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On Semi-Conditional Grammars with 
Productions Having either Forbidding or 

Permitting Conditions 

A. Meduna * A. Gopalaratnam* 

Abstract 

This paper simplifies semi-conditional grammars so their productions have 
no more than one associated word-either a permitting condition or a forbid-
ding condition. It is demonstrated that this simplification does not decrease 
the power of semi-conditional grammars. 

1 Introduction 
A semi-conditional grammar is a context-free grammar with productions having 
two associated words-a permitting condition and a forbidding condition. Such a 
production can rewrite a word, tu, provided its permitting/forbidding condition 
is/is not a subword of to. Semi-conditional grammars without erasing productions 
characterize the family of context-sensitive languages; when erasing productions 
are allowed, these grammars define all family of recursively enumerable languages. 

This paper studies a simplified concept of these grammars, whose productions 
have no more than one associated word-either a permitting condition or a forbid-
ding condition. It is shown that this simplification does not decrease the generative 
power of semi-conditional grammars. 

2 Definitions and Examples 
We assume that the reader is familiar with formal language theory (see [3]). 

Let V be an alphabet V* denotes the free monoid generated by V under the 
operation of concatenation, where A denotes the unit of V*. Let — V* — {A}. 
Given a word, tu G V*, |tu| represents the length of tu, and alph(w) denotes the set 
of symbols occurring in to. We set sub(w) = {y : y is a subword of tu}. Given a 
symbol, a EV, #au> denotes the number of occurrences of a in w. 

A semi-conditional grammar (an sc-grammar for short) is a quadruple, G = 
(V, P, S, T), where V, T, and S are the total alphabet, the terminal alphabet (T C 
V), and the axiom, respectively, and P is a finite set of productions of the form 
(A -+ with A € V - T , a € e V + U {0}, and /i 6 V + U {0}, where 0 
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is a special symbol, 0 ^ V (intuitively, 0 means that the production's condition is 
missing). If (A —• ct,fi, fi) 6 P implies a £ K,G is said to be propagating. G has 
degree (t, 0), where t is a natural number, if for every (A a, fi, P,fi 6 V + 

implies < », and ft = 0. G has degree (0, j), where j is a natural number, if for 
every (A —» a,fi, fi) & P, fi = 0, and fi € V+ implies |/i| < j. G has degree (i,j), 
where » and j are two natural numbers, if for every (A —• a, fi, fi) € P, fi € V + 

implies < t, and /i € V+ implies |/i| < j. Let u, v €E V*, and (A -* a, fi, fi) 6 P. 
Then, u directly derives v according to (A —* a, fin), denoted by 

u=>v [(A->a,fi,n)} 

provided for some «1,1*2 € V*> the.following conditions (1) through (4) hold 

ill u = UiAu-i 

2) v = ujorua 
3) fi ± 0 implies fi € subful 
4) fi ^ 0 implies fx £ sub(u) 

When no confusion exists, we simply write u => v. As usual, we extend =>• to =>* 
(where » > 0), =»+ , and =>*. The language of G, denoted by L(G), is defined by 
L(G) = {tw S T*\S =>* to}. 

Now, we introduce the central notion of this paper-a simple semi-conditional 
grammar. Informally, a simple semi-conditional grammar is an sc-grammar in 
which any production has no more than one condition-either a permitting condition 
or a forbidding condition. Formally, let G = (V, P, S, T) be an sc-grammar. G is a 
simple semi-conditional grammar (an ssc-grammar for short) if (A —• x, a, fi) G P 
implies {0} C {a,fi}. 

To give an insight into sac grammars, let us present two examples. Example 1 Let 
G=({5 ,A ,X ,C,y ,a ,6} ,P ,5 , {a ,6} ) 

be an ssc-grammar, where 

P = { ( 5 - + A C , 0,0), 
(A —»aXb,Y,0), 
( C - y . A . O ) , 
(Y —* Cc,0, A), 
(A —» ab,Y,0), 
(Y-+c,0,A), 
(X^A,C,0)} 

Notice that G is propagating, and it has degree (1, 1). Consider aabbcc. G derives 
this word as follows: 

S => AG =>• AY =>• aXbY => aXbCc => oAbCc oAfcVc => aabbYc => aabbcc. 

Obviously, 
L(G) = {ani>"cn; n > 1}. 

Note that {anbncn; n > 1} is not a context-free language. 
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Example 2 Let 
G=( {S 1 A 1 0 l JT > y ;a } I J> I S I { a } ) 

be an ssc-grammar, where P is defined as follows: 
P = { ( 5 - » a , 0 , 0 ) , 

( S ^ X , 0,0), 
(X^YB.O.A), 
( X - o B , 0 , A ) , 
[Y-*XA,0,B), 
(Y^aA,0,B), 
(A-+BB,XA, 0)} 
(B —* AA, YB,0)} 
( B - » 0,0,0)} . 

G is a propagating ssc-grammar of degree (2,1). For aaaaaaaa, G makes the 
following derivation: 

S => X =>YB => YAA => XAAA => XABBA => XABBBB =» XBBBBBB => 
aBBBBBB => aBaBBBBB aBaBBBBa aaaBBBBa => 
aaaBBBaa => aaaaBaaa => aaaaaaaa. 

Clearly, G generates { o 2 " ;n > 0}, that is, 

L(G) = {a2*; n > 0}. 

Note that { o 2 " ; » > 0} is not context-free. 
The family of languages generated by ssc-grammars of degree (t, j ) is denoted 

by SSC(»',j). Set 
oo oo 

ssc= U Ussc(i,y). 
»=oy=o 

To indicate that only propagating grammars are considered, we use the prefix 
prop»-; for intance, prop-SSC (2, 1) denotes the family of languages generated by 
propagating ssc-grammars of degree (2, l) . 

The families of context-free, context-sensitive, and recursively enumerable lan-
guages are denoted by CF, CS, and RE, respectively. 

Let us finally recall that a context sensitive grammar in Penttonen normal form 
is a quadruple, G = (V, P, S, T), where V, S, and T have the same meaning as for 
an ac-grammar, and any production in P is either of the form AB —* AC or of the 
form A a, where A, B, C e V - T, a G (T U (V - T)2) (see [2]). In the standard 
manner, we define =>•, =>', =>+, =>*, and L(G). If we want to express that x => y in 
G according to p € P, we write x =» y [p]. 

3 Results 
fVom the definition, the results achieved in [l], and the examples given in the 
previous section, we see that 

CF C p r o p - S S C C p r o p - S C = prop—SC(2, l) = p r o p - S C ( l , 2 ) = CS 
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and 

prop—SSC C SSC C SC = SC(2,1) = SC( l , 2) = R E 

This section states that 

CF 

c 

prop - SSC = prop - SSC(2,1) = prop - SSC( l , 2) = 

p r o p - SC = p r o p - SC(2,1) = p r o p - SC(1,2) = CS 

c 

SSC = SSC(2,1) = SSC(1,2) = SC = SC(2,1) = SC(1,2) = R E 
In other words, we demonstrate that asc-grammars are as powerful as ac-grammars. 
To establish this result, we first prove that propagating sac-grammars of degree 
(2,1) generate precisely the family of context-sensitive languages. 
Theorem 1 CS = prop - SSC(2, l ) . 

Proo f . Clearly, p rop — SSC(2,1) C CS, so it suffices to prove the converse 
inclusion. 

Let G = (V, P, S, T) be a context-sensitive grammar in Penttonen normal form. 
We construct an sac-grammar, G' = (V U W, P',S, T), that generates L(G). Let 

W = {B-, AB — AC e P, A, B, C e V - T} 

We define P1 in the following way: 

1. ii A^a€P,AeV -T,aeTL>(V -T)2, 
then add (A -+ a, 0,0) into P', 

2. if AB —• AC e P,A,B,C eV - T, 
then add 

(B -* B,0,B),{B C,AB,0), and (B B,0,0) 

to F(B is the ~ version of B in AB —* AC). 

Notice that G is a propagating sac-grammar of degree (2,1). Moreover, from 
(2), we have for any B & W 

S a implies #ga<l 

because the only production that can generate B is of the form (B —* B, 0, B). 
Let g be the finite substitution from V* into (W U V)* defined as follows: 
for all D G V, 

1. if D € W(D is the ~ version of D), then g(D) = {£>, D}; 

2. if D&W, then g(D) = {£>}. 
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Next, we will show that for any to € V+, 

S =>q to if and only if 5 =>G, v with v € g(w) 

for some m, n > 0. 

Only if: This is proved by induction on m. 
Basis: Let m = 0. The only to is S as S S. Clearly, S =>G, S for n = 0, 

and S G g(S). 
Induction Hypothesis: Assume that the claim holds for all derivations of length 

m or less, for some m > 0. 
Induction Step: Consider a derivation S =>Q+1 a, a 6 V + . Because m + 1 > 1, 

there is some ß 6 V* and p & P such that S =>Q ß =>G a [p]- By the induction 
hypothesis, S ^q, ß' for some ß' e g(ß) and n > 0. Next, we distinguish two 
cases, case (i) considers p with one nonterminal on its left-hand side, and case (ii) 
considers p with two nonterminals on its left-hand side. 

(i) Let p = D -»h € P,D e V-T, ß2 e r u ( V - r ) 2 , ß = ßiDß3,ßuß3 e V , 
" = ßilhßs.ß' = ß'iXß'3,ß'i € g(ßi),ß'3 e g(ß3), and X e g(D). By (1), {D -
#2,0,0) <=P. If X = D, then 5 =»£' ß[Dß'3 =»G. ß[ß2ß3 [(£> — #2,0,0)]. Because 
ß'i € g(ßi),ß'3 € g{ß3), and ß2 e g(ß2), we obtain ß[ß2ß'3 € gtfMz) = g{a). If 
X = D, we have ( X £ > , 0 , 0 ) e P', so S ß[Xß'3 =>G> ß[Dß'3 [(£> — ß2,0,0)], 
and ß[ß2ß'3 e g(a). 

(ii) Let p = AB —* AC € P,A,B,C e V - T,ß = ß1ABß2,ß1,ß2 e V", a = 
ßiACß2,ß' = ß'iXYß^ß[ e g(ßi),ß'2 £ g(ß -2),Xe g(A), and Y € g(B). Recall 
that for any B, #äß' < 1 and (B B, 0,0) e P'. Then, ß' =>.«3, ßxABß2 for some 
i e {0 ,1 } so ßi e g{ßi),j = 1,2, and (g(A) U ff(s))n alph{ßiABß2) = {A,B}. At 
this point, we have: 

S ßiAB'ßa 

ßiABß2 [ ( B - Ä , 0 , B ) ] 
=>G . & A C & [ ( ß ^ C , A B , 0 ) ] 

where ft € ff(ft),ft € } ( A ) , C 6 S (C) , i.e., ftACft € ff(a). 

/ / : This is established by induction on n; in other words, we demonstrate that 

if S =»G, v with v 6 g(w) for some tu G V + , then S =>G to. 

Basis: For n = 0, v surely equals S as S =>-G< S. Because S 6 g(S), we have to = 5 . 
Clearly, 5 S. 
Induction Hypothesis: Assume the claim holds for all derivations of length n or less, 
for some n > 0. 
Induction Step: Consider a derivation, S =>-G+1 a', a' £ ?(<*), a 6 V+. As n + 1 > 
1, there exists some ß e V + such that S ß' =»G. a' [p],ß' € g(ß). By 
induction hypothesis, S =>*G ß. Let ß' = ß^B'ß^ß = ß1Bß2,ß,}- <= g(ßj),j = 
1,2 , f t S V\B' e g(B),B € V — T,a' = ß[ß'ß'2, and p = (B' 6 P'. 
The following three cases — (i), (ii), and (iii) —- cover all possible forms of the 
derivation step ß' =>c a' [p]. 
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(i) n' G <7(fl). Then, 5 faBfa, fan'ft G g(faBfa), i.e., a ' G g(faBfa). 
(ii) B' = B & V - T, n' e T U (V - T)2, p i = 0 = n2. Then, there exists a 

production, B -* y! G P, so 5 faBfa =>G Pin'fa[B ft']. Since \i' G g(n'), 
we have a = fafi'fa such that a ' G g(a). 

(iii) B' = B, n' = C, = AÂ, fi? = 0,A,B,C eV - T. Then, there exists 
a production of the form AB —* AC G P. Since #zF < 1, Z = B, and AB G 
aub(p'), we have = 6'A, fa = SA (for some S G V*), and S' G g(S). Thus, 
S =>o SAB fa =>g SACfa[AB -» AC],6 AC fa = faCfa. Because C G g{C), we 
get a = faCfa such that a ' G ff(a). 

By the principle of induction, we have thus established that for any w G 
V+,S =>q w if and only f 5 =>•q, v with v G g(w). Because g(x) = { x } , for 
any x G T°, we have for every w G T + , 

5 w if and only if S =>qi w. 

Thus, L(G) = L(G'), and the theorem holds. Q.E.D. 
Corol lary 2 CS = p r o p - S S C (2,1) = p r o p - S S C = p r o p - S C ( 2 , 1 ) = 
p r o p — S C . 
We now turn to the investigation of sac-grammars with erasing productions. We 
prove that these grammars generate precisely the family of recursively enumerable 
languages. 
T h e o r e m 3 R E = S S C (2,1). 

P r o o f . Clearly, we have the containment SSC(2, l ) Ç R E ; hence, it suffices to 
show R E C SSC(2,1) . Every language L G R E can be generated by a recursively 
enumerable grammar, whose productions are of the form AB AC or A —• a 
where A, B, C G V - T, a G T U (V - T)2 U {A} (see [2]). Thus, the containment 
R E Ç SSC(2,1) can be proved by analogy with the proof of Theorem 1 (the details 
are left to the reader). Q.E.D. 
Corol lary 4 R E = SSC(2 ,1 )= SSC = SC(2 ,1 )= SC . 
To demonstrate that propagating sac-grammars of degree (1,2) characterize CS, 
we first establish a normal form for context-sensitive grammars (see Lemmas 5 and 
6). 

L e m m a 5 Every L G CS can be generated by a context sensitive grammar, G = 
(Ncf u MES U T, P, S, T), where Ncf, Ncs, and T are pairwise disjoint alphabets, 
and every production in P is either of the form AB —» AC or A —• x, where 
B G Ncs, A,Ce Ncf, * € Ncs U T U ( u ? = 1 ^ F ) . 
P r o o f . Let L G CS. Without loss of generality, we can assume that L is generated 
by a context sensitive grammar G' = (V, P', S, T) in Penttonen normal form, that 
is, every production in f is either of the form AB —» AC or A —• BC or A —• o 
(where A, B, C G V' - T and a G T). 

Let G = (Ncf U ̂ cs U T, P, S, T) be the context sensitive grammar defined as 
follows: 

Ncf = V -T; 
Ncs = {B; B is the tilde version of B in AB —• AC G P'}] 

P = { A - + x ; A —* x G P1, A &V — T, x G T u ( K — T1)2} 
U {B -+Ê,É->AC-,AB^ACeP',A,B,C€V- T}. 
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Obviously, L[G') = L(G), and G is of the required form. Hence, the lemma holds. 
Q.E.D. 
Lemma 6 Every L £ CS can be generated by a context sensitive grammar G = 
( { 5 } U NGF U NCS U T,P,S,T), where { S } , N C F , N C S , T are pairwise dis joint 
alphabets, and every production in P is either of the form S —* AD or AB —* AC 
or A Z, where o € T, D <= NCF U {A}, B € NCs, A,C € NCF, X e NCs U T U 

Proof . Let £ be a context sensitive language over an alphabet, T. Without loss of 
generality, we can express L as L = L\ U L2, where L\ C T and L2 Q TT+. Thus, 
by analogy with the proofs of Theorems 1 and 2 in [2], can be represented as 
L2 = Uagroiai where each LA is a context sensitive language. Let LA be generated 
by a context sensitive grammar, GA = (NCF. u NCS* U T, PA, SA, T), of the form 
of Lemma 5. Clearly, we can assume that for all a's, the nonterminal alphabets 
[NCF* u ^CS^ ) are pairwise disjoint. Let S be a new start symbol. Consider the 
context sensitive grammar 

G = ({5} u NCF U NCS U T, P, S, T) 

defined as: 
NCF = U AERNCF.; 
Ncs = u aerNcs^i 

P = U A € T P A U { 5 - » aSa; a € T } U {S o ; o G L 

Obviously, G satisfies the required form, and we have 
L{G) = Li U (U a 6 r aL(Ga)) = U (u o € T aLa) = L1UL2 = L. 

Consequently, the lemma holds. Q.E.D. 

We are now ready to characterize CS by propagating sac-grammars of degree 
(1,2). 
Theorem 7 CS = prop - SSC(1,2). 
Proof . Clearly, prop — SSC(1,2) C CS; hence, it suffices to prove the converse 
inclusion. 

Let L be a context sensitive language. Without loss of generality, we can assume 
that L is generated by a context sensitive grammar, G = ({51} U NCF U NCS U 
T, P, S, T), of the form of Lemma 6. Set V = ( { 5 } U NCF U NCS U T). Let Q be the 
cardinality of V; q > 1. Furthermore, let / be an (arbitrary, but fixed) bijection 
from V onto { l . . . . , <j}, and let / - 1 be the inverse of / . 

Let G~ = (V~,P~,S,T) be a propagating aac-grammar of degree (1,2), in 
which 

V~ = (uJ=1Wi)uV 
where 

WJ, = { < a, AB AC, j >; a 6 T, AB AC € P, A,C 6 NCF, B e NCS, 

1 < 3 < 5}; 
W2 = {[a, AB —> AC, /]; o G T, AB —> AC e P, A, C, e NCF, B € Ncs, 

l < i < « + 3}; 
W3 = {B,B',B",B(=Ncs}; 
W4 = (a; o e T } 

and P~ is defined as follows: 
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1. H S aA e P, a & T, A e ( N C F U {A}), 
then add (5 a A, 0,0) to P~\ 

2. if o g T , A - » i G P,A G NCF,x G (V = {S})u(NCf)2, 

then add (A —» x, 3,0) to P~\ 

3. if o e R, ab —• AC e P, A, c, G NCF, B e Ncs, 
then add to P~ the following set of productions 
(an informal explanation of these productions can be found below): 

{ (a - + < a,AB -» AC, 1 > ,0 ,0) , 
(.B B', < a, AB —• AC, 1 >, 0), 
(B < a, AB AC, 1 >, 0), 
(< a, AB AC, 1 >—•< a, A—* AC, 2 > , 0, B), 
( £ - B " , 0 , B ' < ) , 
(< a, AB AC, 2 >-•< a, AB AC, 3 > , 0, &), 
(B" [a, AB — AC, 1], < a, AB —• AC, 3 > , 0)} 

U {([a, AB AC, j ] -> [a,AB - AC, j + 1],0, 
f~l[j)[a,AB - AC, j]); 1 < j < q,f(A) ? j} 

U {([a, AB - AC, / (A ) ] - [a, AB AC, / ( A ) + 1], 0,0), 
([a, A S —• AC, g + lj [o, AB AC, q + 2], 0, 
B'[a,AB -* AC,q+ 1]), 
([a, AB -> AC, q + 2] - » [ a , AB -* AC, q + 3], 0, 
< a,AB - » AC, 3 > [a, AB -+ AC, q + 2]), 
(< a, AB AC, 3 > — < o, A S AC, 4 > , 
[a, AB —• AC,q + 3],0), 
(B' B,< a, AB —• AC, 4 >, 0), 
(< a, AB — AC, 4 >—•< o, AB -> AC,5 > , 0 , B ' ) , 
([a, AB —• AC, g + 3] —• C, < a, AB —» AC, 5 > ,0) , 
(< a, AB - » AC, 5 > - • a, 0, [a, AB AC, g + 3])} 
(B', and B " correspond to B in AB —> AC); 

(4) if a G T, then add (a a, 0,0) to P~. 
Let us informally explain the Dasic idea behind point (3)-the heart of all con-

struction. The production introduced in this point simulate the application of 
productions of the form AB —• AC in G as follows: an occurrence of B is chosen, 
and its left neighbor is checked not to belong to V~ — { A } ; at this point, the left 
neighbor necessarily equals A, so B is rewritten with C. 

Formally, we define a finite letter-to-letters substitution g from V* into (V~)* 
as follows: 
if DeV, then add D to g(D)\ 
if < o, AB — AC,j >G Wi(a G T, AB AC & P,B & NCS,A, C G NCf, 

j G ( 1 , . . . 5}), then add < a,AB —• AC,j > to g(a); 
if [a, AB — AC,j} G W2{a G T, AB - AC G P, B G NCS,A, C G NCf, 

j G { 1 , . . . , q + 3}), then add [o, AB AC, j] to g(B)] 
if B', B " } C W3{B G NCS), then include {£, B', B"} to T/(B); 
if A G W4(a G T), then add a to g(a). 
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Let be the inverse of g. 
To show that L{G) = L(G~), we first prove three claims. 

Claim Is S =»+ x in G, x 6 V*, implies x € T(V - { 5 } ) * . 

P r o o f o f Claim 1. 
Observe that the start symbol, S, does not appear on the right side of any 

production and that S —* x € P implies x € T U T(V — { 5 } ) . Hence, the claim 
holds. 

Claim 2: If S =>+ z in G ~ , x g (Vr~)*> then x has one of the following seven 
forms: 

(i) x = ay, where a 6 T, y € [V - {S} )* ; 
(ii) x = &y, where a € j / € (V - {S } )* ; 

(iii) x =< a, AB AC, 1 > y, where < a, AB - AC, 1 >€ Wit 

ye((V- { 5 } ) U {B',6,B"})*,#B..y < 1; 
(iv) x =< a, AB -» AC, 2 > y, where <, AB -» AC, 2 > € Wu 

y £ {(V - {S, B}) U {B', 6, B')Y, #B. < 1; 
(v) x = < a, AB -» AC, 3 > y, where < o, AB —• AC, 3 > e Wiy 

ye{{V- {S, 5 } ) U {B1})* ({[a, AB - AC, j]-, 1 < j < q + 3}U 
{ A , B " } ) ( ( V - { S > f l } ) u { B ' } ) * ; 

(vi) x = < a, AB AC, 4 > where < a, AB —• AC, 4 >€ Wu 

ye((V- { 5 } ) U {B'})*[a, AB AC, q + 3]((V - { 5 } ) U {£ ' } )* ; 
(vii) x =< a, AB AC, 5 > y where < a, AB AC, 5 >eWi, 

y 6 (V - {5 } ) * { [ o , AB - AC, g3\, A}(V - {S})\ 

P r o o f o f Claim 2. 
The claim is proved by induction on the length of derivations. 

Basis: Consider S x. By inspection of the productions, we have S => aA [(5 —* 
aA,0,0)] for some a e WT, A S ({A} U Ncf)- Therefore, i = a or x = aA (where 
a € W4 and A e ( {A} U Ncf))', in either case, x is a word of the required form. 

Induction hypothesis: Assume the claim holds for all derivations of length at most 
n, for some n > 1. 

Induction step: Consider a derivation of the form S =>n + 1 x . Since n > 1, we 
have n + 1 > 2. Thus, there is some z of the required form (2 e such that 
5 =>•" z =>• x [p] for some p e P~ . 

Let us first prove by contradiction that the first symbol of z does not belong to 
T. Assume that the first symbol of z belongs to T, As z is of the required form, 
we have z = ay for some a G (V — {S } )* . By inspection of P~ , there is no p G P~ 
such that ay => x\p\, where x € (V~) . We have thus obtained a contradiction, so 
the first symbol of z is not in T. 

Because the first symbol of z does not belong to T, z cannot have form (i); as 
a result, z has one of forms (ii) through (vii). The following cases I through VI 
demonstrate that if z has one of these six forms, then x (in S =>n z => x[p|) has 
one of the required forms, too. 
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I. Assume that z is of form (ii), i.e., z = ay, à € W4, and y € (V — { 5 } ) * . By 
inspection of the productions in P^, we see that p has one of the following forms 
(a),..(b), and (c): 

a) p = (A —• u, a ,0 ) where A 6 and u € (V - { 5 } ) U ( N C f ) 2 ; 
b) p = (a - K a, AB —• AC, 1 > 0,0) where < a, AB — AC, 1 > 6 W i ; 
c) p = (a o, 0,0) where o 6 T. 
Note that productions of forms (a), (b), and (c) are introuced in construction 

steps (2), (3), and (4), respectively.) il p has form (a), then x has form (ii). If p 
has form (b), then x nas form (iii). Finally, if p has form (c), then x has form (i). 
In any of these three cases, we obtain x that has one of the required forms. 

II. Assume that z has form (iii), i.e., z =< a,AB —» AC, 1 > y for some 
< a, AB AC, 1 > 6 W1>y 6 ((V - { 5 } ) U {B",Ê,B"})\ and #B..y < 1. By 
the inspection of P~, we see that z can be rewritten by productions of these four 
forms: 

(a) (B — B ' , < a, AB — AC, 1 >, 0); 
(b) (B —* Ê,< a, AB —* AC, 1 >, 0); 
(c) ( B - B " , 0 , B ) (if B " ^ &lph(y),i.e.,#B"y — 0); 
(d) (< a, AB —• AC, 1 >—•< a, AB —• AC, 2 >, 0, B) (if B" £ 

alph(y),i.e.,#By = 0). 
Clearly, in cases (a) and (b), we obtain x of form (iii). If z =>• x [p] in G~, where 

p is of form ic), then #b»3e = 1, so we get x of form (iii). Finally, if we use the 
production oi form (d), then we obtain x of form (iv) because # B 2 = 0. 

III. Assume that z is of form (iv), i.e., z = < a, AB —• AC, 2 > y, where 
<a,AB^AC,2>e\V1,ye{{V-{S,B})u{B',B,B"})*, and # B » y < 1. By 
inspection of we see that the follwoing two productions can be used to rewrite 

(a) (B —• B",0, B" ) (ifB"talph(y))-, 
(b) (< a. AB —*• AC, 2 > —• < a, AB —* AC. 3 > , 0, B) (ifB$alph{y)). 
In case (a), we get x of form (iv). In case (b), we have = 0, so = 0. 

Moreover, notice that < 1 in this case. Indeed, the symbol B " can be 
generated only if there exists no occurrence of B " in a given rewritten word, so no 
more that one occurrence of B " appears in any sentential form. As a result, we 
have # b » < a, AB AC, 3 > y < 1, i.e., < 1. In other words, we get x of 
form («). 

IV. Assume that z is of form (v), i.e., z =< a,AB —• AC, 3 > y for some 
< a, AB - » AC,3 > € Wlty € ({V - {S,B}) U {B' } )*( { [a, AB - AC,j\-,l < 
j < q + 3} U {B" , A}) UV - {S,B}) U {B ' } )* . Assume that y = yiYy2 with 
î/ii Î/2 € ( (y - {5, B} ) U {B' } )* . If Y = A, then we can use no production from 
to rewrite z. Because z => x, we have Y ^ A. The following cases (A) through (F) 
cover all possible forms of Y. 

(A) Assume Y = B" . By inspection of P~, we see that the only production 
that can rewrite z has the form (B" - » [o, AB — AC, 1],< o, AB —• AC, 3 >,0) . 
In this case, we get x of form (v). 

(B) Assume Y = [o,AB — AC,j]w,j € {1 ,...,q}, and / ( A ) ^ j. Then z 
can be rewritten only according to the production ([o, AB —• AC,j\ —* [a,AB —» 
AC, j -I- 1 ] ,0 , / - 1 ( / ) [a , AB —• AC,j\) (which can be used unless the rightmost 
symbol of < o, AB —• AC, 3 > yx is f~l{j}). Clearly, in this case we again get x of 
form (v). 
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(C) Assume Y = [a, AB —* AC,j\,j £ { 1 , . . . , 9}, f(A) = j. This case forms an 
analogy to case (B), except that the production of the form ([a, AB —• AC, / (A ) ] —• 
[a, AB -* AC, / ( A ) + l],0,0) is now used. 

(D) Assume Y = [o, AB AC, q + ll. This case forms an analogy to case 
(B); the only change is the application of the production ( [a,AB —• AC,q + l] —• 
[a, AB —» AC, q + 2], 0. B'[a, AB — AC, g + l]V. 

(E) Assume Y = [a, AB -* AC,q-1-2]. This case forms an analogy to case 
(B) except that the production ([a, AB AC, q + 2} — [a, AB AC, q + 3], 0, < 
a, AB AC, 3 >[a, AB AC, q + 2]) is used. 

(F) Assume X = \a,AB —* AC,q + 3]. By inspection of P~ , we see that the 
only production that can rewrite z is (< a,AB —• AC, 3 >—•< a,AB —*• AC, A > 
, [a, AB —* AC, q + 3], 0). If this production is used, we get x of form (vi). 

V. Assume that 2 is of form (vi), i.e., z =< a,AB —• AC, 4 > y, where < 
a, AB - A C , 4 > G Wx and y € ( (V - { 5 } ) U { £ ' } ) * \a,AB — AC,q + 3]( (V -
{S}) U { # ' } ) * . By inspection of P~, these two productions can rewrite z: 

(a) (B' B,< a, AB —» AC, 4 >, 0); 
ib) (< a, AB — AC, 4 >—•< a,AB -* AC,5>,0,B') (if B' & alph(y)). 
Clearly, in case (a), we get x of form (vi). In case (b), we get x of form (vii) 

because # B . y = 0, so y € {V - {5} )*{ [a, AB —• AC, q + 3], A}(V - {5 } )* . 

VI. Assume that z is of form (vii), i.e., z =< a,AB —^ AC, 5 > y, where 
< a, AB —• AC, 5 > e Wi and y G (V - (5} )*{ [a, AB AC, q + 3], A}(V - {S } )* . 
By inspection of P~ , one of the following two productions can be used to rewrite 
z\ 

^ ( [ a , AB AC, g + 3] —• C, < a, AB -* AC, 5 > , 0); 
(< a, AB AC, 5 > - • a, 0, [a, AB —* AC, q + 3]) 

iif [o, AB —• AC, 9 + 3l ^ alphizYj. 
In case (a), we get x of form (vii). Case (b) implies #\a,AB-*AC,q+3]y = 0; thus, 

x is of form (ii). 
This completes the induction step and establishes Claim 2. 

Claim 3: It holds that 

S =>m to in G if and only if 5 v in G~ 

where v e g(to) and to e V+, for some m, n > 0. 

Proo f of Claim 3. 
Only if: The only-if part is established by induction on m; that is, we have to 

demonstrate that 5 =>m to in G implies S =>* v in G~ for some v G g[w) and 
t oe V+. 

Basis: Let m = 0. The only to is 5 because 5 =>° S in G. Clearly, S =>° S in 
and 5 e g(S). 

Induction Hypothesis: Suppose that our claim holds for all derivations of length 
m or less, for some m > 0. 

Induction Step: Let us consider a derivation, S =>m + 1 in G, x € V+. Because 
m + 1 > 1, there are y £ V+ and p G P such that 5 =>"* y x [p] in G, and 
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by the induction hypothesis, there is also a derivation S =>n y~ in G~ for some 
y~ 6 g(y). The following cases (i) through (iii) cover all possible forms of p. 

(i) Let p = S —* aA G P for some o € T, A G Àfcf U {A}. Then, by Claim 1, 
m = 0, so y = S and x = oA. By (1) in the construction of G~,(S —» 3A, 0,0) e 
P~ . Hence, 5 a~A in G~ where a~ A € <?(aA). 

(ii) Let us assume that p = D->y2GP,DG NCF, ya € ( K - { 5 } ) u ( A T C F ) 2 , « = 
ViDy3, yi, ¡/3 € V* and i = yiyays. R"om the definition of ¡7, it is clear that g{Z) = 
{Z} for all Z G iVci*; therefore, we can express y~ = z\Dz3 where z± G ff(i/il and 
z3 € ff(j/3)- Without loss of generality, we can also assume that yi = ar, o G T,r G 
( V - {5 } )* (see Claim l) , so zx = a 'V ' ,a " 6 g(a), and r" 6 fif(». Moreover, by (2) 
in the construction, we have (D —» ya, 2,0) G P~. The following cases (a) through 
(e) cover all possible forms of a". 

(a) Let a" = S (see (ii) in Claim 2). Then, we have S =>n âr"Dz3 => 
&r"y2z3 [(D -<• y2,a,0)], and ar"y2z3 = *iy223 6 g{yiy-2y3) = 

(b) Let o" = a (see (i) in Claim 2). By (4) in the construction of G~, we 
can express the derivation in G~ : S =>n ar"Dz3 as S =>n_1 ar"Dz3 => ar"Dz3 
[(a —• o,0,0)]; thus, there exists this derivation in G~ : S =>n_1 ar"Dz 3 =>• 
8r"y2Z3[(D —• ya, a,0)] with ar"y2«3 e g(x). 

(c) Let a" = < a, A S —» AC, 5 > for some AB —• AC € P (see (vii) in Claim 
2), and let r"Dz3 G (V - {S} )* , i.e., [o, AB — A C , g + 3] £ alph (r"Dz3 ) . Then, 
there exists this derivation in G~ : S =>"< a, AB —• AC, 5 > r"Dz3 =• ar"Dz3 [(< 
o, AB - t A C , 5 > - t a,0, [a, AB AC,g + 3])] =>• ar"y2z3\(D y2 ,3,0)], and 
ar"y2Z3 G g(x). 

(d) Let a" = < a, AB AC, 5 > (see (vii) in Claim 2). Let [a, AB - » AC, q + 
3] G alph (r"Dz3). Without loss of generality, we can assume that y~ = < a, AB —• 
AC, 5 > r"Da"[a, AB AC, q + Z\t", where s"[a, AB —• AC, q + 3]i" = z3, sBt = 
y3, s" G g(t), 3, t G (V — {5} )* . By inspection of P~ (see (3) in the construction of 
G~), we can express the derivation in G~ : S =>n y~ as: 

S =>' &r"Ds"Bt" 
< o, AB —• AC, 1 > r"Ds"Bt" 

[(a —•< a, AB AC1 >, 0,0)] 
^l+lm^l <a<AB^ AC, 1 >' Ds'Bt' 

[mi(B ê,<a,AB AC, 1 >, 0)ma] 
=> < a, AB - » AC, 2 > r'Ds'Bt' 

[(< a, AB AC, 1 >—•< a, AB AC, 2 > ,0 ,B ) ] 
=• <a,AB~* AC, 2 > r'Ds'B"t' 

[ B - B " , 0 , B " ) ] 
=» <a,AB^ AC, 3 > r'Ds'ff'e 

[(< a, AB AC, 2 > - • < a, AB - » AC, 3 > , 0, £ ) ] 
< a, AB-* AC, 3 > r'Ds'\a, AB AC, l]i' 

[(B" — [a, AB — AC, 1], < a, AB — AC, 3 > , 0)] 
=>«+2 < a, AB — AC, 3 > r'D«'[a, AB — AC, g + 3]t' 
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[([a, AB - » AC, 1] — [a, AB -» AC, 2], 0, / _ 1 ( l ) 
[a, AB — AC, 1 ] ) . . . 
([a, AB -» AC, f(A) - 1] — [a, AB — AC, f(A)}, 0, 
f-1(f(A)-l)[a,AB^AC,f(A)-l}) 
([a, AB — ACf{A) - » [a, AB AC, f(A) + 1], 0,0) 
([a, AB - AC, f(A) + 1] —• [a, AB - AC, / ( A ) + 2], 0, 
¡-'(/(A) + l)[o, AB - AC, f(A) + 1 ] ) . . . 
([a, AB —» AC, g] -+ [a, AB -+ AC, g + l], 0, 
rl{q)[a,AB^AC,q\) 
([a, AB —» AC, g + l] —• [a, AB -* AC, q + 2], 0, B' 
[a, AB —+ AC, q + 1]) 
([a, AB AC, 9 + 2] —• [a, AB AC, q + 3], 0, 
< a,AB -* AC, 3 > [a, AB — AC,g + 2])] 

=» <a,AB-y AC, 4 > r'Da'[a, AB -> AC, g 4- 3]t' 
[(< a, A B AC, 3 > - + < a, AB — AC, 4 > , 
[a,AB — AC, g + 3],0)] 

=>lm'l < a, AB — AC, 4 > r"I>s"[a, AB - > g + 3]t" [m3] 
=• < a, AB AC, 5 > r"Ds"[a, AB —• AC, q + 3]t" 

[(< o, AB AC, 4 > - K a, AB - » AC, 5 > , 0, B' ) ] 

where mi ,m2 <E { ( B — B ' , < o , A B - • AC, 1 > , 0 ) } * , m 3 e { ( B ' B,< a,AB ^ 
AC, 4 > , 0)}*, |m3| = K m a i y € ((alph(r") - { B } ) U {B'})\g'^r) -r,s' e 
((alph(s") - { B } ) U { B " } ) * , 0 - 1 ( s ' ) = r V ) = . , « ' € ((alph(i") - { B } ) U 

Clearly, ar" Da" Bt" € g(arDsBt) = g(arDy3) = g(y). Thus, there exists 
this derivation in : 5 =>* ar"Ds"Bt" => ar "y 2 s "Bt " \{D y2 la,0)] where 
zij/2«3 = ar"yis"Bt" e g(ary2sBt) = g(yiyiy3) = g{x). 

(e) Let a" = < a, AB -+ AC,» > for some AB -* AC e P and»' 6 { 1 , . . . , 4} (see 
(iii) - (vi) in Claim 2). By analogy with (d), we can construct the derivation S =>* 
ar"Da"Bt" => ar"y2a"Bt" [(£> — y2,3,0)1 such that ar"y2a"Bt" e Sf(yu/2J/3) = 
g(x) (the details of this construction are left to the reader). 

(iii) Let p = AB AC e P, A, C e NCF,B € NCs,y = yiABy3,yi,y3 G 
V*,x = yiACy3,y~ = ziAYz3,Y e g(B),Zi € g(y,) where i e {1 ,3 } . Moreover, 
let t/i = or (see Claim 1), Z\ = o " r " , a " € g(a),r" € jf(r). The following cases (a) 
through (e) cover all possible forms of a". 

(a) Let a" = o. Then, by Claim 2, Y = B. By (3) in the construction of G~, 
there exists the following derivation in G~: 

S =>n ar"ABz3 

=> < a, AB — AC, 1 > r"ABu3 

[(a - • < a, A B —• AC, 1 > 0,0)] 

=>.i+l™tl < a, A B — AC, 1 > r'A&z3 

[mi [B-* 6, < a, AB —» AC, 1 > ,0 ) ] 
=» < a, AB — AC, 2 > r 'A$u 3 



320 A. Med un a, A. Gopalaratnam 

[(< a, AB AC, 1 > - • < a, AB AC, 2 >, 0, B)] 
< a, AB —• AC, 2 > r'AB"u3 

[ { & B " , 0 , B") ] 

=> < a, AB —» AC, 3 > r'AB"u3 

[(< o, AB — AC, 2 > — < a, AB — AC, 3 >, 0, B) ] 
=> < a, AB —• AC, 3 > r'A[a, AB —• AC, l]u3 

[ ( 5 " — [a, AB — AC, 1], < a, AB —+ AC, 3 >, 0)] 
=>«+2 < a, AB —» AC, 3 > r'A[a, AB AC, q + 3]u3 

[([o, AB — AC, 1] - [o, AB AC, 2], 0, 
f-l(l)[a,AB^AC,l})... 
([a, AB - AC, / ( A ) - 1] - [a, AB - AC, f(A)\, 0, 
/-'(HA) - l)[a, AB - AC, f(A) - 1]) 
([a, AB - AC, f{A)\ - [a, AB - AC, / ( A ) + 1], 0,0) 
([a, AB - AC, / ( A ) + 1]) - [a, AB - AC, / ( A ) + 2], 0, 
/ ^ ( / ( A ) + l)[a, AB - AC, / ( A ) + 1 ] ) . . . 
([a,AB — AC, g] -+ \a,AB — A C , g + 1],0, 
/ " ^ [ a . A B - A C . g ] ) 
([a, AB —• AC, g + l] —• [a, AB —• AC, q + 2], 0, B ' 
[a, A B —» AC, g + 1]) 
([a, A B —• AC, g + 2] —• [a, AB AC, g + 3], 0, 
< a, AB — AC, 3 > [a, A B —• AC, g + 2])] 

=> < a, AB -* AC, 4 > r'A[a, AB —• AC, g + 3]u3 

[(< a, AB AC, 3 > - • < a, A B — AC,4 > , 
[a, A B —• AC, g + 3], 0)] 
< a, AB - » AC,.4 > r"A[a, AB —» AC, g + 3]z3 [m2] 

=> < a, AB - » AC, 5 > r " A[a, AB AC, g + 3]z3 

[(< a, AB AC,4 > - » < a, AB —• AC, 5 > , 0, B' ) ] 
=> < a, AB -* AC, 5 > r11 AC z3 

[([a, AB —• AC, g + 3| C, < o, A B — AC, 5 > , 0)] 

where mx € { ( B B',< a, AB —• AC, 1 > ,0 ) } * ,m2 € { ( B ' B,< a,AB -> 
AC,4 >,0)}*,|mi| = Im2l.ua £ ((alph(z3) - { B } ) U {B ' } ) * ,g - 1 (u 3 ) = g-1(z3) = 
y3,r> € ((alph(r") - { B } ) U { B ' l J ' . g - M r ' ) = ¡ T V ) = r. 

It is clear that < a, AB AC, 5 > S ff(o); thus, < a,AB -+ AC5 > r"ACz3 € 
g(arACy3) = j (x ) . 

(b) Let a" = o. Then, by Claim 2 , Y = B. By analogy with (ii.b) and (iii.a) in 
the proof of this claim (see above), we obtain: 5 => n _ 1 ar"ABz3 =>*< a,AB —* 
AC, 5 > r"ACz3 so < a, AB —» AC, 5 > 1" ACz3 e g(s). 

(c) Let a" = < o, AB AC, 5 > for some AB AC e P (see (vii) in Claim 
2), and let r"AYz3 e (V - { 5 } ) * . At this point, Y = B. By analogy with 
(ii.c) and (iii.a) in the proof of this claim (see above), we can construct S =>n+1 
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ar"ABz3 =>*< a, AB — AC, 5 > r"ACz3 so < a, AB —• AC, 5 > r"ACz3 g <7(1). 
(d) Let a" = < a, AB AC, 5 > for some AB —* AC g P (see (vii) in Claim 

2), and let [o, AB -* AC, q + 3] g alph(r"AY3). By analogy with (ii.d) and (iii.a) 
in the proof of this claim (see above), we can construct S =>•* ar"ABz3 and, then, 
S =>* ar"ABz3 =»*< o, AB —• AC, 5 > r"ACz3 so < a, AB AC, 5 > r"ACz3 g 
g(arACy3) = g(x). 

(e) Let a" = < a,AB - » AC,t > for some AB AC g P,i g { » ' , . . . ,4 } , see 
(III) - (IV) in Claim 2. By analogy with (ii.e) and (iii.d) in the proof of this claim 
(see above), we can construct S =>* ar"ACz3, where ar"ACz3 g ¡7(1). 

If: By induction on n, we next prove that 
if S =>n v in G~ with v g g(w) and to g V* (for some n > 0), 
then S =>* to in G. 

Basis: For n = 0, the only v is S as S =>° S in G~. Because { 5 } = we have 
to = S. Clearly, 5 =>-° S in G. 

Induction hypothesis: Assume the claim holds for all derivations of length n or less, 
for some n > 0. Let us show that it is also true for n + 1. 

Induction step: For n + 1 = 1 (i.e. n = 0), there onlv exists a direct derivation of 
the form S =• aA[(S -+ aA,0,0)] where A g NOF U {A}, a g T, and oA g g(aA). 

By (l)> we have in P a production of the form S —• a A and, thus, a direct 
derivation S => a A. 

Suppose n + 1 > 2 (i.e. n > 1). Consider a derivation in : 5 x' 
where x' g g(x),x g V*. As n + 1 > 2, there exist o g Wit A g NCF,y , such 
that S =>aA =>n~1 t/' => x'[p] in G~, where p g P~,y' g ^(t/), and by induction 
hypothesis, S =>* y in G. 

Let us assume that y' = ziZz2,y = yiDy2,z}- g g{y}),y}- g (V - { 5 } ) * , ; ' = 
1,2, Z g g{D),D g V - { 5 } , p = (Z - » r',ri,r2) g P<, rx = 0 or r2 = 0,x' = 
z\r'z2,r' g p(r) for some r g V* (i.e. x' g fif(t/iry2))- The following cases (i) 
through (iii) cover all possible forms of 1/ =>• x'[p] in G~. 

(i) Let Z g NQF• By inspection of P~, we see that Z = D,p = [D r', a,0) g 
P~,D->rePandr = r'. Thus, S =>* y^By2 => yxry2 jB — r] in G. 

(ii) Let r = D. Then, by induction hypothesis, we nave the derivation 5 =>* 
yiDy2 and yiDy2 = y^ry2 in G. 

(iii) Let p = (jo, AB —> AC,g + 3] —• C, < a, AB —* AC, 5 >,0),Z = [0, AB — 
AC, g + 3j. Thus, r' = C and D = B g Wcs- By case (VI) in Claim 2 and the form 
of p, we have z\ = < a, AB —• AC, 5 > t and yx = au, where t g sr(u), < a, AB —• 
AC, 5 > g ff(o), u e(V - {5 } )* , and a g T. PYom (3) in the construction of G~, it 
follows that there exists a production of the from AB —» AC g P. Moreover, (3) 
and Claim 2 imply that the derivation in G~ : 

5 =>• oA = f n _ 1 y' => i'[p] 

can be expressed in the form 

S => aA 
=>* atBz2 

=> < a, AB AC, 1 > vtBz2 

[(a - k o, AB AC, 1 >, 0,0)] 
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< a, AB —• AC, 1 > vÊtvi [*'] 

=> < a, AB AC, 1 > vB"w2 

| ( B - B " , 0 , B " ) ] 
=> < a, AB AC, 2 > vB"w2 

{{a, AB -» AC, 1 >—•< a,AB -* AC, 2 > , 0, B)] 
=>' < a, AB —• AC, 3 > vB"w2 

[(< a, AB — AC, 2 > - » < a, AB AC, 3 >, 0, £ ) ] 
=> < a, AB —* AC, 3 > v[a, AB AC, l]iu2 

[(B" - [o, AB - AC, 1], < a, AB — AC, 3 > ,0) ] 
=>lfll+2 < a, AB —• AC, 3 > v[a, AB —» AC, g + 3]to2 

[*] 

=» < a,ABAC,4> v{a,ABAC,q + 3]w2 

[(< a, AB AC, 3 > - • < a, AB — AC, 4 >, 
[a, AB —• AC, g + 3], 0)] 
< a , A B — A C , 4 > i [ a , A B — A C , g + 3]z2 

r\ 
=> < o, AB —• AC, 5 > t[a, AB AC, 9 + 3]z2 

[(< a, AB — AC, 4 > - • < o, AB - » AC, 5 > , 0, B')] 
=> < a, AB — AC, 5 > tCz2 

[([a, AB -+ AC, g + 3] —• C, < a, AB — AC, 5 > , 0)] 

where 9' G { ( B — B' , < a, AB —» AC, 1 > , 0 ) } * { ( B — È,<a,AB — AC, 1 > , 0)} 
{ ( B - B ' , < a, AB - AC, 1 >,0)}*,<;(B) n alph(vw2) Ç { B ' } , « T » = 
9~1(t),9~1M=9~l{z2), 
e = i i f la ,AB — A C , / ( A ) ] — [a, AB - A C , / ( A ) + 1],0,0)02([a, AB — AC, 9 + 
1] — [a, AB — AC, 9 + 2], 0, B'[a, AB — AC, 9 + l l ï ï [a,AB —• AC, 9 + 2] —• 
[a, AB AC, 9 + 3], 0, < a, AB — AC, 3 > [o, AB AC, 9 + 2]), 
i l = ([a, AB — AC, 1] - [a, AB — AC, 2],0, / - 1 ( l ) [ a , AB —• AC, l]) 
([a, AB — AC, 2] — [a, AB — AC, 3],0, / _ 1 ( 2 ) [ o , AB — AC, 2] ) . . . 
( a ,AB - A C , / ( A ) - 1] - [o, AB - AC, / (A) ] ,0 , / - 1 ( / ( A ) - l ) [a ,AB -ÀC,f(A)- 1]), 
where / ( A ) implies 91 = A, 
e2 = ((a, AB - AC, / ( A ) + l] - [a, AB - AC, / (A)+2] ,0 , / - x ( / ( A ) + l ) [a, AB - » 
A C , / ( A ) + l ] ) . . . ( j a , A B - AC,9] - [a,AB - AC,9 + 1 ] , 0 , / - 1 (9)[a,AB -
AC,9]), where / ( A ) = 9 implies g2 = A,6" G.{(B' — B , < a,AB AC,4 > ,0 ) } * . 

The above derivation implies that the rightmost symbol of t must be A. As 
t G £r(u), the rightmost symbol of u must be A as well. That is, t = s 'A, u = sA 
and a' G g (s) (for some s G (V — {5 } )* ) . By the induction hypothesis, there exists a 
derivation in G : S =>* asABy2. Because AB —» AC G P, we get S =>* asABy2 => 
asACy2\AB -* AC], where asACy2 = yiry2 . 

By (1), (ii), (iii) and inspection of P~, we see we have considered all possible 
derivations of the form S =>n+1 x' (in G~) , so we have established Claim 3 by the 
principle of induction. 
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The equivalence of G and G~ can be easily derived from Claim 3. By the 
definition of g, we have g(a) = {a} for all a € T. Thus, by Claim 3, we have for all 
z e T* : 

S =>' x in G if and only if S =•* x in G~ 
Consequently, L(G) = L(G~). We conclude that 

CS = p r o p - SSC(1,2) 
and the theorem holds. Q.E.D. 
Corollary 8 CS = p r o p - SSC(1,2)= prop - SSC = prop - SC(1,2) = p r o p - SC. 
We now turn to the investigation of ssc-grammars of degree (1,2) with erasing 
productions. 
Theorem 9 R E = SSC(1,2). 
Proo f . Clearly, we have the containment SSC(l ,2 ) C RE; hence, it suffices to 
show R E C SSC(1, 2). Every language L 6 R E can be generated by a grammar 
G = (V, T, P, S) in which each production is of the form AB —• AC or A —• x, 
where A,B,C £ V -T,x € {A} U T U (V - T)2 (see [2]). Thus, the containment 
R E C SSC(1,2) can be established by analogy with the proof of Theorem 7 (the 
details are left to the reader) Q.E.D. 
Corollary 10 R E = SSC(1,2) = SSC = SC(1,2) = SC. 
Corollaries 2,4, 8, and 11 imply the main result of this paper: 
Corollary 11 

CF 

c 
prop - SSC = p r o p - SSC(2,1) = prop - SSC(1,2) = 
prop - S C = prop - SC(2,1) = prop - SC(1,2) = CS 

c 
SSC = SSC(2,1) = SSC(1,2) = SC = SC(2, l) = SC(1,2) = R E 
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