Right group-type automata

Babcsányi István and Nagy Attila: Right group-type automata. In: Acta cybernetica, (12) 2. pp. 131-136. (1995)

[thumbnail of cybernetica_012_numb_002_131-136.pdf]
Preview
Cikk, tanulmány, mű
cybernetica_012_numb_002_131-136.pdf

Download (412kB) | Preview

Abstract

In this paper we deal with state-independent automata whose characteristic semigroups are right groups (left cancellative and right simple). These automata axe called right group-type automata. We prove that an A-finite automaton is state-independent if and only if it is right group-type. We define the notion of the right zero decomposition of quasi-automata and show that the state-independent automaton A is right group-type if and only if the quasi-automaton A*s corresponding to A is a right zero decomposition of pairwise isomorphic group-type quasi-automata. We also prove that the state-independent automaton A is right group-type if and only if the quasiautomaton A j corresponding to A is a direct sum of pairwise isomorphic strongly connected right group-type quasi-automata. We prove that if A is an A-finite state-independent automaton, then |S(A)| is a divisor of |AS(.i4)|. Finally, we show that the quasi-automaton A's corresponding to an A-finite state-independent automaton A is a right zero decomposition of pairwise isomorphic quasi-perfect quasi-automata if and only if |.AS(yl)| = |S(A)|.

Item Type: Article
Journal or Publication Title: Acta cybernetica
Date: 1995
Volume: 12
Number: 2
ISSN: 0324-721X
Page Range: pp. 131-136
Language: English
Place of Publication: Szeged
Related URLs: http://acta.bibl.u-szeged.hu/38500/
Uncontrolled Keywords: Számítástechnika, Kibernetika, Automaták
Additional Information: Bibliogr.: 136. p. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.02. Computer and information sciences
Date Deposited: 2016. Oct. 15. 12:26
Last Modified: 2022. Jun. 13. 12:34
URI: http://acta.bibl.u-szeged.hu/id/eprint/12550

Actions (login required)

View Item View Item