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Reconstruction of Unique Binary Matrices with 
Prescribed Elements* 

A. Kuba » 

Summary 

The reconstruction of a binary matrix from its row and column sum vectors is 
considered when some elements of the matrix may be prescribed and the matrix 
is uniquely determined from these data. It is shown that the uniqueness of such 
a matrix is equivalent to the impossibility of selecting certain sequences from the 
matrix elements. The unique matrices are characterized by several properties. 
Among others it is proved that their rows and columns can be permutated such that 
the l's are above and left to the (non-prescribed) O's. Furthermore, an algorithm is 
given to decide if the given projections and prescribed elements determine a binary 
matrix uniquely, and, if the answer is yes, to reconstruct it. 

1 Introduction 
Let A = (oij) be a binary matrix of size m X n. Let its row sum vector be denoted 
by iZ(A) = R = ( r i , r 2 , . . . , r m ) , 

n 
r, = ^ o i y , (»" = l , 2 , . . . ,m) , 

i=i 
and let its column sum vector be denoted by 5(A) = S — (si,s2 s„)i 

m 

«=1 
The vectors R and S are also called the projections of A. Denote the class of binary 
matrices with row sum vector R and column sum vector S by A(R, S). 

The problem of reconstruction of binary matrices from their projections has an 
extensive literature (for surveys, see e.g. [14] and [4]). Gale [9] and Ryser [13] have 
proved existence conditions. A necessary and sufficient condition of uniqueness is, 
for example, in [15]. 

In this paper, a generalization of the mentioned reconstruction problem will be 
considered. Let P and Q be binary matrices with size m X n. We say Q > P or Q 
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covert P if g,y > p,-y for all positions (i,j) 6 { 1 , 2 , . . . , m} X {1,2 n}. The class 
Ap (R, S) is then defined as 

A%(R,S) = {A | AeA{R,S), P<A<Q}. 

According to this definition, AP(R,S) can be regarded as the sub-class of A[R, S) 
having the prescribed value 1 in the positions where p<y = = 1, and the pre-
scribed value 0 where p̂ y = g,y = 0. It is clear that, if P = O (zero matrix) and 
Q = E(= ( l ) m X B ) , then A%(R,S) = A(R,S). 

Now, we show that this reconstruction problem can be simplified. It is clear that, 
if A 6 Ap(R, S) then A > P, so their difference, A — P = (o,-y — Pij)nxm> is a binary 
matrix with projections R(A - P) = R(A) - R(P) = R - R[P) and S(A - P) = 
5 (A ) - S(P) = S- S(P). Therefore, A - P e A%~P(R - R(P), S - S(P)). The 
reverse statement is also true in the sense that, if B 6 AQ(R,S) for some binary 

-matrix Q, then B + Pé A%+P[R + R{P), S + where P is a binary matrix 
such that for all positions, if p,-y = 1, then <7;y = 0. This means that it is enough to 
study the class AQ(R, S), or in short AQ{R, S) or ,AQ. 

It is interesting to note that the network flows [7] can also be used in thé study of 
the class A®(R, 5). To each class A® (R, S) there is a bipartite network with source 
s, sink t and nodes {iZi,iZ2,... , i î m } , {Si,S2, • • •, Sn} and arcs (s, Ri), (S }-,t) and 
(RÏ,SJ) with capacity rj,sy and ç,y, respectively, » = 1,2,... ,M, J = 1,2,... ,N. 
Then each matrix A € AC)(R, S) corresponds to a flow in this network (see [6]). In 
this way, the results in this paper have a reformulation in network flows. 

Considering the connected literature, Kellerer published a necessary and suffi-
cient condition [ll] for the existence of measurable functions with given "marginals" 
which is applicable also to the matrices in the class A®. Recently W.Y.C. Chen 
has published theorems about integral matrices with given row and column sums 
satisfying a so-called main condition [6]. However, this main condition restricts 
the validity of the results only to a part of the prescribed binary matrices. As 
we shall see, there is unique binary matrix not satisfying Chen's main condition 
(e.g., the only binary matrix of the so-called normalized class corresponding to Fig. 
5.1). There are papers dealing with special A® classes: Fulkerson gave a necessary 
and sufficient condition for the existence of (0,l)-matrices with zero trace [8] and 
Anstee published results on matrices having at most one prescribed position in 
their columns [1],[3] and having a triangular block of O's [2]. 

Henceforth, consider the class where R = (ri, • • •, rm) and 5 = 
(«1, «2 , . . . s„) tire non-negative integer vectors and Q is a binary matrix of size 
m X n. The position (t , ; ) is said to be free if the corresponding matrix element is 
not prescribed by. Q, i.e. g,y = 1. 

In this paper, the aim is to generalize the uniqueness results of A to A® (and 
thus, to A®). (The reconstruction problems of non-uniquely determined binary 
matrices is the subject of [10].) In Section 2 we reconsider the known results of 
uniqueness in certain classes A®(R, S), where Q has some special property. Then 
the general uniqueness problem is considered, when Q is an arbitrary binary matrix. 
Section 3 contains a definition of a switching chain, whose existence turns out to 
be a necessary and sufficient condition of the non-uniqueness of a binary matrix. 
Thus, a switching chain has the same role in the class A® as a switching component 
has in A. In Section 4 a reconstruction algorithm is given to decide if the given 
projections and prescribed elements determine a binary matrix uniquely, and, if 
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the answer is yes, to reconstruct it. The unique matrices can be characterized in 
different ways. Some of these properties are discussed in Section 5. It is proved 
that the l 's of these matrices can be covered by certain rectagles, and that their 
rows and columns can be permuted so that the l's are above and to the left of the 
(non-prescribed) O's. 

2 Uniqueness in special classes 
In this section we reconsider the uniqueness results in different special classes prov-
ing that none of them is sufficient to characterize the uniqueness in the class A® • 

We say that A € A®(R,S) is a non-unique (or ambiguous) binary matrix, (in 
AQ) if there is a matrix A' € ^ ( . R . S l such that A ± A'. In the other case, A 
is unique (or unambiguous). Accordingly, the reconstruction data, the projections 
(R, S) and the prescribed values Q together, is non-unique or unique if the number 
of elements of the class A® is greater than one or exactly one, respectively. If 
AQ(R,S) — 0 then the reconstruction data is inconsistent. 

There are results connected with the uniqueness in the class A(R, S), i.e. when 
Q = E: Consider the matrices 

An interchange is a transformation of the (free) elements of A that changes a minor 
of type AI into type A2 or vice versa, and leaves all other elements of A unaltered. 
(The word minor is used here in the sense of submatrix.) -We say that the four 
elements of the minor form a switching component. 

Theorem 2.1 [13,15]. The binary matrix A e A(R,S) is ambiguous (in 
A(R,S)) if and only if it has a switching component. 

In the more general class of A®(R, S), the extension of this result is not trivial. 
Consider, for example, the class ^ ( ( 1 , 1 , 1 ) , (l , 1,1)), where 

that is, the diagonal elements are prescribed. The matrices A3, A« S A® (see Fig. 
2.1), but they have no switching components. 

Figure 2.1. Ambiguous matrices A3 and A4 having no switching components (x's 
denote the positions of the prescribed 0 elements). 

t 



60 A. Kuba. 

The matrices A3 and A4 play a similar role in the classes of binary matrices 
having at most one prescribed element in each column as A\ and A2 do in A (classes 
having no prescribed element). Replacing a submatrix A3 by A4 or vice versa leaves 
the row and column sums unchanged. A triangle interchange is a replacement of any 
version of A3 and A4 obtained by applying the same row and column permutations 
to both A3 and A4 [lj. Anstee proved an analogous theorem [1 Corollary 3.2] in 
the case of prescribed l's: 

Theorem 2.2. Given a pair A,Be AQ(R,S), where Q has at most one 0 
in each column, one can get from A to B by a series of interchanges and triangle 
interchanges without leaving A®(R, 5). 

However, if there is more than one prescribed element in the columns and rows, 
then the minors Ai, A2, A3 and A4 are not enough to characterize uniqueness. For 
example, the matrices of Figure 2.2 are in the same class, but they have no such 
minors of free elements. 

( 0 1 X X \ ( 1 0 X X \ 
X 0 1 X X 1 0 X 
X X 0 1 X X 1 0 

I 1 X X 0 J I 0 X X 1 J 

Figure 2.2. Ambiguous binary matrices having two prescribed elements in each row 
and column, and having no minors Aj , A2, A3, A4, or any minors obtained from 
them by permuting rows and columns. 

3 Switching chain 
Our most important new concept is a generalization of the concept of a switching 
component. We say that the binary matrix A £ A® has a switching chain if there 
is a series of different free positions of A, < (t'i,ji), (t 1, J2), (»2. J2), («21.73)1 • • • 1 
( W p ) . (ip,;'i) >, such that 

= = • • • = = 

= 1 ~ Où« = 1 - = • • • = 1 ~ aivj\ 
(p > 2). It follows from the definition that if < (*i, Ji), (t"i,y2), (»2.^2), (»21^3), 
• • • > (Wp)> (*p> i i ) > is a switching chain of A and ail}l = atJy, = ... = aif]f = 1, 
then ai l j j = Oi2j, = . . . = Qifji = 0. This statement remains true if we switch 
the l's and O's of the chain. As examples of switching chain see Ai, A2, A3, A4 
and the matrices of Figure 2.2. Each of them contains switching chains. (In fact a 
switching component is a switching chain with p = 2.) 
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An important property is that by switching the l's and O's of a switching chain 
in a matrix, another matrix is obtained that has the same projections. Therefore, 
the non-existence of a switching chain in a matrix is a necessary condition for 
uniqueness. In fact, it is also sufficient. 

Theorem 3.1. The binary matrix A £ A^(R, S) is unique if and only if A has 
no switching chain. 

Proof. One direction is obvious. For the other direction, let us suppose that 
there is another binary matrix A' £ A®(R,S) (A' ^ A). Then, there is a position 
(*i>ji) such that 

«.'in = = 0 

(or OilJl = 0, = 1, in which case we can use a similar proof). Since rt l = r| , 
there is a column j? (^ }\) such that 

= °> a!,ya = 

« - "y, ' " Then, since s,, = a'- , there is a row t2 such that 

and so on. After a finite number of steps the sequence will terminate, i.e., it follows 
from 

= !> aU = 0 

that there is a column among (the up-to-now all different) j\,]2, ••• ,jP, say jk, such 
that 

° i ,A = °> = 

That is, < (*'fc, jit), (¿fc,yfc+1)t (*fc-n,>ib-n), (»fc-n.iife-i-a) (*p>>p)> (*Pi J*) > " a 

switching chain in A. 
Remark. The proof is almost the same in the case of switching components in 

class A (see [13] and [15]), but in A it is also shown that this switching chain can be 
used to find a switching component. In the class A®, this is not necessarily true. 

4 Reconstruction of unique matrices 
Now, we give the characterization that can be used to decide the uniqueness and 
to reconstruct unique matrices efficiently. We say that a minor is mixed if each of 
its rows and columns contains both a free 1 and a free 0. 

Theorem 4.1. The binary matrix A is unique if and only if it has no mixed 
minor. « 

Proof. If there is a switching chain in a binary matrix, then the rows and the 
columns of the switching chain determine a minor consisting of rows and columns 
each containing free l's and O's. 
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To prove the other direction, let us suppose that A has a mixed minor. Then 
let ai l } l = 1 be an element of the mixed minor. There is a column j? such that 
a,-,/, = 0 is an element of the mixed minor. Then, there is a row t2 and a col-
umn jij such that Oi,y. = 1, a^y = 0 and they are in the minor. We have 
to continue the procedure until there is a row ip and a column jp such that 
'Sip = = 0 ( b o t l 1 111 t h e minor), where jk G {ji,h, • • • ,jP-i}. Then 
< (*fct jifc)> (*fci,7fc+i)i (*fc+iiifc+i)) (*fc+ii Jfc+2)i • • •) (*pijp)> (*p> Jfc) > is a switching 
chain. 

From Theorem 4.1 it follows for each minor of a unique matrix that there is a 
row or column of the minor such that in that row or column either there are only 
l 's in the free positions, or there are only O's in the free positions or there are no 
free positions at all. These rows/columns are called primitive rows/columns of the 
minor. A primitive row/column can be recognised from the number of the free 
positions and the projection values of the minor in the following way. A primitive 
row contains O's in the free positions (if there is free position) if and only if the 
sum of that row/column of the minor is 0. A primitive row contains l's in the free 
positions if and only if the sum of that row/column is equal to the number of the 
free positions in that row/column of the minor. 

Similarly, we say that t is a primitive row of AQ(R, S) if 0 = r< or r,- = g,y 
and that j is a primitive column of A® (R, S) if 0 = sy or ay = J^^Lx ?<y. 

If the class A®(R, S) has only one matrix, then it has a primitive row or column. 
By reducing R and 5 by the projection of a primitive row or column and setting 
Q to 0 in this row or column, the new class A

Q

 (R',S'), has also only one matrix 
having the same elements as the original one in the positions q'i}- = 1. Trivially, 
if A®(R, S) is non- unique or empty, the A

Q

 (R',S') is also non-unique or empty, 
respectively. 

From this property of the unique binary 'matrices a reconstruction algorithm 
follows: 

Algor i thm 4.1 (to d«cide the uniqueness of the reconstruction data and to 
reconstruct a unique matrix A G AQ(R,S) from given projections R and 5, and 
prescribed positions of Q): 

Step 1. Let A := O, R' := R, S' := S, Q' := Q. 
Step .£. If 0 < r| < q'i}., and 0 < s'- < 9,'-y is not fulfilled for all 

t and j, then the reconstruction data is inconsistent; stop. 
Step S. If Q' = O, then output A; stop. 
Step 4• If no row and no column of A® (R', S') is primitive, then the 

reconstruction data is non-unique or inconsistent; stop. 
Step 5. Select a primitive row or column of ¿ ^ ' ( f l ' . S ' ) . For every (t, j) 

in this row or column such that q'{ • = 1, 
i. set Ojy equal to 0 or 1, appropriately; 
ii. reduce and s'}- by a,-y; * 
iii. set q'i}- to 0. 
Go to Step 2. 



.Reconstruction of Unique Binary Matrices with Prescribed Elements 63 

Remarks. 
а. It is supposed that m and n are positive integers and R and S are vectors of 

m and n non-negative integers, respectively. 
б. During the iterations the number of 0-rows or the number of O-columns of 

Q' is increases at least by one. Thus, the algorithm will terminate after at most 
m + n — 1 number of iterations, when all rows or columns of Q' contain only O's 
(Step 3). 

c. Step 2 is to test two conditions: The first is that vectors R' and S' contain 
only non-negative elements, and the second that the number of free positions in 
each row and column of the reduced class are enough to place r[ and a}- number of 
l's, respectively. Both conditions are necessary for the existence. 

d. Step 4 is to test if there is a primitive row or column in the class 
If no, then the matrix to be reconstructed has a mixed minor (see Theorem 4.1) 
consisting of the non-O-rows and non-O-columns of Q' (if the matrix exists at all). 

e. It is not difficult to prove that the matrix A reconstructed by Algorithm 4.1 
as an output in Step 3 is unique. It follows from the fact that primitive rows and 
columns do not contain any element of any switching chain. 

/. Clearly, if a matrix A is constructed by Algorithm 4.1 then A < Q, because 
we assign l's only into free positions (Step 5). 

g. If the number of l's in row i of A increases during the iterations, then r'{ 
decreases by the same number. This means that r'{ + â y remains constant in 
each iteration. In the first iteration this constant is 

(because o,-y = 0 now). If we arrive Step 3 such that Q' = O then rJ = 0 
and s'y = 0 for each * and j (Step 2), and so again R(A) = R. Similarly, it can be 
shown that S(A) = S. That is, if a matrix A is constructed by Algorithm 4.1 then 

h. Algorithm 4.1 can be considered as a generalization of the assign and update 
algorithm [5] for reconstructing unique matrices without prescribed elements. 

Therefore, Algorithm 4.1 is correct in the sense that it is terminated after a finite 
number of steps (Remarks b. and c.), the output matrix A is unique (Remark e.) 
and it is from the class A®(R,S) (Remarks f. and g.). 

n 
(4.1) 

A € A(R, S). 

As an example see Figure 4.1. 
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2 x . . . . 
2 x . . x 
4 . . . x . 
1 . . . . . 
2 x . . x 

1 2 5 2 1 

a. 

1 x . 1 . . 
1 . x 1 . x 
0 l l l x l 
0 . . 1 . . 
1 x 1 . x 

0 1 0 2 0 
b. 

1 x . 1 . 0 
1 0 x 1 . x 
0 l l l x l 
0 0 0 1 0 0 

1 0 x 1 . x 

0 1 0 2 0 

c. 

0 x 1 1 . 0 
0 0 x 1 1 x 
0 l l l x l 
0 0 0 1 0 0 
0 0 x 1 1 x 

0 0 0 0 0 

0 x 1 1 0 0 
0 0 x 1 1 x 
0 l l l x l 
0 0 0 1 0 0 
0 0 x 1 1 x 

0 0 0 0 0 

d. e. 
Figure 4.1. Reconstruction of a unique binary matrix by Algorithm 4.1 
showing matrix A and projections R' and S' during the iterations. The 
free elements of the minor to be reconstructed are denoted by The 
reconstructed elements of A are denoted by 0 and 1. The matrix Q' has a 1 
at the positions where there is a 

a. Starting configuration. 
b. Configuration after finding the primitive 

column 3 and primitive row 3. 
c. Configuration after finding the primitive 

columns 1, 5 and primitive row 4. 
d. Configuration after finding the primitive 

column 2 and primitive rows 2, 5. 
e. Configuration after finding the primitive column 4. 
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5 Characterization of unique matrices 
Knowing Theorems 3.1 and 4.1 the unique matrices can be characterized 
by having no switching chain or having no mixed minor. Another possible 
characterizations are based on the comparison of the prescribed and free 
1 and 0 positions of the rows. Let us introduce the following notations in 
connection with a matrix A £ 

A ( 1 ) = {(»',;) | Oij = 1}, A<°> = { (» , ; ) | Oij = 0,qij = 1} 
and 

Q ( 0 ) = { (» . ; ) 19o = o } . 

In words, 
and denotes the sets of the free 1 and 0 positions of 

the binary matrix A, respectively, and Q*0' denotes the set of prescribed 
positions. Furthermore, let A,-1' and a ' 0 ' denote the set of column indices 
of the free l's and free O's of A in row i (1 < i < m), respectively. 

Theorem 5.1. The binary matrix A g ACi(R,S) is unique if and only 
if for any subset I of the rows there is a row i € I such that 

f n 4 " = i (5.1) 

for each t' € I. 
Remarks. 
a. In another words, Theorem 5.1 says that, exactly in the case of unique-

ness, from any subset of rows we can select at least one row such that in 
the columns of the free O's of this row there is no 1 in any other row. This 
means that the l's and prescribed elements of the selected row "cover" all 
the l's of the other rows in the subset. In this sense the selected row is a 
longest row of the subset. 

b. Specially, if there is no prescribed element, i.e. Q = E, then (5.1) 
means that a row having the greatest covers every other row. 

Proof. Suppose that A has a switching chain SC =< 
(*i,ji),(*ii^)i(*2,i2),(*2,j3),...,(*p.jp)i ( w ' l ) > such that a i U i = 
°.'3j3 = • • • = a.,,', = 1 and ailj3 = = ... = aiph = 0. Then let 
I = {*i,»2» • • • > *p}- If *fc is an arbitrary row of / (1 < A; < p), then tfc+i 
is another row of I such that jk+i € A ^ D a ] ^ (if k = p then instead of 
tfc+i let us select t°i). That is (5.1) is not fulfilled. 

Suppose, now, that there is a subset of rows, / , such that for each row 
t € I, there is a row i' € I such that A)0) n ^ 0. Let t'i e I and t2 
another row index from I such that £ fl A^ ' for some that is, 
aijy, = 0 and o,-,,-, = 1. Applying the same condition to row t2 we get a 
row »3 from I ana a column j'3 such that a,ays = 0 and o,,y, = 1. And so 
on. After a finite number of steps the sequence will be ended, i.e. Oirjk — 0 
and aik}k = 1 for some ik e {t'i,*2. • - - ,*P-x} and jk € {ji,j2,... ,jP-i}-
Then < (ik,jk),(ik,jk+i)Aik+i,]k+i),(ik+i,3k+2),---Aip>3p)Aip>]k) > 
a switching chain in A. 
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Now, we give another characterization of the unique matrices by proving 
that their l 's can be covered by special rectangles. The construction of these 
covering rectangles can be done by 

Procedure 5.1 (to construct special covering rectangles of l's): This is 
an inductive procedure to find a sequence of rectangles having increasing 
number of rows and decreasing number of columns step by step. Applying 
Theorem 5.1 to the whole set of rows we know that if A is unique, then we 
can select at least one row t such that in the columns of A*0' A has no 1 
element. Let the set of such rows be denoted by /J1 ' ( ^ 0), and let 

JIL) = n 4 0 ) 

.e / i1 ' 

(overline denotes the complement set). Clearly, A*1' 2 (/J1 ' * j f 1 ' ) \ Q(°). 
if a w = ( J ^ x ^ ^ g C ) then we have a rectangle (in a general sense 
that / j 1 ' X j j 1 ' consists of not necessarily consecutive rows and columns) 
covering the l 's of A and the Procedure is terminated. If 

A ' ^ U ^ x J i ^ Q C ) 
t=i 

for some p > 1 (the symbols 3 and C are used only for strict containment) 
then we can select at least one row t from Tp1' such that A has no 1 element 
in Ip1^ X (A|0) t̂  0, because in this case t S IpLet the union of the 
set of these rows and Jp1' be denoted by • Clearly, /p1 ' C I^+i • Let 

j { P + I = n 

Then 4 1 ] D (because A|0) ^ 0 in the new rows of J ^ J and A«1) D 
(fp+i x Jp+i) \ Q' 0 ' - After a finite number of steps (if p is big enough), we 
reach the situation 

A<1) = U ( A ( 1 ) x ^ ( 1 ) ) \ « ( 0 ) . 
t=i 

that is the l's of matrix A are covered by the union of rectangles ij1^ x J , 1 ' 
(1 < t < P). 
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As an example of the application of Procedure 5.1 see Figure 5.1(a), 
where ( {1 }x{1 ,2 ,3 ,4 5,6})U({1,2,3}X{1,2,3,4})U({1,2,3,4}X{1,3,4})U 
({1,2,3,4, 5,6} X {1}) is the set of covering rectangles constructed by Pro-
cedure 5.1. 

4 1 1 X X 1 1 4 1 X 1 X 1 1 
1 1 X X X 0 0 1 1 X X X 0 0 
3 1 1 1 X 0 X 3 1 1 1 X 0 X 
2 1 0 1 X X X 2 1 1 0 X X X 
1 1 X 0 0 0 X 1 1 0 X 0 0 X 
1 1 X 0 X X 0 1 1 0 X X X 0 

6 2 2 0 1 1 6 2 2 0 1 1 

(6) 

Figure 5.1. (a) A unique binary matrix and its projections, (b) After 
changing columns 2 and 3 the matrix is ordered such that the l's are 
to the left of the free O's in each row, and the l's are above the free 
0*8 in each column. 

Remark. Specially, if A has no 1 element (of course, in this case A 
is uniqe) then Procedure 5.1 gives { l , 2 , . . . , m } X 0 as the only covering 
rectangle. In any other case the constructed rectangles are not degenerate. 

Procedure 5.1 has proved a part of 

Theorem 5.2. The binary matrix A S AQ[R,S) is unique if and only 
if there are subsets /J 1 ' C Jj 1 ' C . . . C 7pJ' of the row-indices { 1 , 2 , . . . , m } 

and subsets j ' 1 ^ D J j 1 ' D . . . D of the column-indices { 1 , 2 , . . . , n } 
(pi > 1) such that 

A*1' = Q ( / t ( 1 ) x J t ( 1 ) )\Q ( 0 ) . (5.2) 
t= l 

Proof. If A is unique then we can apply Procedure 5.1 to get the sequence 
of sets in (5.2). 

To prove the other direction let us suppose that A is non-unique, 
but there are such covering rectangles. Then there is a switching chain 
SC =< (t"i, j'i), (t'i, j2). (»2, jh), (»2,^3), • • •, (*p,yp), (»pi3i) > in A. Suppose 
that Oj,y, = 0, o t l y , = 1, o,-3y, = 0 , -Oj jy , = 1 and so on. (Otherwise an 
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analogous proof can be used.) The first two 1-valued elements of SC can 
not be covered by the same rectangle, because in this case (»2, ) would 
be covered. Thus, there are two rectangles, say i f f X jff and iff x jff 
(1 < fci < Jfc2 < pi), such that iff C iff (because i2 e i f f \ 4| ) ) and 
j f f D j f f (because j? 6 j f f \ 7^ ' ) . To cover (13,34) we have another 
rectangle iff x jff such that iff C iff and J^1' D j f f . And so on. 
Finally, to cover (ip,Ji) we have the rectangle i f f X jff (k p - i < kp < pi) 
such that lff_t C iff and J ^ O j f f . Furthermore, iff C iff and 

=> Jl\ ]- But> h e r e » t h e contradiction of C iff C . . . C iff C 
(and jff D jff D ... D jff D j f f ) . That is, the uniqueness follows from 
(5.2). 

The free 0 positions of the unique binary matrices can be characterized 
in a similar way: Consider a unique matrix A £ Then let us switch the 
free l's and O's in A. The new matrix is also unique (it has switching chain 
if and only if A has), and for its l's, that is, for the free O's of A, Theorems 
5.1 and 5.2 can be applied. In this way we.have analogous Theorems 5.3 
and 5.4: 

Theorem 5.3. The binary matrix A £ /C( iZ,5) is unique if and only 
if for any I subset of rows there is a row t £ / such that 

4 l ) n 4 o ) = 0 
for each t' £ I. 

Theorem 5.4. The binary matrix A 6 A®(R,S) is unique if and only 
if there are subsets / J 0 ' C I^ G ... C. lj>°J of the row-indices {1 ,2 , . . . , m} 
and subsets J<°> 3 J«0 ' D . . . D Jp0' of the column-indices { l , 2 , . . . , n } 
(po > l) such that 

Po 

A<°> = Q(J<°>x J<0))\Q(°>. 
t= i 

For example, in the case of Figure 5.1(a) 
({2, 5, 6} X { 2 , 3 , 4 , 5 , 6 } ) U ( {2 ,4 , 5 , 6 } X { 2 , 4 , 5 , 6 } ) U ( {2 ,3 ,4 , 5 , 6 } X {4, 5 , 6 } ) 

is the set constructed by the Procedure 5.1 to cover the free l's of the 
switched matrix (i.e. to cover the free O's of the given matrix). 
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Remark. In the class A Theorems 5.2 and 5.4 give 

«=1 
and 

Po 

t=l 
which is a special case of the structure results of [12]. 

Theorem 5.2 (and also 5.4) gives the possibility to "order" the rows and 
columns of the matrix such that the l's are to the left of the free O's in each 
row, and at the same time, the l's are above the free O's in each column of 
the ordered matrix. To get this matrix, we permute the rows and columns 
so that ij1^ consists of the uppermost rows and j j c o n s i s t s of the leftmost 
columns for each t S {1 ,2 , . . . ,pi } . It is also true that if a matrix has this 
property then it has no switching chain. Thus, we have 

Theorem 5.5. The binary matrix A is unique if and only'if after eventual 
permutations the l's are to the left of the free O's in each row, and at the 
same time, the l's are above the free O's in each column. 

For example, Fig. 5.1(b) shows the matrix ordered from the matrix Fig. 
5 1 ( a ) -

Remark. In the class A (no prescribed elements) a unique matrix is easily 
transformed in such a form by ordering the rows and columns such that the 
projections are non-increasing vectors (see the normalized class in [14]). 
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