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Structuring grammar systems by priorities and 
hierarchies* 

Victor Mitrana * Gheorghe Pilun* Grzegorz Rozenberg s 

Abstrac t 

A grammar system is a finite set of grammars that cooperate to gener-
ate a language. We consider two generalizations of grammar systems: ( l ) 
adding a priority relation between single grammar components, and (2) con-
sidering hierarchical components which by themselves are grammar systems. 
The generative power of these generalized grammar systems is investigated, 
and compared with the generative power of ordinary grammar systems and of 
some well-known types of grammars with regulated rewriting (such as matrix 
grammars). We prove that for many cooperating strategies the use of priority 
relation increases the generative capacity, however this is not the case for the 
maximal mode of derivation (an important case, because it gives a charac-
terization of the ETOL languages). We also demonstrate that in many cases 
the use of hierarchical components does not increase the generative power. 

1 Introduction 
A cooperating grammar system (introduced in J 7], and motivated by considerations 
related to two level grammars), is a set of usual Chomsky grammars which cooper-
ate in rewriting sentential forms. In [7] a component that is currently rewriting a 
sentential form cannot quit until it introduces a symbol which it cannot rewrite (the 
current sentential form is not a sentential form of this component) . Only one com-
ponent at a time rewrites a sentential form. The set of terminal strings obtained in 
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this way is the language generated by the system. It is shown in [7] that this type 
of cooperating grammar systems (equiped with a control over the sequencing of the 
individual components) generates the-family of-programmed languages (which is 
equal to the family of languages generated by matrix grammars). 

The cooperating grammar systems were rediscovered in [l], under the name 
of modular grammars (a term related to the time varying grammars). A rather 
intensive study of cooperating grammar systems has been initiated in [2], where the 
grammar systems were related to the notions from artificial intelligence, such as the 
blackboard model in problem solving [9]. (See also Chapter 1 of [3] for further links 
between grammar systems and topics in artificial intelligence, computer science, 
and cognitive psychology.) Within this framework, more conditions on enabling and 
disabling of individual components were considered. Two, quite basic, examples of 
this type are: the step limitations (a component must work exactly, or at least, or 
at most a given prescribed number of steps), and the maximal competence strategy 
(a component must work as long as it can) - this is similar in some extent to the 
stoping condition from [7]. The latter strategy is particularly interesting, because 
it yields a characterization of the family of ETOL languages. 

A number of novel cooperating strategies has been considered recently — forming 
the teams of components, as in [6] and [9], is one of such strategies. 

In this paper we consider two quite natural modifications of the basic model. 
The first of these is adding a priority relation between the components of a system. 
A component can become active only when no other component with a greater 
priority can rewrite the current string. The other modification consists of allowing 
components which by themselves are grammar systems, or systems of grammar 
systems, etc. 

We demonstrate that neither of the two modifications increases the generative 
capacity when maximal competence strategy is used. For the other strategies, 
adding the priority relation strictly increases the generative power. 

We end this section by pointing out that both modifications of grammar systems 
we consider in this paper, viz. priorities and hierarchies, are very natural. Adding 
priorities in rewriting systems in order to ensure the deterministic applicability 
of rules is a rather standard mechanism - e.g. it is used in regulated rewriting 
in context-free grammars and in term rewriting systems. Also, the way that a 
computation in a grammar system is defined on the base of computations of basic 
units (grammars) may be seen as just a specific cooperation mechanism. In order to 
understand its power, it is natural to consider the bootstrapping of this mechanism 

- take grammar systems as basic units and obtain "grammar systems of depth 
2" by organizing their work together by a given cooperation mechanism, 

and proceeding inductively 

- take grammar systems of depth % > 2 and organize their work together by a 
given cooperation mechanism obtaining "grammar systems of depth t + 1". 

Then a way to understand a given cooperation mechanism as defined in grammar 
systems is to investigate the relationship between the generative power of grammar 
systems of different depth. This leads one then to hierarchical grammar systems. 
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2 Basic definitions 
For an alphabet V, V* denotes the free monoid generated by V; the empty string 
is denoted by A, and |z| denotes the length of x £ V*. The families of context-free, 
context-sensitive and recursively enumerable languages are denoted by CF, CS, and 
RE, respectively; ETOL denotes the family of ETOL languages. 

A matrix grammar is a construct G = (N, T, S, M, F), where N, T are disjoint al-
phabets, S £ N,M is a finite set of sequences, called matrices, (Ai —> xi,..., An 
xn),n > 1, of context-free rules over N U T, and F is a set of occurrences of rules 
in matrices of M . 

For m = (Ai xi,...,An -* xn) £ M, and w,w' £ [N U T)*, we define 
w =>m w' iff there are w2, • • •, t^n+i in (JVuT)* such that w = wlt w' = wn+i, 
and for each i, 1 < i < n, either io; = w^Aiw", to,+i = or Ai does not occur 
in Wi, Wi+i = Wi and Ai —* x; appears in F. 

If F = 0, then the grammar is said to be without appearance checking (and the 
component F is omitted from the specification of G). 

We denote by MATac (respectively, MAT^.) the family of languages generated 
by A-free (arbitrary) matrix grammars; when the appearance checking feature is 
not present we remove the subscript ac. 

A (context-free) ordered grammar is a construct G = (N,T, S, P,>~), where 
N, T, S, P are as in a context-free grammar, and >- is a partial order relation over 
P. A rule A —• x in P can be used for rewriting a string w only if no rule B y 
in P with B —* y >• A —* x can rewrite the string to. The family of languages 
generated by A-free ordered grammars is denoted by ORD, and ORDx is used for 
the case when A-rules are allowed. 

It is known that 

CF c MAT c MATac c CS, 
MAT c MATX c MATXC = RE, 
CF c ETOL c ORD c MATac. 

For the basic elements of formal language theory the reader is referred to [11]; for 
Lindenmayer systems we refer to [10] and for regulated rewriting to [4]. 

Definit ion 1 A cooperating distributed (cd, for short) grammar system is a con-
struct 

T = (N,T,S,PuP2,...,Pn), 

where N,T are disjoint alphabets, S £ N, and < t < n, are finite sets of 
context-free rules over N UT. 

The sets P,- are called the components of T; we also say that T is a cd grammar 
system of degree n. 

For a component Pi from a grammar system T as above, dom(Pi) = {A £ N 
I A —• x £ Pi}, and we define the derivation relation =>pi in the usual way. 
Then we can consider derivations in P, of exactly k successive steps, of at least k 
steps, at most k steps, and of an arbitrary number of steps; they are denoted by 
= > p f , =>p i k , and , respectively. Another important relation is 

x =>tpi y iff x =>•/>,. y and there is no z £ (N U T)* such that y =>pi z 

(the derivation is maximal in the component Pi). 



192 Victor Mi trail a, Gheorghe Pâun, Grzegorz Rozenberg 

In this way we have specified stop conditions for the components, i.e. conditions 
under which an active component must/can become inactive. 

For / S { * , t } U { < k,= k, > Jfc | Jfc > 1} the language generated by T in the / 
mode is defined by 

Lf(T) = {xeT*\S Xl =>fPi; »a ... =>'Pir xr = X, 

r > 1,1 < ty < n, 1 < J < r } . 

The family of such languages, generated by systems with at most n components 
(all of them without A-rules) is denoted by CDn(f) (if A-rules are allowed, then we 
write CD^(f)). The union of the families CDn(f) for all n is denoted by CD 00(f). 

In [2] and [3] it is proved that: 

CF = CDoo(= 1) = CD0„(> 1) = CD^i*) = CDoo(< k), k > 1, 
CF c CDn{= k) n CDn(> it), n > 2, Jfc > 2, 
C D 0 0 ( = Jb) C MAT, CKooi^ Jfc) C MAT, Jfc > 1, 
CF = CDx (t) = CD2 (t) c CDn (i) = ETOL 

(hence also CD^(t) = ETOL), n > 3. 

3 Introducing orderings and hierarchies into 
grammar systems 

We introduce now new classes of grammar systems which will be investigated in 
this paper. 

Def init ion 2 A grammar system with priorities (pcd grammar system) is a con-
struct T = (N , T, S, Pi, ..., Pn, >-), where N,T, S, Px,..., Pn are as in a cd gram-
mar system, and >- is a partial order relation over the set of components. For a 
derivation mode f , two strings x,y 6 (NUT)*, and a component Pi ofT we write 
x y if and only if x ==>pi y and for no component Pj with Pj >- Pi and 
no string z € (NUT)*, x =>pj z holds. 

Note that if x ^ ^ ^ y, then no Py with Pj >- Pi can rewrite x in the / mode 
- but there may be Py with Py >- P,- that can rewrite x in some way (e.g. Py can 
make only one rewriting step on x while / = " > 2"). 

We denote by PCDn(f) the family of languages generated by (A-free) pcd 
grammar systems of degree at most n in the derivation mode / . Again, we add the 
superscript A when also A-rules may be used, and we replace n with oo when the 
degree is not bounded. 



Structuring grammar systems by priorities and hierarchies 193 

Here is an example of a pcd gramar system. Let 

r = ({S,A,B,A',B',A",B"}l{a,b,c}lS,Pi,P2,P3lP4,P5,>), 
px = {A aA'b, B -* cB'}, 
P2 = {A-* A", B - B"}, 
p3 = [A' —» A, B' —• B, A" — ab, B" — c} , 
Pi = {A' - A', B' - B', A" - A", B" -» B"}, 
P5 = {A A, B - 5 , S -» A S } , 

and P 4 >- P i , P i >- P2, Ps >- -Pa-

Then 
L/(r) = {anbncn | n > 1}, 

for all / e {*, > 1} U { < A: | k > 2} (and also for / € { = 2, > 2}). 
Indeed, take a string an Abncn B ,n > 0; after using P5, the component in which 

we must start any derivation, we have n = 0. We can apply either Pi or P2, using 
only one or both rules from each of these components. If we use only one rule, then 
we obtain either a " + 1 A'bn+1cnB or anAbncn+1B' when using Plt and we obtain 
either anA"bncnB or anAbncnB" when using P2 . In all cases, both P4 and P5 can 
be used afterwards (and one of them has to be used, because they have the priority 
over Pi, P2, P3). However, nothing changes then in the current string, and so the 
derivation is blocked. Consequently, when using Pi, P2 we must use both rules from 
each of them, thus obtaining either a n + 1 A'bn+1cn+1B'or anA"bncnB". Now P4 is 
applicable and it changes nothing, but it does not forbid the use of P3 (P5 is not 
applicable). If, using P3 , only one of A',B' in o n + 1 A'bn+1cn+1B' is replaced by 
A, B, respectively, then again the derivation is blocked in the components Pi,P^, 
hence we must produce an+1 Abn+1cn~*~1 B - this is a string of the form that we have 
started with, hence the derivation can be iterated. If from anA"bncnB" we produce 
either an+1bn+1cnB" or anA"bncn+1, then the only applicable components are P3 
and P4 ; P4 changes nothing, hence we eventually will use P3 again, and get in this 
way a terminal string o " + 1 t n + 1 c r l + 1 . 

Definition 3 A hierarchical grammar system (hcd grammar system) of depth 
h, h > 0, is 

1. a context-free grammar T = [N, T, S, P) if h = 0, 

2. a construct T = (N, T, S, 71,721 ••• ,1m)) m ^ I, if h > 1, where T,- = 
(N, T, S, 7i), 1 < i < m, are grammar systems of depth h — 1. 

Thus, at the bottom level of a hcd grammar system we have sets of context-free 
rules, on the next level it contains sets of such sets, then sets of sets of sets and 
so on. The systems 7 1 , . . . , 7m from the specification of T in point 2 of the above 
definition are called components or subsystems of T of depth h — 1. 

Here is an example of a hcd grammar system of depth 2: 

level two : T = ( {5 , A, B, A', B'}, {a, b, e}, S, 7L> 72), 
level one : 71 = { 7 1 , 1 , 7 1 , 2 } , 

72 = {72,1}, 
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level zero : 71,1 = {A —• aA'b, B —» cB'}, 
71,2 = {A' —• A, B'^B}, 
72,1 = {S -» AB, A A, A ab, B - » c} . 

We known how to define a derivation step in a system of depth 0 (this is a 
usual derivation step in a context-free grammar), and we know how to define the 
derivation modes = > > , for / S {* ,t }U { < k, = k, > k \ k > 1} in a set P of rules. 
Then, for a system of depth h > 2, T = (N,T,S, 7 i , . . . , 7 m ) we define, for the 
component 7y, 1 < j < m, 

y iff h.n 
l],i, 1 1 — 

X! =•=* . 
r < k, are 

. =fc _ _ 
, •••=>fi.tk Xk~ 
components of 7y; 1 

1 

y iff x=>f. Tj.'i 
. <fc 

7j,ir > 1 < r < 3, are components of 7y, r < k, 

y iff ij.-i 
._>fc 
">}•' 2 =>-fc x — V • ^n.i. x> y> 

r < 3, are components of 7y, r > k, 

y iff . * • = y. 

7 / , . „ 1 < r < 3, are components of 7y, r > o, 
y iff * y and there is no z S [N U T)" 

such that y z. 

Continuing the previous example, let us consider the = 2 derivation mode. 
Starting from S, we must use 72, which contains only one subsystem, hence 

S =>=2 x means S xx x. 

Hence after using S —» AB and A —• A (three times) we obtain x = AB. Now 71 
must be applied, that is we must find a derivation 

A B ^ i m f i 

for i,j S {1, 2}. The only possibility is t = 1, j = 2, hence we get 

AB =>=2 aAbcB, because AB =>=21 aA'bcB' = > = 2 , aAfccB. 

This step can be iterated, obtaining anAbncnB,n > 0, and then 72 can be used 
for replacing A, B with ab, c, respectively. If the current string contains only one 
nonterminal, then 71 cannot be applied, hence after using 72 either a nonterminal 
string as above is produced or a terminal string must be obtained. It is easy to see 
that the generated language is 

L=2[r) = {anbnen I n > 1}. 

We denote by H h C D ( f ) the family of languages generated by grammar systems 
of depth at most h,h> 1, in the derivation mode / ; we also set HoCD(f) = CF, 
for all / . 
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4 The generative power of grammar systems 
with priorities 

In this section we will consider the effect of adding a priority relation on the gen-
erative power of grammar systems. 

The next results follow directly from the definitions. 

Lemma 1 CDn(f) C PCDn(f),PCDn(f) C PCDn+1{f),n > 1, for all f e 
{M}U {< k,= k,> k | k > 1}. 

The example from the end of the previous section implies that PCDn(f)—CF ^ 
0, for n > 5 , / E { * , > 1} U { < k | k > 2}. Since CDn(f) = CF, for all n > 1, 
and / as above (see the end of Section 2), this demonstrate that adding priorities 
strictly increases the generative power. This result can be extended also to modes 
of derivation other than t. 

T h e o r e m 1 PCDn(f) - CD^f) ^ 0, n > 10, / € {*} U { < k, = k, > k \ k > 1}. 

P r o o f . Consider the system 

r = ({5, A, A', B, B', B"), {a}, S, Pu P2,..., P10, v), 

with the components and the priority relations given in the following figure, where 
the components Pi, Pi are in relation Pi > P}- iff Pi is placed above Pj in one of 
the "composite boxes below: 

B' —• B' 
Pi B" — B" 

A -» A 
P2 A - A'A' 

P3 : B — B 

Pa : 
A! 
A' 

ÎÎ 

Ps S —> AB 
A — A 

B —> B 
B —* B' 

Ps = B" — B" 
B" a 

Pj : A' — A' 

B' —* B' 

co B' B 
B' -*B" 

P . B - + B Pq • B' — B' 

P • A - A rio . 

Notice first that the components Pi, P3, P-j, Pq consist of rules of the form X —» 
X only, hence their application does not change the current string. The same 
is true for P5, except for the first step of a derivation, because S never appears 
later in a sentential form. Therefore, all components Pi, P3, Pj, Pg (as well as P5 
after the first step) check the appearance of the corresponding nonterminals and 
block the components P2, P4, P%, P10 (and P&), respectively. For this reason we will 
call Pi, P3, P5, P7, Pg the control components and P2, Pi, P&, P%, Pio the rewriting 
components. 
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The derivation starts in P5 by producing the string AB (if we have a derivation 
mode = k or > k for k >2, then we can use k — 1 times the rule A —• A; this is true 
for all rewriting components, because they contain rules of the form X —* X, which 
do not modify the current string). Assume then that we have already generated 
a string AnB,n > 1. The presence of the rules A —• A and B —* B in P 5 and 
P9 forbides the use of components PS and PJO; P4 and P& are not applicable to 
A and B. Thus P2 is the only component which changes the current string. The 
obtained string will contain occurrences of both A and A' (and of B). Due to the 
presence of A we cannot use PQ, and due to the presence of B we cannot use P4 
and P10; PB is not applicable. Therefore we must again use P2 until all occurrences 
of A are replaced by A!. The so obtained string is of the form A'2nB. Now the 
only applicable component which changes the string is P 6 , and its use leads to a 
string of the form A'2nB', which allows the use of P4 (and only of P 4 , with the 
exception of control components like P7 and P9 which do not change the string 
under rewriting) which replaces occurrences of A! by A. As long as A, A' and B' 
are present, the only possibility is to continue to apply P4 until each A' is replaced 
by A, obtaining in this way A2nB'. Now one can apply Pg (and only Pg with the 
exception of Pj, P5, P9 which do not change the string under rewriting). If A2nB, 
is obtained, then the above process can be iterated. If A2nB" "is obtained, then the 
only applicable component (which changes the string) is P10; it must be then used 
until each A is replaced by a. When A is not present anymore, one can use PQ, 
finishing the derivation by replacing B" with a. 

Consequently, 
Lffi) = { a 2 " + 1 | n > 1}. 

Since Lf(T) is not context-free, it is not in CDoo(f), for / G {*>= 1> > 1}U 
{< k | k > 1}. Moreover, it is proved in [5] that the length set of every infinite 
language in C'£)0 0( /) , for / G { = k, > k | k > 1), contains an infinite arithmetical 
progression. This implies that L/(T) is not in CDoo( f ) , for / G { = k, > A: | k > l } , 
which concludes the proof. 

• 
Our proof of the above theorem holds for n > 10. The question: "what is the 

smallest n for which Theorem 1 holds ?" remains open. Of course, the equalities 
PCDxif) = CI>i ( / ) = C F a r e true for all / . Moreover, PCD2{= 1) C CF. 
Indeed, for T = [N, T, S, Pi, P2, >-) with Pi >- P2 (the same argument holds for 
P2 >- Pi) we may assume that dom(Pi) ndom{P2) = 0 (the rules A —• x G P2 with 
A G dom(Pi) can never be used, hence they can be eliminated). Thus L = i ( r ) = 
L(G) for G = (N , T, 5, Pi U P2) (the derivations in G and in T are the same up to 
a change of the order of using the rules). 

The above language {a2 + 1 | n > 1} is probably not in the family MAT (it is 
conjectured already in [ l l ] that the one-letter matrix languages are regular). Since 
CDoo(f) C MAT for all / as in Theorem 1 (and in some cases, CDoo(f) = CF), 
the increase in generative power by adding priorities is quite considerable for those 
derivation modes. Hence it is somewhat surprising that for the t mode of derivation 
adding a priority relation does not increase the generative power. 

T h e o r e m 2 P C D ^ t ) = C D ^ l t ) . 

P r o o f . We have to prove only the inclusion C. 
For a pcd grammar system T = (N, T, S, PI,..., PN, >-), we construct the cd 

grammar system T' as follows. 

T' = (N',T,S',P0,P'1,P",P2,P2,...,P'n,Pll,Pn+i), 



Structuring grammar systems by priorities and hierarchies 197 

N' = N U {S, X , # } u {X,- | 1 < * < n} , 
pQ = {S' — S X } U {Xi — X | 1 < t < n } ( 

P! = Pi U {X - # } U {Xy - # | 1 < j < n,j ? »}, 1 < t < n, 
P>' = {X — X , } U { A - # | B £ dom(Py), Py >- P,-, 1 < j < n} , 1 < i < n, 

-Pfi+1 = { I - t A } u { A - » # | i 4 e N). 

Once introduced in a sentential form, the symbol # cannot be removed (it is a 
"trap-symbol"). The symbols X j , . . . , Xn identify the components P i , . . . , Pn of T. 
In the presence of Xi the component Pi will be simulated by P{ and X,- can appear 
(introduced by P " ) only when no component Py with Py > Pi is applicable to the 
current string. 

Let us see how these principles work in V by examining in some detail a deriva-
tion. Consider a sentential form wX (initially we have w = S, obtained after using 
Po, which is the only component which can be applied to S1). The component 
P n + i can be used only if w £ T* - hence only as the final step of the derivation. A 
component P/ introduces the trap-symbol If Pj is maximal with respect to the 
relation >- among the components which can be applied to w, then P " can be used 
without blocking the derivation; it changes X into X,-, thus leading to wXi. Now to 
a string wXi we can apply either Po, replacing again Xi with X (hence not achiev-
ing anything) or the component P¿, which will simulate the application of Pi to to. 
The string tu'Xi obtained in this way can be rewritten only by Po, which leads to 
w'X, and so the process can be iterated. In the presence of X,-, every component 
P'.,j t, will introduce the trap-symbol. Consequently, L t ( r ) = ¿ t ( r ' ) . (Note 
that the A-rule in P„-t-i causes no problem, because CDoo(t) = CD^ft) = ETOL.) 

• 
Let us return to families PCD00(f) for / / t. It is quite natural to compare 

these families with ORD, the family of languages generated by ordered grammars. 
Given an ordered grammar G = (N,T, S, P, >-), it is obvious that we have L(G) = 
L = i ( T ) = L<i(T) where T is a pcd grammar system obtained by considering each 
rule of P as a separate component and the relation >- defined as in G. Therefore 
ORD C PCD00(= 1) = PCDni^. 1). This implies that the families PCD^if), 
f £ { = 1, < 1}, strictly include ETOL (and hence CD^t)). 

A similar result is obtained for the = k and < k modes of derivation for all 
k > 1. 

Theorem 3 ORD C PCD(/),/£{< k, = k \ k > 1). 

P r o o f . For k = 1 the statement follows by the argument as above. Consider k > 2. 
Let G — (TV, T, S, P, >-) be an ordered grammar with 

P = { r i , . . . r „ } , r{ : Ai x{, 1 < t < n, n > 1. 

We construct the pcd grammar system 

T = (JV'i T,S,P0, P i , P2, • • •, Pn, >-)i 

where 

N' = N U [Aij | 1 < i < n, 1 < j < k - 1), 

Po = - Aij \ l < i < n , l < j < k - l } , 
Pi = {M -* Aiti,Aitl ..., A i j f c_2 Ai,k-i, Ai,k-i Xi}, 1 < »' < n, 
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and 

P 0 X Pf for all 1 < i < n, 
Pi > Py iff T{ >- ry in G. 

Then L{G) = L=k(T) = L<k(T). 
Indeed, if we have a sentential form w to which PQ can be applied, then on the 

one hand no other component of T can be used for rewriting w, while on the other 
hand the use of PQ does not change the string W. Consequently, the derivation is 
blocked, and Po is a trap-component. As Po can be applied whenever any of the 
symbols in N' — N is present, it follows that the components Pi, 1 < t < n, upon 
completing their derivations cannot produce strings containing symbols in N' — N. 
This implies that using a component P,-, 1 < t < n, in < k or in = k mode of 
derivation, means to use all the rules from P,- exactly once, hence to replace an 
occurrence of A,- first by A,-,i, then by A,-,2,..., then by A.-^-i , and finally by x,-. 
This is exactly the effect of using the rule A,- —» x,-. As the priority relation among 
the components P< of T corresponds to the order relation among the rules of G, the 
equalities L(G) = L=k[T) = L< f c(r) follow. 

• 
It is an open question whether or not Theorem 3 holds also for the > k mode 

of derivation. 
We will now demonstrate that all the families P C D o o ( f ) with / 7 i t , are in-

cluded in MATac. In view of the strong generative power of matrix grammars with 
appearance checking this inclusion is somewhat expected, however is really cumber-
some to write the detailed proof of this result. This is due to the fact that we have 
to check whether or not all the components greater than a given component (in 
the sense of the >- relation) are applicable to a given string in a specified mode of 
derivation. This is easy for modes *, = 1, > 1, < k, for all k, but much more difficult 
for the cases = k,> k, for k > 2, when all combinations of k rules in a component 
must be checked. For this reason the proof of the following theorem will be rather 
sketchy, but certainly containing enough information so that the interested reader 
may complete it to a detalied proof. 

Theorem 4 PCD^f) C MATac, f G { * } U { < A:, = A;, > k \ k > 1}. 

P r o o f . (1) For / G { * } U { < A: | A: > 1}, consider a system T = (N, T, 
S, P i , . . . , P„ , >-), and construct the matrix grammar 

G = (N',Tu{c},S',M,F), 
N' = NU { X , S ' , # } U { [» , / ] | 1 < »• < n,0 < 3 < k}, 
M = {(S' ^ SX)} U 

u{(X —»[t,0], Ai -+#,..., A, —• #) | {Ai,..., A„} = 
{A G dom(Pj) | Py V Pu 1 < j < n} , 1 < i < n} U 

U { ( M [i,j+l],A - x) I A ^ x G Pi, 1 < i < n, 
0 < j < k - 1} U 

U{[\i,j] -* X) | 1 < » < n,0 < j < k} U 
u { ( X - . c ) } , 

F contains all rules A —• # ( # is a trap — symbol). 
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We have L(G) = L<k(r ) { c } . The first component of nonterminals [t, j] specifies 
the simulated component, while the second one counts the used rules. The symbol 
X is replaced by [i, 0], starting the simulation of P,-, only when no component Py 
with Pj >- Pi can use at least one of its rules for rewriting the current sentential 
form. After using j rules of P,-, for some 0 < j < k, the symbol [t, j ] can be replaced 
by X and another component of T can be simulated. 

If all symbols [*, j ] are replaced by [¿1, and no reference is made to the number of 
used rules, then we obtain L(G) = L „ ( r ) { c } . As MATac is closed under restricted 
morphisms, the new symbol c can be erased, and so Lf(T) e MATac> for / e 
{ * } U { < k | k > 1}. 

(2) In the case of the derivation mode = k, starting from T = (N, T, S, P j , . . . 
...,Pn,>~) with N = { A i , . . . , A ( } , we shall use again the closure of the family 
MATac under restricted morphisms. We construct a matrix grammar G with ap-
pearance checking working as follows. The new axiom S' introduces a string SX, 
where S is the axiom of T and X a control symbol; X or its variants will be present 
during all derivation steps. Moreover, for each symbol A e TV we have its copy Ac. 
In order to be able to check whether a component Py can be applied to the current 
string to, we introduce a copy of each nonterminal appearing in to, obtaining in this 
way a string toc scattered among the symbols of w; we try to use the rules of Pj on 
wc so that the original string to is not destroyed. 

Here is a "sub-routine" for such a copying, called for by the control symbol Xc 
(here and in the matrices below, # is a trap-symbol): 

(Xc —• Xc, A —» A'Ac), for each AeN, 
( X . - X ' . A : A. - # ) , 
(X ' X', A' A), for each AeN, 
(X' -^X",^^ #,..., A', -*#). 

(In the presence of Xc, each symbol A e N is replaced by A'AC; when all symbols 
AeN have been so replaced, Xc can be replaced by X', and then in the presence 
of X' each A' is rewritten back to A; when this has been completed, X' is removed 
and the symbol X" is introduced.) 

Then, the control symbol X" will guess a component, say Pi, to be used, by 
changing to Xi . Now all the components Py >- Pi must be tested and if any of 
them can be used, then the derivation is blocked. This can be done as follows. 

Having an ordered list GiZ(Pt) = (P } 1 , . . . ,Py ( ), of components that are 
"greater" than P,-, we inspect them in this order P y l f . . . , Py,.. If some Pyr is ap-
plicable, then the derivation is blocked; if Pyr is not applicable, then we pass to 
Pyr+1. Finally when also Pyt is not applicable, the control symbol is changed to 
some Yi, which leads to the simulation of P<. This is done as in the < k mode, 
introducing a counter which terminates the simulation of Pi when exactly k rules 
were used; then again the "general controller" X is introduced in order to start the 
simulation of another component. The derivation terminates (the control symbol, 
the copy symbols and their variants are replaced by the new terminal c) when no 
nonterminal from N is present in the current string. 

Hence to complete the proof of the theorem for the = k mode we have to show 
how to test whether or not a given component Py is applicable in the = k mode to 
the current string to (hence to the corresponding nonterminal string toc containing 
copies of the nonterminals in w). 
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Consider the set P* of all sequences of k rules in Pj, 

Pf = {m1,m2,...,mq},q = (card{Pj))k, 
mi = (Atl -* xi Alk -* xtk), Air -» xtr e Pj, 1 < r < k. 

We have to check all these sequences - if at least one of them is applicable, then 
Pj is applicable. By appropriately modifying the control symbol, we check, one by 
one all the sequences m ^ m j , . . . , mq . If some mj is applicable, then the derivation 
is blocked by introducing the trap-symbol if mj is not applicable, then we pass 
to mj+i. Finally, when mq is not applicable, then we conclude that Pj is not 
applicable. 

We explain now the basic idea behind the checking whether or not some mj = 
(A;, —• i j , , ,Aik —• xik) is applicable. Assume that the current string 
contains the control symbol [*, jt2} (meaning: "for using P,-, we must be sure that 
Pj >- P{ is not applicable, and we will try the sequence mj in P / " ) . Consider the 
set of all sequences C(mj) associated with mj as follows 

C[m,) = { (A ( l -> ah,..., A,k a,k) | a,r e {x , r , # } , 
1 < r < k, and at least for one r we have air = # } . 

If mi is applicable, then each sequence in C(m/), considered as a matrix with the 
rules A —• # used in the appearance checking manner, will introduce at least one 
occurrence of Conversely, if mj is not applicable, then there is exactly one 
sequence in C(m/) which can be used without introducing the trap-symbol. ' 

Indeed, take a rule Air —• xir. If it is applicable in mi to the current string w, 
then it is also applicable in all sequences of C(mj), whether or not it is replaced 
by Air —i> If it is applicable in mi to a symbol not in w, but introduced by 
a previous rule Ajp —• xip, with xip containing Aj r , then we examine this rule, 
Aip —i• x/p. If it remains unchanged in a sequence of C(m[), then it introduces 
Air, hence also Air —• ajr is applicable, introducing # when ajr = If it is 
replaced by Aip —• then the above argument can be iterated again, considering 
two possible cases for A[p: either it appears in w or it is introduced by a previous 
rule. Since each sequence in C[mi) contains at least one rule Ais —* jf whenever mj 
is applicable, at least one # is introduced. When m/ is not applicable, at least one 
of its rules is not applicable. If we replace all not applicable rules by A|a —• then 
we obtain a sequence in C(mj) which can be applied in the appearance checking 
mode without introducing the trap-symbol. 

Consequently, for checking whether or not mi is applicable it suffices to guess 
which sequence in C[mi) is applicable in the appearance checking mode (if the 
guessing is incorrect, then the derivation is blocked). 

To this aim, the current control symbol [i, j , Z] is non-deterministicaly replaced 
by [t, j , I; /i], where h is the label of a sequence (A/, —• a/l,..., Aik —• a/fc) in C(mi). 
Here is the "sub-routine" for this step: 

([{,;, /; h] - [ M , i; OK), (A,JC - » ( a , J c , . . . , (A,JC - » ( a , J c ) , 

where (a; r ) c = # if a i r = # and it.is obtained by replacing in xir (whenever 
a;r = xir) all nonterminals B € N by their copies Bc and removing all the terminals; 
the terminal rules B —* x are replaced by Bc —* D, where D is a special nonterminal 
(we do not introduce A-rules). 
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Then, because the copy symbols have been altered, we replace all of them by D 
and for checking the next sequence in P* (namely mj + 1 ) we produce a new series 
of copy symbols, using the following matrices: 

([t,/, f; OK) (,-, j, I, OK], Ac —» D), Ae N, 
([i,3,1-, OK] - [i^ JlcopyKAxU # (A.)c ^ # ) , 

([*> j, i; copy] - » [t', j, l; copy], A—* A' ,D —* Ac), Ae. N, 
([»• 3, copy] -» [», j, h copy], A A'Ac), Ae N, 
([{, j, /; copy] [i, j, l\ copy'], Ax—*#,..., A, —• #), 
([*,3, copy'] -+ [i, j, l, copy'], A' A), AeN, 
([»•, j, /; copy'] [», j, I + 1], A[ ^ # a: - #). 

In this way the new copies of nonterminals in the current string of T as simulated 
in G use "the places" of the old copies (the order is not relevant if matrices are 
used only for testing their applicability); new places for copies of nonterminals are 
introduced only when we do not have enough occurrences of the "place holder" 
symbol D (this is important when we pass from the simulation of P,-, which can 
introduce new nonterminals, to the simulation of another component). Therefore 
the length of the string is not increased more than by a factor of three (more exactly, 
for a string x £ L= fc(r) we can obtain in L[G) a string with the length less than 
2|z| + l ) . 

We believe that the description of G given above allows one to give a formal 
(quite tedious) construction of a matrix grammar G with appearance checking such 
that L = F C ( R ) = h(L(G)), where h : (T U {c})* —• T * is a 3-bounded morphism 
defined by h(a) = a for a e T, and h\c) = A. Consequently, L=k(T) 6 MATac. 

The modifications for the > k mode of derivation concern only the counting of 
rules used in P< whenever the use of Pi is permitted. (A component Pj >• Pi is 
applicable in the > k mode if and only if it is applicable in the = k mode, hence 
the "checking part" of the construction from the above proof remains unchanged.) 

• 

5 The power of hierarchical grammar systems 
We begin by pointing out the relations which follow directly from definitions: 

L e m m a 2 CF = H0CD[f) C HxCDU) = CD^f) C H2CD(f) C H3CD(f) 
C...,fe{*,t}u{<k,= k,>k\k >1}. 

For many derivation modes, this hierarchy is finite. 

T h e o r e m 5 HhCD(t) = HxCD{t), for each h>l. 

Proo f . We only have to prove the inclusion HhCD(t) C HiCD(t), and to this aim 
it suffices to show that H2CD(t) C H\CD(t) (by induction: having a system of 
arbitrary depth h > 2, if its subsystems of depth h— 1 can be reduced to systems of 
depth 1, then we replace them by such systems and obtain in this way a system of 
depth 2 equivalent with the initial one; then again using the reduction from depth 
2 to depth 1, we prove the theorem). 
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Hence consider a system T = (N, T, S, 7 1 , . . . , 7 m ) of depth 2, with 7; = {7,- , i , . . . 
• • • 17i,r, } j U > 1, 1 < t < m, where 7^y are sets of context-free rules over JVl lT . 
We construct the system I", of depth 1, with the nonterminal alphabet 

If = {S ,# } u {[A,i] I A € N, 1 < i < m), 

the terminal alphabet T, the axiom S', and the following components: 

Pr = {S'-+[S, 1], 
PiJ = ( K » ' ] ^hi{x)\A-*xe 1 < »' < m, 1 < j < r<, 

Ki = { M ^ \A,j\ \AeN- ( U ^ d o m f o , . ) ) U 
U{[A,i] - » # | i l e U ^ d o m f o . ) } , 1 < i,j <m,iji 3, 

where, for each 1 < »' < m, h{ : ( N U T ) * —• (N'uT)* is the morphism defined by 
hi (A) = [A,t] for all A e N, and hi (a) = a for all a e T. 

Each derivation in T' begins by a rule S' —* [S,t], which selects a component 
7i of T which is simulated first. Assume we use now a component Pij, 1 < j < ri. 
All the introduced nonterminals will be of the form [A, i], A € N. The derivation 
will be maximal in P i j , hence it corresponds to a maximal derivation in 7 A f t e r 
finishing the derivation in Pij, another component for 1 < s < r ,̂ can be used, 
and so on. At each moment, all the nonterminals present in the current string are 
of the form [A,i], for the chosen t. When no component P.- y, 1 < j < r c a n be 
used (this corresponds to a maximal derivation in 7,), a component P- t, of 
T' can be used. It changes all nonterminals in the sentential form from [A,i] to 
\Ayj\. A component ^ 3', can be used without blocking the derivation only 
when no derivation step in P^s, 1 < s < r ,̂ can be done, that is the corresponding 
derivation in 7i is maximal (otherwise a rule [A,t] —> A £ dom(~ntt), for some 
1 < s < r,-, can be used, which introduces the trap-symbol # ) . Consequently, the 
terminal derivations in T' simulate derivations in T. 

Conversely, it is obvious that each derivation in T can be simulated in T'. 
Consequently, Lt(T) = £ t(r ')> that is H2CD(t) C HiCD{t) = CD^t), which 

concludes the proof. 
• 

Theorem 6 HhCD(f) = HxCD(f) = CF, for f £ {*, = 1, > 1} U { < k \ k > l} , 
and h > 1. 

P r o o f . We proceed again as in the previous proof, reducing the problem to the 
inclusion H2CD[f) C H1CD(f)-> because we know that HxCD[f) = CF, for / as 
in the statement of the theorem, we shall prove the relation H2CU(f) C CF. 

Consider a system of depth 2, T = (N,T,S, 71 , . . . , 7m) , with 7,• = {7» , i , . . . 
• • • >7»,a. } 1 f° r each 1 < t < m, where 7tiy is a set of context-free rules, 1 < j < s,-. 
Let G be the context-free grammar (N, T, S, {A —» x | A —» x £ 7,- y, 1 < t < m, 1 < 
j < SI}). 

Every derivation in T ammounts to the use of rules from sets 7,,y, hence the 
inclusion L/[T) C L(G) is obvious (and actually holds for all modes of derivation, 
and not only for the modes / as in the statement of the theorem). Conversely, every 
derivation in G is correct with respect to the / mode in T, because we can reproduce 
all derivations in G as = 1 derivations in T. Consequently, L(G) = Lj (F), that is 
Lf(T) £ CF. • 
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It is an open problem whether Theorem 6 can also be extended to the derivation 
modes = k and > k, for k > 2. This question seems to be related to the unsolved 
problems about usual grammar systems concerning (1) the relations between fam-
ilies CD0o (= k) and CD^ (= j) for k j, and (2) the strictness of the inclusions 
CDoo (> k) C CDoo(> k + 1) for k > 2 (weak inclusions are proved in [3]). In the 
example from Section 3 we have seen that a derivation in the = 2 mode at the level 
of the system corresponds, in some sense, to a derivation in the = 4 mode at the 
level of components: two rules from the first sub-component and two rules from 
the second sub-component are used. 

We will demonstrate now that the result analogous to Theorem 3 holds for hcd 
grammar systems. 

Theorem 7 HhCD[f) C MAT, for all h > 0 and for f e {= k,> k \ k> 2}. 

Proo f . First of all notice that for each / as in the statement of the theorem, 
H0CD(f) = CF, and HiCD(f) = CD(f) - thus (see also the end of Section 2) 
HoCD(f) C MAT and HxCD(f) C MAT. Hence we may assume that h> 2. 

Let T be a hcd grammar system of depth h,T = (N, T,S, 7 1 , . . . , 7M). Using a 
component 7 i n the = k mode for k >2, means to use k of its subsystems. This 
in turn means that k sub-subsystems are used, and so on until one reaches the 
level 0 (of sets of rules) where we use k rules from each set chosen by the previous 
steps. This means that from the sets P}- on the level 0 we use sequences in the 
sets Pj\ then "concatenating" such sequences, we obtain sequences corresponding 
to the next level and so on. The so obtained sequences are matrices of rules, and 
so the work of T in the = k mode can be simulated in a matrix grammar which is 
defined as follows. 

For a sequence of matrices of context-free rules, ny = (»"¿,1,..., rj,,,.), 1 < t < 
p, we define ( m i , . . . , m p ) = (r<,i , . . . , riitl, r 2 , i , . . . , r 2 , „ , r3<1,..., rp > ,J , which is 
again a matrix of rules. 

For a set P of context-free rules let mat[P,k) = Pk (all matrices, in all orders 
and combinations, of k rules in P), and then, for a system S = [N, T, S, Si,... 
. . . , 67) of depth h > 1, we define recursively 

mai(5, A;) = {mat(6i, k),mat(S2, k),..., mat{St,k)}k. 

The matrix grammar G — (N,T,S,mat(T,k)) has the property L(G) = L=fc(r), 
which proves the inclusion HhCD{= k) C MAT. 

The inclusion HhCD(> k) C MAT can be obtained in the same way, using the 
observation that every derivation in a system T in the mode > k can be decomposed 
into one or more derivations in the mode = j, for k < j < 2k — 1. Therefore, 
if we define now mat'(P,k) = U^-^.1 mat(P, j) and we modify in the same way 
the definition of mat(S,k), then we obtain a matrix grammar G' generating the 
language L>k(T). 

• 
Note that in the above theorem we have dealt with matrix grammars without 

appearance checking. 
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