operatorname{mat}(\Gamma, k))$ has the property $L(G)=L_{=k}(\Gamma)$, which proves the inclusion $H_{h} C D(=k) \subseteq M A T$.

The inclusion $H_{h} C D(\geq k) \subseteq M A T$ can be obtained in the same way, using the observation that every derivation in a system Γ in the mode $\geq k$ can be decomposed into one or more derivations in the mode $=j$, for $k \leq j \leq 2 k-1$. Therefore, if we define now $\operatorname{mat}^{\prime}(P, k)=\cup_{j=k}^{2 k-1} \operatorname{mat}(P, j)$ and we modify in the same way the definition of $\operatorname{mat}(\delta, k)$, then we obtain a matrix grammar G^{\prime} generating the language $L_{\geq k}(\Gamma)$.

Note that in the above theorem we have dealt with matrix grammars without appearance checking.

References

[1] A. Atanasiu, V. Mitrana, Modular grammars, Intern. J. Computer Math., 30 (1989), 101-122.
[2] E. Csuhaj-Varju, J. Dassow, On cooperating distributed grammar systems, J. Inform. Process. Cybern., EIK, 26 (1990), 49 - 63.
[3] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems, Gordon and Breach, 1994.
[4] J. Dassow, Gh. Pǎun, Regulated Rewriting in Formal Language Theory, Sprin-ger-Verlag, 1989.
[5] J. Dassow, Gh. Paun, S. Vicolov, On the generative capacity of certain classes of cooperating grammar systems, Fundamenta Informaticae, to appear.
[6] L. Kari, Al. Mateescu, Gh. Pǎun, A. Salomaa, Teams in cooperating grammar systems, J. Experimental and Theoretical AI, to appear.
[7] R. Meersman, G. Rozenberg, Cooperating grammar systems, Proc. MFCS '78 Symp., LNCS 64, Springer-Verlag, 1978, 364-374.
[8] P. H. Nii, Blackboard systems, in The Handbook of AI, vol. 4 (A. Barr, P. R. Cohen, E. A. Feigenbaum, eds.), Addison-Wesley, 1989.
[9] Gh. Paun, G. Rozenberg, Prescribed teams of grammars, Acta Informatica, to appear.
[10] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, 1980.
[11] A. Salomaa, Formal Languages, Academic Press, 1973.

[^0]: *Research supported by project 11281 of the Academy of Finland, the Basic Research ASMICS II Working Group, and, in the case of the second author, also by the Alexander von Humboldt Foundation.
 ${ }^{\dagger}$ University of Bucharest, Department of Mathematics Str. Academiei 14, $70109 \mathrm{Bu}-$ cureşti, Romania
 ${ }^{\ddagger}$ Institute of Mathematics of the Romanian Academy of Sciences P.O.Box 1 -764, 70700 Bucureşti, Romania
 ${ }^{5}$ University of Leiden, Department of Computer Science Niels Bohrweg 1, 2333 CA Leiden, The Netherlands and Department of Computer Science, University of Colorado at Boulder Boulder, CO 80309, USA

