A note on regular strongly shuffle-closed languages

B. Imreh * A. M. Ito ${ }^{\dagger}$

In this work we study the class of regular strongly shuffle-closed languages and we present their description by giving a class of recognition automata.

The shuffle product operation plays an important role in the theory of formal languages, cf. [1], [2], |4]. Several properties of shuffle closed languages are studied in [3]. Among others a characterization of regular strongly shuffle-closed languages is presented by giving their expressions. Using this result, we determine a very simple class of deterministic automata accepting regular strongly shuffle-closed languages.

First of all we introduce some notions and notations. Let X be a nonempty finite set and let X^{*} denote the free monoid of words generated by X. We denote by 1 the empty word of X^{*}. The shuffle product of two words $u, v \in X^{*}$ is the set

$$
u \diamond v=\left\{w: w=u_{1} v_{1} \ldots u_{k} v_{k}, u=u_{1} \ldots u_{k}, v=v_{1} \ldots v_{k}, u_{i}, v_{j} \in X^{*}\right\}
$$

A language $L \subseteq X^{*}$ is called shuffe-closed if it is closed under \diamond, that is, if $u, v \in L$, then $u \diamond v \subseteq \bar{L}$. If L is shuffle-closed and, for any $u \in L, v \in X^{*}$, the condition $u \diamond v \bigcap L \neq \emptyset$ implies $v \in L$, then L is called a strongly shuffle-closed language, or brielly, an ssh-closed language.

Next let $X=\left\{x_{1}, \ldots, x_{r}\right\}, r \geq 1$, be an arbitrarily fixed alphabet. For any $L \subseteq X^{*}$, let us denote by alph (L) the set of elements of X occurring in words of L. We shall describe those regular ssh-closed languages over X for which alph $(L)=X$.

We use the Parikh mapping and its inverse which are defined as follows. Let $N=\{0,1,2, \ldots\}$. The mapping Ψ of X^{*} into the set N^{r} defined by

$$
\Psi(u)=\left(\mu_{x_{1}}(u), \ldots, \mu_{x_{r}}(u)\right), \quad u \in X^{*},
$$

is called the Parikh mapping, where $\mu_{x_{t}}(u)$ denotes the number of occurrences of x_{t} in u. For a language $L \subseteq X^{*}$, we define $\Psi(L)=\{\Psi(u): u \in L\}$. Moreover, if $S \subseteq N^{r}$, then $\Psi^{-1}(S)=\left\{u: u \in X^{*} \& \Psi(u) \in S\right\}$.

Now we recall a notation and a result from [3].
Let $\mathbf{a}=\left(i_{1}, \ldots, i_{r}\right), \mathbf{b}=\left(j_{1}, \ldots, j_{r}\right) \in N^{r}$ and let p_{1}, \ldots, p_{r} be positive integers. Then $a \hookrightarrow \mathbf{b}\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$ means that $i_{t} \geq j_{t}$ and $i_{t} \equiv j_{t}\left(\bmod p_{t}\right)$, for all t, $t=1, \ldots, r$.

[^0]Theorem 1 ([9], Proposition 5.2) Let $L \subseteq X^{*}$ with alph $(L)=X$. Then L is a regular ssh-closed language if and only if L is presented as

$$
L=\bigcup_{u \in F} \Psi^{-1} \Psi\left(u\left(x_{1}^{p_{1}}\right)^{*} \ldots\left(x_{r}^{p_{r}}\right)^{*}\right)
$$

where
(i) p_{1}, \ldots, p_{r} are positive integers,
(ii) F is a finite language over X with $1 \in F$ satisfying
(ii)-(1) for any $u \in F$, we have $0 \leq j_{t}<p_{t}, 1 \leq t \leq r$ where $\Psi(u)=\left(j_{1}, \ldots, j_{r}\right)$,
(ii)-(2) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(u v) \hookrightarrow$ $\Psi(w)\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$,
(ii)-(S) for any $u, v \in F$, there is a $w \in F$ such that $\Psi(u w) \hookrightarrow$ $\Psi(v)\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$.

Finally, we make some further preparation. For any positive integer p and $x_{i} \in X$, let us denote by $\mathbf{C}^{\left(p, x_{i}\right)}=\left(X,\{0, \ldots, p-1\}, \delta^{\left(p, x_{i}\right)}\right)$ the automaton defined by the following transition function. For any $j \in\{0, \ldots, p-1\}, x \in X$, let

$$
\delta^{\left(p, x_{t}\right)}(j, x)= \begin{cases}j & \text { if } x \neq x_{t} \\ j+1(\bmod p) & \text { if } x=x_{t}\end{cases}
$$

where $j+1(\bmod p)$ denotes the least nonnegative residue of $j+1$ modulo p.
Now let p_{1}, \ldots, p_{r} be positive integers and form the direct product of the automata $\mathbf{C}^{\left(p_{t}, x_{t}\right)}, t=1, \ldots, r$. Let us denote by $\mathbf{C}^{\left(p_{1}, \ldots, p_{r}\right)}$ this direct product and by $\delta^{\left(p_{1}, \ldots, p_{r}\right)}$ its transition function. It is easy to prove that $\mathbf{C}^{\left(p_{1}, \ldots, p_{r}\right)}$ has the following properties:
(a) it is a commutative automaton,
(b) if $\mathbf{a}, \mathbf{b} \in \prod_{t=1}^{r}\left\{0, \ldots, p_{t}-1\right\}, u \in X^{*}$ are such that $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(\mathbf{a}, u)=\mathrm{b}$, then $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(a, v)=b$, for all $v \in \Psi^{-1} \Psi(u)$,
(c) for any $u \in X^{*}, \delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, u)=\Psi(u)\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$, where 0 denotes the r-dimensional 0 -vector and $\Psi(u)\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$ denotes the vector $\left(i_{1}\left(\bmod p_{1}\right), \ldots, i_{r}\left(\bmod p_{r}\right)\right)$ with $\Psi(u)=\left(i_{1}, \ldots, i_{r}\right)$.

For each $t, t=1, \ldots, r$, let us denote by $\mathcal{M}_{p_{t}}$ the group defined by the addition $\bmod p_{t}$ over the set $\left\{0, \ldots, p_{t}-1\right\}$. Let $M^{\left(p_{1}, \ldots, p_{r}\right)}$ denote the direct product of the groups $\mathcal{M}_{p_{t}}, t=1, \ldots, r$. Then $\mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}$ is also a group; let \oplus denote its operation. Let us observe that the set of states of $\mathbf{C}^{\left(p_{1}, \ldots, p_{r}\right)}$ is equal to the set of elements of $\mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}$. Therefore, for any subgroup H of $\mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}$, we can define the recognizer

$$
\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}=\left(\prod_{t=1}^{r}\left\{0, \ldots, p_{t}-1\right\}, X, \delta^{\left(p_{1}, \ldots, p_{r}\right)}, \mathbf{0}, H\right)
$$

where 0 is the initial state and H is the set of the final states.
The next property of $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}$ can be proved easily:
(d) if $u, v \in X^{*}$ are accepted by $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}$ with final states \mathbf{a}, \mathbf{b}, respectively, then $u v$ is also accepted by $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}$ with the final state $\mathbf{a} \oplus \mathbf{b}$.

Finally, form the set of recognizers

$$
\mathcal{M}_{X}=\left\{\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}:\left(p_{1}, \ldots, p_{r}\right) \in N^{r} \text { and } H \text { is a subgroup of } \mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}\right\} .
$$

Now we are ready to prove our result.
Theorem 2 A language $L \subseteq X^{*}$ with alph $(L)=X$ is regular ssh-closed if and only if L is accepted by a recognizer from \mathcal{M}_{X}.

Proof. In order to prove the necessity, let us suppose that $L \subseteq X^{*}$ is a regular sshclosed language with alph $(L)=X$. Then there are positive integers p_{1}, \ldots, p_{r} and $F \subseteq X^{*}$ which satisfy the conditions of Theorem 1. Let us consider the automaton $C^{\left(p_{1}, \ldots, p_{r}\right)}$ and let us define the set H by

$$
H=\left\{\mathbf{a}: \mathbf{a} \in \prod_{t=1}^{r}\left\{0, \ldots, p_{t}-1\right\} \text { and } \delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, u)=\mathbf{a}, \text { for some } u \in F\right\}
$$

We show that H is a subgroup of $M^{\left(p_{1}, \ldots, p_{r}\right)}$. Indeed, let $a, b \in H$ be arbitrary elements. By the definition of H, there are $u, v \in F$ with $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, u)=\mathbf{a}$ and $\delta\left(p_{1}, \ldots, p_{r}\right)(0, v)=\mathbf{b}$. Let $\Psi(u)=\left(i_{1}, \ldots, i_{r}\right)$ and $\Psi(v)=\left(j_{1}, \ldots, j_{r}\right)$. Then, by (ii) - (1), we have $0 \leq i_{t}, j_{t}<p_{t}$, for all $t=1, \ldots, r$, and hence, we obtain, by (c), that $\mathbf{a}=\left(i_{1}, \ldots, i_{r}\right)$ and $\mathbf{b}=\left(j_{1}, \ldots, j_{r}\right)$. On the other hand, by (ii)-(2) of Theorem 1 , there exists a $w \in F$ with $\Psi(u v) \hookrightarrow \Psi(w)\left(\bmod \left(p_{1}, \ldots, p_{r}\right)\right)$. Let $\Psi(w)=\left(k_{1}, \ldots, k_{r}\right)$. Then, by (ii) - (1) and (c), $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, w)=\left(k_{1}, \ldots, k_{r}\right)$. Since $w \in F$, we have $\left(k_{1}, \ldots, k_{r}\right) \in H$. From $\Psi(u v) \hookrightarrow \Psi(w)$ it follows that $i_{t}+j_{t} \equiv k_{t}\left(\bmod p_{t}\right), t=1, \ldots, r$. But then $\mathbf{a} \oplus \mathrm{b}=\left(k_{1}, \ldots, k_{r}\right)$. Therefore, H is closed under the operation \oplus implying that H is a subgroup of $\mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}$. This completes the proof of the necessity.

In order to prove the sufficiency, let us suppose that $L \subseteq X^{*}$ with alph $(L)=X$ and there exists a recognizer $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)} \in \mathcal{M}_{X}$ accepting L. We show that L is a regular ssh-closed language.

The regularity of L is obvious. Now let $u, v \in L$ and let w be an arbitrary element of the set $u \diamond v$. Since L is accepted by $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}$, there are $\mathbf{a}, \mathbf{b} \in H$ such that $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, u)=a$ and $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, v)=b$. Therefore, by (d), we obtain that $u v$ is accepted by $\mathbf{R}_{H}^{\left(p_{1}, \ldots, p_{r}\right)}$ with the final state $\mathbf{a} \oplus \mathbf{b}$. From this, by (b), we get that $w \in L$, and so, L is shuffle-closed.

Finally, let $u \in L, v \in X^{*}$ and let us assume that $u \diamond v \bigcap L \neq \emptyset$. If $v=1$, then $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, v)=0 \in H$, and so, $v \in L$. Now let us suppose that $v \neq 1$. Let $\delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, u)=\mathbf{a}, \delta^{\left(p_{1}, \ldots, p_{r}\right)}(0, v)=\mathbf{b}$ and let $\Psi(u)=\left(i_{1}^{\prime}, \ldots, i_{r}^{\prime}\right), \Psi(v)=$ $\left(j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right)$. Then there exist nonnegative integers $i_{t}<p_{t}, j_{t}<p_{t}, l_{t}, k_{t}, t=$ $1, \ldots, r$, such that $i_{t}^{\prime}=i_{t}+l_{t} p_{t}, j_{t}^{\prime}=j_{t}+k_{t} p_{t}, t=1, \ldots, r$. Let us denote by u^{\prime} and v^{\prime} the words $x_{1}^{i_{1}+l_{1} p_{1}} \ldots x_{r}^{i_{r}+l_{r} p_{r}}$ and $x_{1}^{j_{1}+k_{1} p_{1}} \ldots x_{r}^{j_{r}+k_{r} p_{r}}$, respectively. Using (b) and (c), we obtain that $\delta^{\left(p_{1}, \ldots, p_{r}\right)}\left(0, u^{\prime}\right)=a, \delta^{\left(p_{1}, \ldots, p_{r}\right)}\left(0, v^{\prime}\right)=b$, where $\mathbf{a}=\left(i_{1}, \ldots, i_{r}\right), \mathbf{b}=\left(j_{1}, \ldots, j_{r}\right)$. By our assumption on $u \diamond v$, there exists a word $w \in u \diamond v \bigcap L$. Let

$$
w^{\prime}=x_{1}^{i_{1}+j_{1}+\left(l_{1}+k_{1}\right) p_{1}} \ldots x_{r}^{i_{r}+j_{r}+\left(l_{r}+k_{r}\right) p_{r}} .
$$

Since $w \in u \diamond v \bigcap L$ and $\Psi\left(w^{\prime}\right)=\Psi\left(u^{\prime} v^{\prime}\right)=\Psi(u v)=\Psi(w)$, (b) implies $w^{\prime} \in L$. On the other hand, by (c), we have

$$
\delta^{\left(p_{1}, \ldots ; p_{r}\right)}\left(0, w^{\prime}\right)=\left(i_{1}+j_{1}\left(\bmod p_{1}\right), \ldots, i_{r}+j_{r}\left(\bmod p_{r}\right)\right)
$$

Now let us observe that $\left(i_{1}+j_{1}\left(\bmod p_{1}\right), \ldots, i_{r}+j_{r}\left(\bmod p_{r}\right)\right)=a \oplus b$. Since $w^{\prime} \in L$, we have $\mathrm{a} \oplus \mathrm{b} \in H$. But H is a subgroup of $\mathcal{M}^{\left(p_{1}, \ldots, p_{r}\right)}$, thus $\mathrm{a} \in H$ and $\mathbf{a} \oplus \mathbf{b} \in H$ imply $\mathbf{b} \in H$. Therefore, by $\delta^{\left(p_{1}, \ldots, p_{r}\right)}\left(\mathbf{0}_{;} v\right)=\mathbf{b}$, we obtain that $v \in L$, and so, L is an ssh-closed language. This completes the proof of the theorem.

References

[1] Eilenberg, S., Automata, Languages and Machines, Vol A, Academic Press, New York, 1974.
[2] Ginsburg, S., Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland Publ., Amsterdam, 1975.
[3] Ito, M., Thierrin, G., Yu, S.S., Shuffle-closed Languages, Publicationes Mathematicae, submitted for publication.
[4] Lothaire, M., Combinatorics on Words, Encyclopedia of Mathematics and its appli-cations, Addition-Wesley, Reading, 1983.

[^0]: *Department of Informatics, A. József University, Árpád tér 2, H-6720 Szeged, Hungary
 ${ }^{\dagger}$ Faculty of Science, Kyoto Sangyo University, 603 Kyoto, Japan

