Babcsányi István and Nagy Attila: Right group-type automata. In: Acta cybernetica, (12) 2. pp. 131-136. (1995)
Preview |
Cikk, tanulmány, mű
cybernetica_012_numb_002_131-136.pdf Download (412kB) | Preview |
Abstract
In this paper we deal with state-independent automata whose characteristic semigroups are right groups (left cancellative and right simple). These automata axe called right group-type automata. We prove that an A-finite automaton is state-independent if and only if it is right group-type. We define the notion of the right zero decomposition of quasi-automata and show that the state-independent automaton A is right group-type if and only if the quasi-automaton A*s corresponding to A is a right zero decomposition of pairwise isomorphic group-type quasi-automata. We also prove that the state-independent automaton A is right group-type if and only if the quasiautomaton A j corresponding to A is a direct sum of pairwise isomorphic strongly connected right group-type quasi-automata. We prove that if A is an A-finite state-independent automaton, then |S(A)| is a divisor of |AS(.i4)|. Finally, we show that the quasi-automaton A's corresponding to an A-finite state-independent automaton A is a right zero decomposition of pairwise isomorphic quasi-perfect quasi-automata if and only if |.AS(yl)| = |S(A)|.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 1995 |
Volume: | 12 |
Number: | 2 |
ISSN: | 0324-721X |
Page Range: | pp. 131-136 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/38500/ |
Uncontrolled Keywords: | Számítástechnika, Kibernetika, Automaták |
Additional Information: | Bibliogr.: 136. p. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2016. Oct. 15. 12:26 |
Last Modified: | 2022. Jun. 13. 12:34 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/12550 |
Actions (login required)
![]() |
View Item |