Invariance groups of threshold functions

E. K. Horváth *

Permutations of variables leaving a given Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ invariant form a group, which we call the invariance group G of the function. We obtain that for threshold functions G is isomorphic to a direct product of symmetric groups.

A threshold function is a Boolean function, i.e. a mapping $\{0,1\}^{n} \rightarrow\{0,1\}$ with the following property: There exist real numbers w_{1}, \ldots, w_{n}, t such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=1 \text { iff } \sum_{i=1}^{n} w_{i} x_{i} \geq t
$$

where w_{i} is called the weight of x_{i} for $i=1,2, \ldots, n$, and t is a constant called the threshold value. We can suppose without loss of generality that

$$
w_{1}<w_{2}<\ldots<w_{n}
$$

Throughout this paper, we use the notation: $(X)=\left(x_{1}, \ldots, x_{n}\right) ; W=$ $\left(w_{1}, \ldots, w_{n}\right) ; W(X)=\sum_{i=1}^{n} w_{i} x_{i}$. Let X stand for the set consisting of the symbols x_{1}, \ldots, x_{n}. We define an ordering on the set X in the following way: $x_{i}<x_{j}$ iff $w_{i}<w_{j}$. For any permutation π of X, the moving set of π, denoted by $M(\pi)$, consists of all elements x of X satisfying $\pi(x) \neq x$. Denote by S_{X} the group of all permutations of the set X, and by S_{k} the symmetric group of degree k. If $P=\left(p_{1}, \ldots, p_{n}\right) \in\{0,1\}^{n}$ and $\sigma \in S_{X}$, then let $\sigma(P)=\left(\sigma\left(p_{1}\right), \ldots, \sigma\left(p_{n}\right)\right)$ and $\sigma(X)=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$.

Let ($X ; \leq$) be an ordered set. Consider a partition C of X. As usual, we shall denote the class of C that contains $x \in X$ by \bar{x}. We call C convex if $x_{i} \leq x_{j} \leq x_{k}$ and $\bar{x}_{i}=\bar{x}_{k}$ together imply $x_{i}=\bar{x}_{j}$. For any convex partition C of X, the ordering of X induces an ordering of the set of blocks of C in a natural way: $\bar{x}_{i} \leq \bar{x}_{j}$ iff $x_{i} \leq x_{j}$.

Theorem 1 For every n-ary threshold function f there exists a partition C_{f} of X such that the invariance group G of f consists of exactly those permutations of S_{X} which preserve each block of C_{f}.

Conversely, for every partition C of X there exists a threshold function f_{C} such that the invariance group G of f_{C} consists of exactly those permutations of S_{X} that preserve each block of C.

Proof. First, consider an arbitrary n-ary threshold function f. Let us define the relation \sim on the set X as follows: $i \sim j$ iff $i=j$ or f is invariant under the transposition ($x_{i} x_{j}$). Clearly, this relation is reflexive, and symmetric. Moreover, it is transitive because

[^0]$$
\left(x_{i} x_{j}\right)\left(x_{j} x_{k}\right)\left(x_{i} x_{j}\right)=\left(x_{i} x_{k}\right)
$$

Hence \sim is an equivalence relation.
Claim 1. The partition C_{f} defined by \sim is convex.
Proof. If it is not so then there exist a Boolean vector $D=\left(d_{1}, \ldots, d_{n}\right) \in\{0,1\}^{n}$ and $1 \leq i \leq j \leq k \leq n$ with $x_{i} \sim x_{k}$ such that

$$
\begin{align*}
& d+w_{i} d_{j}+w_{j} d_{i}+w_{k} d_{k}<t \tag{1}\\
& d+w_{i} d_{i}+w_{j} d_{j}+w_{k} d_{k} \geq t \tag{2}
\end{align*}
$$

if $d=\sum_{q \neq i, j, k} c_{q} d_{q}$. Now (1) and (2) imply $d_{i}=0, d_{j}=1$. Since $x_{i} \sim x_{k}$, from (1) and (2) we infer:

$$
\begin{align*}
& d+w_{i} d_{k}+w_{j} d_{i}+w_{k} d_{j}<t \tag{3}\\
& d+w_{i} d_{k}+w_{j} d_{j}+w_{k} d_{i} \geq t \tag{4}
\end{align*}
$$

Assume $d_{k}=0$. Then $d+w_{k}<t \leq d+w_{j}$ by (3) and (2), whence $w_{k}<w_{j}$, which is a contradiction. On the other hand, suppose $d_{k}=1$. Then because of (1) and (4), $d+w_{i}+w_{k}<t \leq d+w_{i}+w_{j}$, which is also a contradiction.

For the reason of convexity, the blocks of \sim may be given this way:

$$
\begin{align*}
C_{1} & =\left\{x_{1}, \ldots, x_{i_{1}}\right\} \\
C_{2} & =\left\{x_{i_{1}+1}, \ldots, x_{i_{1}+i_{2}}\right\} \\
C_{l} & =\left\{x_{i_{1}+i_{2}+\ldots+i_{l}-1}, \ldots, x_{i_{1}+\ldots+i_{l}}\right\} \tag{5}
\end{align*}
$$

Every permutation that is a product of some "permitted" transpositions preserves the blocks of C_{f}, and belongs to G. We show that if a permutation does not preserve each blocks of C_{f} defined by \sim, then it cannot belong to G.

Lemma 1 Let $\gamma=\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{k-1}} y x_{j_{k}} \ldots x_{j_{m}}\right) \in S_{X}$ be a cycle of length $m+1$ with $x_{j} \in C_{p}, 1 \leq s \leq m, y \in C_{q}, p \neq q$. Then $\gamma \notin G$.

Proof. Let us confine our attention to the following:

$$
\left(y x_{j_{k-1}}\right)\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{k-1}} y x_{j_{k}} \ldots x_{j_{m}}\right)=\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{m}}\right)(y)
$$

so

$$
\left(y x_{j_{k-1}}\right)=\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{m}}\right)\left(x_{j_{1}} x_{j_{2}} \ldots x_{j_{k-1}} y x_{j_{k}} \ldots x_{j_{m}}\right)^{-1}
$$

If γ were an element of G, then ($y x_{j_{k-1}}$) would be also an element of G, which contradicts the definition of \sim.

Claim 1. If a cycle $\beta \in S_{X}$ has entries from at least two blocks of C_{f}, then $\beta \notin G$.

Proof. Given the convex partition C_{f} of $(X ; \leq)$, for any cycle β of length k we construct a sequence of cycles of increasing length, called the downward sequence of β, as follows: Let $\bar{x}_{p}, \bar{x}_{q}\left(\bar{x}_{p}>\bar{x}_{q}\right)$ the two greatest blocks of C_{f} for which x_{p}, x_{q} are entries of β. We cancel some entries of β in such a way that we keep all entries in \bar{x}_{p} and the greatest entry in \bar{x}_{q}, and we delete all the remaining entries of β. This results in the initial cycle of the downward sequence $\beta_{(r)}$ of length $r ; r \geq 2$. We do not need to define members of the downward sequence with subscripts less then r. If we have constructed $\beta_{(i)}$, we obtain the next member $\beta_{(i+1)}$ of the downward sequence by taking back the greatest cancelled (and not restored yet) entry of β in its original place. Thus, the final member of the downward sequence is $\beta_{(k)}=\beta$. Let us denote by $x^{[i]}(i>r)$, the "new" entry of $\beta_{(i)}$. If $i \leq r$, then we do not have to define $x^{[i]}$. As an illustration take the following:

$$
X=\left\{x_{1}, \ldots, x_{8}\right\}
$$

$$
\begin{aligned}
& C_{1}=\left\{x_{1}, x_{2}\right\} \\
& C_{2}=\left\{x_{3}, x_{4}\right\} \\
& C_{3}=\left\{x_{5}, x_{6}, x_{7}\right\}, \\
& C_{4}=\left\{x_{8}\right\}
\end{aligned}
$$

and

$$
\beta=\left(x_{4} x_{5} x_{1} x_{7} x_{3}\right)=\left(x_{1} x_{7} x_{3} x_{4} x_{5}\right) .
$$

The downward sequence is:

$$
\begin{gathered}
\beta_{(3)}=\left(x_{7} x_{4} x_{5}\right), \\
\beta_{(4)}=\left(x_{7} x_{3} x_{4} x_{5}\right), \quad x^{[4]}=x_{3}, \\
\beta_{(5)}(=\beta)=\left(x_{1} x_{7} x_{3} x_{4} x_{5}\right), \quad x^{[5]}=x_{1} .
\end{gathered}
$$

It is obvious from the construction of the downward sequence that the weight of an arbitrary variable occuring in $\beta_{(i)}$ is not smaller than the weight of $x^{[i+1]}$. By Lemma 1, the initial cycle of the downward sequence (in our example $\beta_{(3)}$) is not in G. In order to prove that $\beta \notin G$, we show that if there exist $A_{(i)}=$ $\left(a_{(i), 1}, \ldots, a_{(i), n}\right)$ and $B_{(i)}=\left(b_{(i), 1}, \ldots, b_{(i), n}\right)$ with $A_{(i)}, B_{(i)} \in\{0,1\}^{n}$ such that $f\left(A_{(i)}\right)=0$ and $f\left(B_{(i)}\right)=1$ and $\beta_{(i)}\left(A_{(i)}\right)=B_{(i)}$, then we are able to construct $A_{(i+1)}=\left(a_{(i+1), 1}, \ldots, a_{(i+1), n}\right)$ and $B_{(i+1)}=\left(b_{(i+1), 1}, \ldots, b_{(i+1), n}\right)$ with $A_{(i+1)}$, $B_{(i+1)} \in\{0,1\}^{n}$ satisfying $f\left(A_{(i+1)}\right)=0$ and $f\left(B_{(i+1)}\right)=1$ and $\beta_{(i+1)}\left(A_{(i+1)}\right)=$ $B_{(i+1)}$. Let us denote with superscripts $[l(j)]$, and $[r(j)]$ the left, and the right neighbour of $x^{[j]}$ in the cycle $\beta_{(j)}$, respectively. In our example: $x^{[l(5)]}=x_{5}$, $x^{[r(5)]}=x_{7}$ because $x^{[5]}=x_{1}$. (For the sake of clarity: $[r([l(j)])]=[l([r(j)])]=j$; moreover, $x^{[r(j)]}$ and $x^{[j]}$ are the images of $x^{[j]}$ and $x^{[l(j)]}$, respectively.) We shall use this notation for the corresponding components of a concrete Boolean vector as well, i.e. for example: $a_{(i)}^{[l(j)]}$ and $a_{(i)}^{[r(j)]}$. We have four possibilities for $A_{(i)}$:

Case 1. $a_{(i)}^{[i+1]}=0, a_{(i)}^{[r(i+1)]}=0$.

Case 2. $a_{(i)}^{[i+1]}=1, a_{(i)}^{[r(i+1)]}=1$.
Case 3. $a_{(i)}^{[i+1]}=1, a_{(i)}^{[r(i+1)]}=0$.
Case 4. $a_{(i)}^{[i+1]}=0, a_{(i)}^{[r(i+1)]}=1$.
We show that in the first three cases A_{i} is appropriate for A_{i+1}. In Case 4 the only thing we have to do is to transpose two components of $\boldsymbol{A}_{\boldsymbol{i}}$ in order to get a suitable \boldsymbol{A}_{i+1}.

Case 1. $a_{(i)}^{[i+1]}=0, a_{(i)}^{[r(i+1)]}=0$.
Even though β_{i+1} bypasses $x^{[i+1]}, \beta_{(i+1)}\left(A_{(i)}\right)=\beta_{(i)}\left(A_{(i)}\right)$ holds because $a_{(i)}^{[i+1]}=a_{(i)}^{[r(i+1)]}$. If $A_{(i+1)}=A_{(i)}$, then $\beta_{(i+1)}\left(A_{(i+1)}\right)=\beta_{(i)}\left(A_{(i)}\right)=B_{(i)}$. So let us choose $B_{(i+1)}=B_{(i)}$. Thus $f\left(A_{(i+1)}\right)=0, f\left(B_{(i+1)}\right)=1$, and $\beta_{(i+1)}\left(A_{(i+1)}\right)=B_{(i+1)}$ are satisfied.

	$x^{[l(i+1)]}$	$x^{[i+1]}$	$x^{[r(i+1)]}$
$A_{(i)}$	$a_{(i)}^{[l(i+1)]}$	0	0
$B_{(i)}$	0	0	$b_{(i)}^{[r(i+1)]}$
$A_{(i+1)}$	$a_{(i+1)}^{[l(i+1)]}$	0	0
$B_{(i+1)}$	0	0	$b_{(i+1)}^{[r(i+1)]}$

Case 2. $a_{(i)}^{[i+1]}=1, a_{(i)}^{[r(i+1)]}=1$.
The situation is the same as in Case 1: $a_{(i)}^{[i+1]}=a_{(i)}^{[r(i+1)]}$. Let $A_{(i+1)}=A_{(i)}$. Then $\beta_{(i+1)}\left(A_{(i+1)}\right)=\beta_{(i)}\left(A_{(i)}\right)=B_{(i)}$, hence let us choose $B_{(i+1)}=B_{(i)}$. Thus $f\left(A_{(i+1)}\right)=0, f\left(B_{(i+1)}\right)=1$, and $\beta_{(i+1)}\left(A_{(i+1)}\right)=B_{(i+1)}$ are satisfied for the reason as in Case 1.

	$x^{[(i+1)]}$	$x^{[i+1]}$	$x^{[r(i+1)]}$
$A_{(i)}$	$a_{(i)}^{l(i+1)]}$	1	1
$B_{(i)}$	1	1	$b_{(i)}^{[r(i+1)]}$
$A_{(i+1)}$	$a_{(i+1)}^{l l(i+1)]}$	1	1
$B_{(i+1)}$	1	1	$b_{(i+1)}^{[r(i+1)]}$

Case 3. $a_{(i)}^{[i+1]}=1, a_{(i)}^{[r(i+1)]}=0$.
Now, $A_{(i)}$ is appropriate for $A_{(i+1)}$ but we cannot guarantee the same for $B_{(i)}$ and $B_{(i+1)}$. Let $A_{(i+1)}=A_{(i)}$, and $B_{(i+1)}=\beta_{(i+1)}\left(A_{(i+1)}\right)$. We can get the Boolean vector $B_{(i+1)}$ from $B_{(i)}$ if we transpose $b_{(i)}^{[i+1]}$ and $b_{(i)}^{[l(i+1)]}$, i.e.:

$$
b_{(i+1)}^{[l(i+1)]}=1, \text { and } b_{(i+1)}^{[i+1]}=0,
$$

while

$$
b_{(i)}^{[l(i+1)]}=0, \text { and } b_{(i)}^{[i+1]}=1 ;
$$

furthermore, all the other components of $B_{(i+1)}$ and $B_{(i)}$ are identical. Since $x^{[i+1]}$ has the smallest weight in $\beta_{(i+1)}$, we get

$$
\sum_{j=1}^{n} w_{j} b_{(i), j} \leq \sum_{j=1}^{n} w_{j} b_{(i+1), j},
$$

which means that $f\left(B_{(i+1)}\right)=1$. Moreover, $f\left(A_{(i+1)}\right)=0$, and $\beta_{(i+1)}\left(A_{(i+1)}\right)=$ $B_{(i+1)}$ are satisfied.

	$x^{[p(i+1)]}$	$x^{[i+1]}$	$x^{[r(i+1)]}$
$A_{(i)}$	$a_{(i)}^{[[(i+1)]}$	1	0
$B_{(i)}$	0	1	$b_{(i)}^{[r(i+1)]}$
$A_{(i+1)}$	$a_{(i+1)}^{[1(i+1)]}$	1	0
$B_{(i+1)}$	1	0	$b_{(i+1)}^{[r(i+1)]}$

Case 4. $a_{(i)}^{[i+1]}=0, a_{(i)}^{[r(i+1)]}=1$.
Let us construct $A_{(i+1)}$ from $A_{(i)}$ as follows: Put $a_{(i+1)}^{[i+1]}=1, a_{(i+1)}^{[r(i+1)]}=0$, $a_{(i+1), j}=a_{(i), j}$ if $a_{(i+1), j} \neq a_{(i+1)}^{[i+1]}$ or $a_{(i+1), j} \neq a_{(i+1)}^{[r(i+1)]}$. (Transpose $a_{(i)}^{[i+1]}$ and $a_{(i)}^{[r(i+1)]}$ in the Boolean vector $A_{(i)}$ (and keep all the other components of it unchanged) to get $A_{(i+1)}$.) Since $x^{[i+1]}$ has the smallest weight in $\beta_{(i+1)}$, we get

$$
\sum_{j=1}^{n} w_{j} a_{(i+1), j} \leq \sum_{j=1}^{n} w_{j} a_{(i), j ;}
$$

hence $f\left(A_{(i+1)}\right)=0$. Let $B_{(i+1)}=\beta_{(i+1)}\left(A_{(i+1)}\right)$. With this choice $B_{(i+1)}=B_{i}$, hence $f\left(B_{(i+1)}\right)=1$.

	$x^{[\mid(i+1)]}$	$x^{[i+1]}$	$x^{[r(i+1)]}$
$A_{(i)}$	$a_{(i)}^{[i(i+1)]}$	0	1
$B_{(i)}$	1	0	$b_{(i)}^{[r(i+1)]}$
$A_{(i+1)}$	$a_{(i+1)}^{[1(i+1)]}$	1	0
$B_{(i+1)}$	1	0	$b_{(i+1)}^{[r(i+1)]}$

Claim 2 is proved.
Every permutation that is a product of disjoint cycles such that any of them preserves each blocks of C_{f} belongs to the invariance group G of f. We have to show, that if not all of the factors have this property, then the permutation does not leave the threshold function f invariant.

Lemma 2 Let $\pi \in S_{X}$ of the form $\pi=\pi_{2} \pi_{1}$, where $\pi_{1}, \pi_{2} \in S_{X}$, with $M\left(\pi_{1}\right) \cap$ $M\left(\pi_{2}\right)=$ and $\pi_{1} \notin G$. Then $\pi \notin G$.

Proof. Suppose that it is not so, i.e. $\pi \in G$. Now $\pi_{1} \notin G$ means that there exist $X_{0}, X_{1} \in\{0,1\}^{n}$ with $f\left(X_{0}\right)=0, f\left(X_{1}\right)=1$, and $\pi_{1}\left(X_{0}\right)=X_{1}$. Let $X_{2}=\pi_{2}\left(X_{1}\right)$, i.e. $X_{2}=\pi\left(X_{0}\right)$. Since $f\left(X_{2}\right)=1$ contradicts the assumption $\pi \in G$, we infer $f\left(X_{2}\right)=0$. Let $X_{3}=\pi_{1}\left(X_{2}\right)$. As $M\left(\pi_{1}\right) \cap M\left(\pi_{2}\right)=\emptyset$, we have $\pi_{1} \pi_{2}=\pi_{2} \pi_{1}$. Therefore $X_{3}=\pi\left(X_{1}\right)$. The assumption $\pi \in G$ implies $f\left(X_{3}\right)=1$. Looking at the infinite series of Boolean vectors

$$
X_{0}, X_{1}, \ldots, X_{n}, \ldots
$$

we can establish in the same way that if $i=2 k, k \in N$, then $f\left(X_{i}\right)=0$, while if $i=2 k+1$ then $f\left(X_{i}\right)=1$. On the other hand,

$$
W(X)=S(X)^{[1]}+S(X)^{[2]}+S(X)^{[3]}
$$

where $S(X)^{[1]}=\sum_{x_{j} \in M\left(\pi_{1}\right)} w_{j} x_{j}, S(X)^{[2]}=\sum_{x_{j} \in M\left(\pi_{2}\right)} w_{j} x_{j}, S(X)^{[3]}=$ $\sum_{x_{j} \notin M(\pi)} w_{j} x_{j}$. With this notation: $S\left(X_{0}\right)^{[1]}<S\left(X_{1}\right)^{[1]}, S\left(X_{0}\right)^{[2]}=S\left(X_{1}\right)^{[2]}$, $S\left(X_{0}\right)^{[3]}=S\left(X_{1}\right)^{[3]}$. For the series of $S\left(X_{i}\right)^{[1]}$:

$$
\begin{equation*}
S\left(X_{0}\right)^{[1]}<S\left(X_{1}\right)^{[1]}=S\left(X_{2}\right)^{[1]}<S\left(X_{3}\right)^{[1]}=S\left(X_{4}\right)^{[1]}<\ldots \tag{6}
\end{equation*}
$$

as applying π_{2} changes only $S\left(X_{i}\right)^{[2]}$; moreover, $f\left(X_{2 k}\right)=0$ and $f\left(X_{2 k+1}\right)=1$ imply $W\left(X_{2 k}\right)<W\left(X_{2 k+1}\right)$, hence $S\left(X_{2 k}\right)^{[1]}<S\left(X_{2 k+1}\right)^{[1]}$. On the other hand, if z is the order of π_{1}, then $S\left(X_{0}\right)^{[1]}=S\left(X_{2 x}\right)^{[1]}$, which contradicts (6).
Claim 3. For $\pi \in S_{X}$, let $\pi=\gamma_{1} \ldots \gamma_{r}$ where γ_{i} are disjoint cycles. If there exists a γ_{j} with $1 \leq j \leq r$ and $\gamma_{j} \notin G$, then $\pi \notin G$.

Proof. It is easy to see if there is only one such γ_{j}. If there is more, then $\pi \notin G$ is an immediate consequence of Lemma 2.

Claim 1, Claim 2, and Claim 3 together provide a proof of the first part of the Theorem.

For proving the converse of the theorem, we show first that for any n there exist a n-ary threshold function which is rigid in the sense that its invariance group has only one element (the identity permutation).

Suppose n is odd. With $n=2 k+1$, consider the following weights:

w_{1}	w_{2}	\ldots	w_{k}	w_{k+1}	w_{k+2}	\ldots	$w_{2 k}$	$w_{2 k+1}$
$-k$	$-k+1$	\ldots	-1	0	1	\ldots	$k-1$	k

Let $t=0$. We prove that for any transposition τ of form $\left(x_{j} x_{j-1}\right)$ where $2 \leq j \leq n$ there exists a Boolean vector $U=\left(u_{1}, \ldots, u_{n}\right) \in\{0,1\}^{n}$ such that $f(U)=1$ and
$f(\tau(U))=0$. For a fixed j let $u_{j}=1, u_{n+1-j}=1, u_{i}=0$ if $i \neq j, i \neq n+1-j$. It is obvious that $f(U)=1$; however, $f(r(U))=0$. Hence f is rigid.

If $n=2 k$, then the weights can be chosen as

w_{1}	w_{2}	\ldots	w_{k-1}	w_{k}	w_{k+1}	w_{k+2}	\ldots	$w_{2 k-1}$	$w_{2 k}$
$-k$	$-k+1$	\ldots	-2	-1	1	2	\ldots	$k-1$	k

Let $t=0$. The method is almost the same as before, i.e. consider the following $U=\left(u_{1}, \ldots, u_{n}\right)$: If $j \neq k+1$ then let $u_{j}=1, u_{n+1-j}=1, u_{i}=0$ if $i \neq j,-j$. If $j=k+1$ then let $u_{k+1}=1$ and $u_{i}=0$ if $i \neq k+1$. If $\tau=\left(x_{j} x_{j-1}\right)$, where $2 \leq j \leq n$, then $f(U)=1$ while $f(\tau(U))=0$.

Now, we construct a threshold function g_{C} for an arbitrary partition C of an arbitrary ordered set X of variables. Denote now by \sim^{*} the equivalence relation on X defined by C. First, suppose that C is convex. Let i_{1}, \ldots, i_{l} denote the number of elements of the blocks of C, respectively. Consider the rigid function f of l variables that is defined in (7) or (8), depending on the parity of l. Take the weight $w_{1} i_{1}$ times, the weight $w_{2} i_{2}$ times and so on in order to define a threshold function g of $n=i_{1}+i_{2}+\ldots+i_{l}$ variables. Variables of g with the same weight are permutable. However, transpositions σ of form $\left(x_{j} x_{j-1}\right)$, where $2 \leq j \leq n$ and $j \not \chi^{*} j-1$, are "forbidden" for g because if we consider the corresponding U and construct a Boolean vector V of dimension n from U by rewriting it in the following way: instead of $u_{m}(m=1, \ldots, l)$, write $0 i_{m}$ times, whenever $u_{m}=0$; and write 1 (once) then $0 i_{m}-1$ times otherwise; then we shall get a Boolean vector V of dimension n, for which $g(V)=1$ while $g(\sigma(V)=0$. If C is not convex; the only thing we have to do is to reindex the variables in order to get a convex partition. After constructing a threshold function for the rearranged variables with the procedure described above, put the original indexes back and the desired threshold function is ready. Theorem is proved.

The invariance group G_{B} of an arbitrary Boolean function is not necessarily of the form

$$
\begin{equation*}
G_{B} \cong S_{i_{1}} \times \ldots \times S_{i_{i}} \tag{9}
\end{equation*}
$$

For example, let h be the following: $h\left(x_{1}, \ldots, x_{n}\right)=1$ iff there exists i such that $x_{i}=1, x_{i \oplus 1}=1, x_{j}=0$ if $j \neq i, i+1$ where \oplus means addition mod n. The invariance group of h contains the cycle $\left(x_{1}, \ldots, x_{n}\right)$ and its powers but it does not contain transpositions of form $\left(x_{i} x_{i+1}\right)$.

However, there exist Boolean functions with invariance groups of the form (9), which are not threshold functions.

Permutable variables of a threshold function does not mean equal weights. Here is an example: $h(x)=x_{1} x_{2} x_{4} \vee x_{3} x_{4}$. This is a threshold function with the following weights, and threshold value:

w_{1}	w_{2}	w_{3}	w_{4}	t
1	2	3	4	7

The transposition ($x_{1} x_{2}$) is "permitted" but the others are not.
But the weights can always be chosen to be identical for variables belonging to the same equivalence class. If the j-th class $C_{j}=\left\{x_{i_{1}+i_{2}+\ldots+i_{j-1}+1}, \ldots, x_{i_{1}+\ldots+i_{j}}\right\}$ by te notation of (5), then let $w_{[j]}=\frac{w_{i_{1}+i_{2}+\ldots+i_{j-1}+1+\ldots+w i_{1}+\ldots+i_{j}}^{i_{j}}}{\text {. Replace }}$ $w_{i_{1}+i_{2}+\ldots+i_{j-1}+1}, \ldots, w_{i_{1}+\ldots+i_{j}}$, by $w_{[j]}$. Since $x_{i_{1}+i_{2}+\ldots+i_{j-1}+1}, \ldots, x_{i_{1}+\ldots+i_{j}}$
are from the same equivalence class, for fixed $x_{1}, \ldots, x_{i_{1}+\ldots i_{j-1}}$ and $x_{i_{1}+\ldots i_{j}+1}, \ldots x_{i_{1}+\ldots i_{1}}$, the fact that $W(X)$ exceeds t (or not) depends only on the number r of $1-8$ among the coordinates $x_{i_{1}+i_{2}+\ldots+i_{j-1}+1}, \ldots, x_{i_{1}+\ldots+i_{j}}$; moreover, $W(X)$ has a maximum (minimum) if we put all our 1-s to places with the greatest (amallest) weights possible. Obviously

$$
\frac{w_{i_{1}+\ldots i_{r-1}+1}+\ldots+w_{i_{1}+\ldots i_{j-1}+1+r}}{r} \leq w_{\{j]}
$$

moreover,

$$
w_{[j]} \leq \frac{w_{i_{1}+\ldots i_{j}-r}+\ldots+w_{i_{1}+\ldots i_{j}}}{r}
$$

Hence

$$
w_{i_{1}+\ldots i_{r-1}+1}+\ldots+w_{i_{1}+\ldots i_{j-1}+1+r} \leq r w_{[j]} \leq w_{i_{1}+\ldots i_{j}-r}+\ldots+w_{i_{1}+\ldots i_{j}}
$$

Consequently, after replacing $w_{i_{1}+i_{2}+\ldots+i_{j-1}+1}, \ldots, w_{i_{1}+\ldots+i_{j}}$ by $w_{[j]}$, we still have the same threshold function.

Acknowledgement I would like to thank B. Csákány for raising the problem, for discussions, and his helpful suggestions.

References

[1] Algebraic aspects of threshold logic Russian Kibernetika (Kiev), p. 26-30, 1980
[2] N. N. Ay̌enberg, A. A. Bovdi, E. I. Gergo , F. E. Geche English transl. in Cybernetics vol. 16, 1980 p. 188-193
[3] Béla Bódi, Elemér Hergo̊, Ferenc Gecseg A lower bound of the number of threshold functions Trans.IEEE,EC-14 6, 1965, p. 926-929
[4] S. Yajima and T. Ibaraki Threshold logic
[5] H.G. Booker and N. DeClaris Academic Press, London and New York Ching Lai Sheng 1969

[^0]: -JATE, Bolyai Intézet, Aradi Vértanúk Tere 1, H-6720 Szeged, Hungary e-mail H7753KatOHUELLA.BITNET

