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Fuzzy Extension of Datalog* 

Ágnes Achs * Attila Kiss* 

Abstract 

In this paper we define the fuzzy Datalog programs as sets of Horn-
formula« with degrees and give their meaning by defining the deterministic 
and nondeterministic semantics. In the second part of the paper we show a 
possible extension of /DATALOG on fuzzy data. 

1 Introduction 
In knowledge-base systems there are given some facts representing certain know-
ledge and some rules which in general mean that certain kinds of information imply 
other kinds of information. In classical deductive database theory ([CGT], [U]) the 
Datalog-like data model is widely spread. Its most general type allows the use of 
both function symbols and negation. The meaning of a Datalog-like program is 
the least (if it exists) or a minimal model which contains the facts and satisfies the 
rules. This model is generally computed by a fixpoint algorithm. 

The aim of this paper, which is partially a further development of [AK] and 
[K], is to give a possible extension of Datalog-like languages to fuzzy relational 
databases using lower bounds of degrees of uncertainty in facts and rules. We give 
a method for fixpoint queries. We show that this fixpoint is minimal under certain 
conditions. 

We define the deterministic and nondeterministic semantics of /DATALOG and 
give a possible extension on fuzzy data. 

2 The Concept of Fuzzy Datalog Program 
To define the idea of fuzzy Datalog program (/DATALOG) we need some basic 
concepts. 

A term is a variable, a constant or a complex term of the form / ( t i , . . . ,tn), 
where / is a function symbol and f i , . . . , tn are terms. An atom is a formula of the 
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form p(t), where p is a predicate symbol of a finite arity (say n) and t is a sequence 
of terms of length n (arguments). A literal is either an atom (a positive literal) or 
the negation of an atom (a negative literal). 

A term, atom, literal is ground if it is free of variables. 
An implication operator is a mapping of the form 

I(x v) = ( 1 i t x - y 
I f(x,y) O t h e r w i s e 

where x,y £ [0,1] and 0 < f(x,y) < 1. 
Let D be a set. The fuzzy set F over D is a function F : D [0,1]. Let T(D) 

denote the set of all fuzzy sets over D. So F £ T(D). 

F U G{d) d= max(F(d), G(d)) 

F n G(d) d= min (F{d),G(d)) . 
We can define an ordering relation: F < G iff F(d) < G(d), for d £ D. 
The support of fuzzy set F is a classical set 

Supp(F) = {d|F(d) ? 0}. 

We can see that (T(D), <) is a complete lattice. The top element of the lattice 
is U : D [0,1] : U(d) = 1, for d £ D. The bottom element is: 0 : D [0,1] : 
0(d) = 0, for d£D. 

Fuzzy sets are frequently denoted in the following way: 

F = ( J ( d , a d ) , 
d€D 

where (d,ad) £ D x [0,1]. 
In general the (d, ad) pairs where = 0 are omitted from F, and sometimes 

SuppiF) in enlarged with (d, 0) pairs, where d £ D but d £ Supp(F). 
Below we will define the fuzzy Datalog language which is a possible extension 

of Datalog, using lower bounds of degrees of uncertainty in facts and rules. In this 
language the rules are completed with an implication operator and with a level. 
We allow for each formula to use any implication operator from a given set. Thus 
we fix a set of implication operator. We can infer the level of a rule's head from 
the level of the body and the level of the rule and the implication operator of the 
rule. 

Definition 1 An /DATALOG rule is a triplet (r; I; /3), where r is a formula of the 
form 

Q*-Qu---,Qn ( n > 0 ) 

where Q is an atom (the head of the rule), Qi,..., Q n are literals (the body of the 
rule); / is an implication operator and /3 £ (0,1] (the level of the rule). 
An /DATALOG rule is safe if 
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• All variables which occur in the head also occur in the body; 

• All variables occuring in a negative literal also occur in a positive literal. 

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a 
ground atom. The rules of the form (A « - ; 7; /3) are called facts. 

The Herbrcmd universe of a program P (denoted by Hp) is the set of all possible 
ground terms constructed by using constants and function symbols occuring in P. 
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate 
symbols occur in P and whose arguments are elements of Hp. A ground instance of 
a rule (r; / ; /3) in P is a rule obtained from r by replacing every variable x in r by 
$(x) where $ is a mapping from all variables occurring in r to Hp. The set of all 
ground instances of (r;/ ; /3) are denoted by (ground(r); / ; /3). The ground instance 
of P is 

ground(P) = U{rj]0)ep(ground(ry, I; /3). 

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of 
Bp, 

Np E T(BP), that is Np = |J {A, a A). 
AeBp 

Let for ground atoms A 1 > • • • ) c*AiA...AAn and a^A be defined in the following 
way: 

«i4iA...Ai4n = min(a i41 , . . . )a i4„), 
def 

a^A = 1 - <*A-

Definition 3 An interpretation is a model of P if for each 
(ground(r)\ I; ¡3) E ground(P), ground(r) = A A 

I((*A1/\...KAn,OtA) > 0 

A model M is the least model if for any model N,M < N. A model M is minimal 
if there is no model N ^ M such that N < M. 

To be short we sometime denote a^j by abody and a a by ahead-

3 The Semantics of Fuzzy DATALOG 
We will define two kinds of consequence transformations. Depending on these 
transformations we can define two semantics for /DATALOG. In this chapter we 
will show that the two semantics are the same in the case of positive programs, but 
they are different when the program has negative literals. 

Definition 4 The consequence transformations DTP : T(BP) —• T(BP) and 
NTP : T(Bp) T(BV) are defined as 

DTp(X) = {\J{(A,aA)}\(A Au... ,An,I;P) E ground(P), 
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(|j4í|j"X.-) 6 X for each 1 < i < n,ctA = max(0,min{7|J(abody,7) > /?})} U l 
and 
NTP(X) = {(A,aA)}|3(i4<- Au... ,An-I;/3) £ ground(P), 

ctAi) e X for each 1 < i < n,otA = max(0,min{7|J(abody,7) > / ? } ) } U X , 
denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol 

with arity k and c is a list of k ground terms. 

Note: NTP(X) has at most one more element than X while DTP(X) may have 
many new elements. 

For any T : T(BP) —> T(BP) transformation let 

T0 = {u{(A,a^)}|(yl < - ; / ; £ ) e ground(P),aA = max(0,min{7|/(l,7) > 

{(,4,0)13(5 . . . - . A . . . ; / ; /9) € ground(P)} and let 
TI = T(T 0 ) 

Tn = T(Tn_o 

Tq = least upper bound {T7|7 < <5} if <5 is a limit ordinal. 

Proposition 1 Both DTP and NTP have a fixpoint, i.e., there exists X € F{BP) 
and Y € T{BP) : DTP{X) = X and NTP{Y) = Y. 
If P is positive, then X = Y and this is the least fixpoint. (That is for any 
Z = T(Z) :X<Z.) 

Proof: As [CGT] and [GS] show, if T is an inflationary transformation over a 
complete lattice L, then T has a fixpoint. (T is inflationary if X < T(X) for every 
X £ L). If T is monotone ( T ( X ) < T(Y) if X < Y), then T has a least fixpoint 
(see in [I/]). 

Since DTP and NTp are inflationary and T(BP) is a complete lattice, thus they 
have an inflationary fixpoint. 

If P is positive, then DTP = NTP and this is monotone, which proves the 
proposition. • 

We denote the fixpoints of the transformations by lfp(DTp) and lfp(NTp). 
We show, that these fixpoints are models of P, so we can define the meaning of 

programs by these fixpoints. 

Theorem 1 lfp{DTp) and lfp(NTp) are models of P. 

Proof: 
For T = DTP and T = NTP in ground(P) there axe rules in the following forms: 
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a. (A ; 1,13). 
b. (A « - A i , . . . ,AN\/;/3); {A,AA) G lfp(T) and 

(|Ai|, AAI) € lfp(T), 1 < i < n. 
c. X¿<-Ai,..-,An-,I;0);3i:(\Ai\,aAJé lfp(T). ' 

It was shown in [AK] that .in all of these cases /(»body, > (3. 
This model for function- and negation-free /DATALOG is the least model of P 

and this fixpoint can be reached in finite steps as given in [AK]. • 

Now we can define the semantics of /DATALOG programs. 

Definition. 5 We define lfp (DTP ) to be the deterministic semantics and 
lfp(ATp) to be the nondeterministic semantics of /DATALOG programs. 

The next statement is obvious by Proposition 1.: 

Proposition 2 For function- and negation-free /DATALOG, the two semantics 
are the same. 

We can choose many kinds of implication operators, but we will use only four 
of those which were discussed in [AK]. They are: 

T ( \ _ / * i f x — y t ( \ — I * • if 35 < 3/ 
h{x,y) - | y o t h e r w i s e - | i _ _ y) otherwise 

TÍ if £ < 2 / j , , J l i f i < y 
W>V>-\ y/x otherwise h{x,y) - | Q otherwise 

As the next example shows, if the program has any negation, the two semantics 
are different. 

Example 1 

1. r(a) < - ; I i ; 0.8 
2. p(x) < - r ( x ) , - g ( x ) ; / i ; 0 . 6 
3. q(x) r ( x ) ; / i ; 0 . 5 
4. p(x) < - 9 ( x ) ; J i ; 0 . 8 

Then lfp(£>Tp) = { ( r (a ) , 0.8); (p(a), 0.6; (q{a ) , 0.5)} . 
In nondeterministic evaluation we can get different solutions, depending on the 

order of applied rules. 
If the order of rules is 1., 2., 3., 4. then (lfpNTP) = {(r(a),0.8); (p(a),0.6; 

[q(a), 0.5)}, but if the evaluating order is 1., 3., 2., 4. then the lfp(ATp) = 
{(r(a), 0.8); (p(a),0.5); (q(a), 0.5)}. 

• 
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The set lfp(DTP) is not always a minimal model as shown in the example above. So 
in applying the deterministic semantics it is not certain that the obtained fixpoint 
is minimal. In the nondeterministic case however it is minimal under "certain con-
ditions. This condition is the stratification. The stratification gives an evaluating 
sequence in which the negative literals are evaluated at first. 

To stratify a program, it is necessary to define the concept of dependency graph; 
This is a directed graph, whose nodes are the predicates of P. There is an arc from 
predicate p to predicate q if there is a rule whose body contains p or ->p and whose 
head predicate is q. 

A program is recursive, if its dependency graph has one or more cycles. 
A program is stratified if whenever there is a rule with head predicate p and a 

negated body literal there is no path in the dependency graph from p to q. 
The stratification of a program P is a partition of the predicate symbols of P 

into subsets Pi,... ,Pn such that the following conditions are satisfied: 
a. if p £ Pi and q € Pj and there is an edge from q to p, then i > j 
b. if p 6 Pi and q € Pj and there is a rule with the head p whose 

body contains q, then i > j. 
A stratification specifies an order of evaluation. First we evaluate the rules 

whose headrpredicates are in Pi then those ones whose head-predicates are in P2 

and so on. The sets P i , . . . ,Pn are called the strata of the stratification. 
A program P is called stratified if and only if it admits a stratification. 
There is a very simple method for finding a stratification for a stratified program 

P in [CGT], [U]. 
Let P be a stratified /DATALOG program with stratification Pi,... ,Pn. Let 

P? denote the set of all rules of P corresponding to stratum P f, that is the set of 
all rules whose head-predicate is in Pi. 

Let 
Li=lip(NTPl) 

where the starting point of the computation is To defined earlier. 

L2=lfp(JVrp ; ) 

where the starting point of the computing is Li, 

Ln = \fp(NTK) 
where the starting point is L n - i -

In other words we first compute the least fixpoint Li corresponding to the first 
stratum of P. Once we computed this fixpoint we can take a step to the next 
strata. 

Note: 
lfp(NTp;) = lfp(BTp.). 

We will show by induction that Ln is a minimal model of P. For this purpose we 
need the next lemma. 
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Lemma 1 Let P be an /DATALOG program such that for each negated predicate 
in a rule body there is not any rule whose head-predicate would be the same, but 
this predicate can occur among the facts. Then P has a least model: 

L = lfp(ATp)(= lfP(£>Tp)). 

Proof: 
Let p be a negated predicate in a rulé body of P. As there is not any new rule 

for p, therefore the degree of p will never change during the computation. For such 
P NTP (or DTP) is monotone and therefore lfp(iVTp) is the least model of P. 

• 
According to this lemma, L\ is the least fixpoint of Pf. Generally L¿ is the 

least fixpoint of P*, because due to the stratification of P, all negative literals of 
stratum i correspond to predicates of lower strata, so there is not any rule in P* 
whose head-predicate would be this one. 

From this we get the following theorem: 

Theorem 2 If P is a stratified /DATALOG program then L„ is a minimal fixpoint 
of P. 

Theorem 3 For stratified /DATALOG program P, there is an evaluation se-
quence, in which lfp(jVTp) is a minimal model of P. 

Proof: 
The above construction gives this sequence. In this sequence Ln = lfp(ATp). 

• 

4 Connection Between /DATALOG and Fuzzy 
Relations 

The ordinary Datalog maybe interpreted by relations such, that to every predicate 
p with arity k corresponds a relation P with arity k. The rows of P are those for 
which the predicate p is true. 

Similarly it is possible to associate relations with /DATALOG predicates. The 
problem is that in the literature there are different definitions of fuzzy relations. 
Below we will deaf with two kinds of fuzzy relations. 

Definition 6 A first type fuzzy relation R in D\,..., Dn is characterised by an 
h-varíate membership function: 

M : ¿ 1 X . . . X D „ - > [ 0 , 1 ] . 

In other words a first type fuzzy relation is a fuzzy subset of the Cartesian Product 
of Du...,Dn. 

We will denote this relation by: 

, . . . , ! > „ ) , / m ) . 
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Example 2 The relation ( F ( X , Y ) , f i p ) is a first type fuzzy relation, where F 
denotes the friends relation: 

F: X Y hf 
John Tom 0.1 
Jim Bob 0.6 

• 
It is obvious that we can relate a first type fuzzy relation to each predicate of 

an /DATALOG program P so that 

i = ( o i , . . . , o„) e (R{Di,..., Dn) if and only if 

( r (o l t . . . , 0 , M f l W ) G IfP (DTP) or lfp (NTP). 

The first type fuzzy relations show the closeness of the connection among crisp data. 
However, sometimes we need to use fuzzy data. So we will define the second type 
fuzzy relation and will give a possible extension of /DATALOG on these relations. 

Definition 7 Let Di,...,Dn be n universal sets and J~(T)i),..., !F(Dn ) be all 
their fuzzy sets. Then a second type fuzzy relation R is defined by an n-variate 
membership function: 

rn • H D i ) x . . - X T{Dn) [ 0 , 1 ] . 

Example 3 Let R be the following: 

R : Name Age Salary fiR 
John 31 {0.8/3000,0.7/3500} 07T 
Tom middle aged 3300 0.8 
Ann young {0.6/2000,0.8/2500} 0.9 

R is a second type fuzzy relation. • 

5 Extension of /DATALOG for Fuzzy Data 
We want to extend the /DATALOG programs so that the predicates of the pro-
grams can be related to second type fuzzy relations. Therefore we allow that the 
constants be any fuzzy data and the variables can have any fuzzy value. 

Formally an /DATALOG rule is the same as above. Evaluating an extended 
. /DATALOG program, we would have difficulties with the unification of fuzzy data, 
therefore we will complete these rules with similarity predicates, so the unification 
will be crisp and the uncertainty is expressed by the similarity. 

Definition 8 simo : T(D) x T(D) [0,1] is a similarity predicate if it is reflexive 
and symmetric, that is, if simD(z,a:) = 1 and sim.o(a;,2/) = sim£>(y,i). 

A similarity matrix is a matrix corresponding to similarity predicate. 
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A similarity is transitive if 

sim£>(a:,z) > max{min(sim£)(x,T/),sim£)(?/,z))}. 
y€D 

Definition 9 An extended /DATALOG program is an /DATALOG program on 
fuzzy data completed with similarity matrices. 

If we want to evaluate an extended /DATALOG program, we have to trans-
form it to an /DATALOG program. For this purpose we will build the similarity 
predicates into the rules. In rewriting predicates there are the following rules: 

a. p is the head predicate of a fact 

p (a i , . . . , an) «-;/;/?. 

Instead of this rule, we get: 

p(x!,..., xn) < - p ( a i , . . . , a n ) , s i m o . J o i . i i ) , . . . , simDj!n (an ,x„) ;I ; /3, 

where sim/^. denotes the similarity predicate on the domain of X{. 
b. X is a variable in the rule 

Suppose that x is in the predicates p ,p i l t . . . ,Pik and there is no another oc-
curence of x in this rule: 

p ( . . . , x , . . .),pix (..., x,.. ,),pik ( . . . , x , . . . ) . 

Instead of this sequence we can write: 

p( . . . , x , . . .),Pii ( . . . , x i , . . . ) , s im D i ( x i , x ) ,p i 2 ( . . . , x 2 , . . . ) , 

simDi (x2, x), simDi (x2, x x ) , . . . , 
p i f c ( . . . ,x f c , . . . ) , s i m ^ x ^ x ) , s i m c j x ^ x i ) , . . . , simDic(xfc,xjfc_i) 

independently of whether p is in the head or in the body and independently of the 
order of the predicates (because of symmetry of sim). 

Then the head of the new and of the original rule will be the same. 

c. x is a repeated variable in predicate p: 

p ( . . . , x,..., x,..., x , . . . ) — x occurs k + 1 times. 

Instead of this we get: 

p(. . ,,x,...,xi,...,xk,...) simDx(xi,x), s im D i ( x 2 , x ) , . . . , 

sim^(xfc,x), sim£)a ;(xi,x2) , . . . , s im D i (x i ,x f c ) , . . . , simDx(xfc.-i,Xfc). 
In this case the head of the new rule is the same if p is in the body and it is of the 
form p ( . . . , x , . . . , x i , . . . , x* , . . . ) if p is the head predicate. 
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Proposition 3 Completing the rewriting of rules we get an ordinary /DATALOG 
program. 

This program can be evaluated by deterministic or nondeterministic semantics. 

Proposition 4 If simD* is transitive then 

simD.in,®), s im C l ( i 2 ) a ; ) , . . . , s im^ ( x k , x), s i m D x ( x 2 , x i ) , . . . , 

s\mDl{xk,xi),..., simjofc(xk,xk~i) 

can be simplified to: 

simojxx,!), sim^(x2,x),..., simDi(xk,x). 

Proof: We will prove that sim/^ {x2 ,xi ) can be ignored. The proof is similar for 
other cases. Because of transitivity 

sim/j^a^.zi) > min( sim.Dx(x2,x), simDI(i,a;i)). 

As in case of the rule A «- Av,..., An abody = minia^j , . . . , ) so it is possible 
to leave out s imc^a^z i ) - • 

We give an algorithm of rewriting an extended /DATALOG program P. 

Algorithm: 

Procedure rewriting 
facts := { the set of facts of P} 
rules := { the set of rules of P } - facts 
C := { the set of all possible constants } 

(that is the union of domains) 
V := { the set of variables of P} 

while not-empty (facts) do 
fact := select (facts) 
axglist := { the list of arguments of the fact } 
i := 1 
body := 0 
for a e C do 

while a € arglist do 
change (a, Xi) 

body : = body A simD„(a:»,a) 
i := i + 1 

endwhile 
endfor 
facts := facts - fact 

endwhile 
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while not-empty (rules) do 
rule := select (rules) 
variable Jsit := {the list of variables of the rule } 
body := { the body of the rule } 
for x € V do 

if x £ variable-list then 
rest-list leave-out (x, variable-list) 
i := 1 
while a£ rest -list do 

change (x,xi) 
body := body A s im^ (x*, x) 
if non.transitive (sim^) then 

for j :=1 to i — 1 do 
body := body A sim£>i(xJ, Xi) 

endfor 
endif 
i:=i + 1 

endwhile 
endif 

endfor 
rules := rules - rule 

endwhile 
endprocedure 

Example 4 

p(a) <- ; / i ;0.7 

r(b) < - ; J i ; 0 . 8 

q{x) p(x), r(x); I\; 0.9 

sim a b c 
a 1 0.8 0.1 
b 0.8 1 0.7 
c 0.1 0.7 1 

The rewritten rules: 
p{a) <- ; / i ;0.7 

r(b) < - ; J i ; 0 . 8 

sim(a, a) ; 7j; 1 

p(x) p(a), sim(x, a); h; 0.7 

r(x) <-r(b), simx, b); I\\ 0.8 
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q(x) p(xi), sim(ii,i),r(a ;2), sim(:E2,20. sim(a;2, a^); Ii\ 0.9 

It is simpler to write the solution in matrix-form, so 
lfp(iVTp) = lfp (DTP) : 

p: a b c r : a b c q: a b c 
" 0 7 0.7 0.1 " 0 8 0.8 0.7 ~0?7 0.7 0.7 

and the similarity matrix is the original. • 

Example 5 

p(a,b) 7i; 0.9 

p{c,d) <-; / i ;0.8 

q(x,y) p{x,y)\A;0.7 

q(x,y) <-p(x,z),q(z,y)-, A; 0.8 

sim a b c d e 
a 1 0 0.1 0.2 0.8 
b 0 1 0.9 0.1 0 
c 0.1 0.9 1 0.2 0 
d 0.2 0.1 0.2 1 0.1 
e 0.8 0 0 0.1 1 

The rewritten rules (without facts and similarity matrix): 

p(x,y) p(a, b), sim(x, a), sim(y, 6);/i;0.9 

p(z,y) p(c,d), sim(x, c), sim(y,6);/i;0.8 

?(x,y) «-pfai . f f i ) , sim(xi,a;), sim(yi,y);/i;0.7 

9(1,y) <-p( i i ,z i ) ,g (z 2 ,y i ) sim(ii,x), sim(yx,y), sim(zi,z2);/i ;0.8 

The fixpoint is: 

P • a b c d e 9 : a b c d e 
a 0.1 0.9 0.9 0.1 0.1 a 0.2 0.7 0.7 0.7 0.2 
b 0.2 0.1 0.2 0.8 0.1 b 0.2 0.2 0.2 0.7 0.2 
c 0.2 0.1 0.2 0.8 0.1 c 0.2 0.2 0.2 0.7 0.2 
d 0.2 0.2 0.2 0.2 0.1 d 0.2 0.2 0.2 0.2 0.2 
e 0 0.8 0.8 0.1 0 e 0.2 0.7 0.7 0.7 0.2 

and the original similarty matrix. • 
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Example 6 

n(a) <-; Ji;0.9 

s(x,x) « - n ( i ) ; / i ; 0 .8 

sim a b c 
a 1 0.7 0.1 
b 0.7 1 0 
c 0.1 0 1 

The rewritten rules (without facts and similarity matrix): 

n(x) n(a), sim(x,a); / i ;0.9 

s (x ,x i ) « - sim(xi ,x) ,n(x2 ) , sim(x2,x), s im(xi ,x2 ) ; / i ;0 .8 

The fixpoint is: 

n : a b c s : a b c 
0.9 0.7 0.1 a 0.8 0.7 0.1 

b 0.7 0.7 0 
c 0.1 0 0.1 

6 Conclusion 
In this paper we gave a possible extension of Datalog-like languages. We defined 
the deterministic and nondeterministic semantics of /DATALOG and using the 
similarity relations we gave a possible extension on fuzzy data. 
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