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Some Remarks On Generating Armstrong And 
Inferring Functional Dependencies Relation* 
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Abstract 
The main purpose of this paper is to give some results concerning algo-

rithms for generating Armstrong relation and inferring functional dependen-
cies ( FDs for short ). Firstly, we present some algorithms for solving these 
two problems. In the second part of the paper some NP-complete problems 
related to generating Armstrong relation and inferring FDs are given. 
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1 Introduction 
Problems that construct a relation r such that r is an Armstrong relation of a 
given relation scheme ( generating Armstrong relation ) and a relation scheme s 
such that FDs of s hold in a given relation ( inferring FDs ) have been applied for 
for database design, query optimization, and artificial intelligence. These problems 
have been investigated in a lot of papers [3,9,12,16,17,18]. 

In this paper we give some results related to generating Armstrong relation 
and inferring FDs. The paper is structured as follows. In Section 2, we present 
some characterizations of the Armstrong relation of a given relation scheme, and 
construct an algorithm for finding all minimal transversals of a given hypergraph. 
From these and the results, presented in [9], we construct algorithms for generating 
Armstrong relation and inferring FDs. 

Section 3 gives some NP-complete problems related to generating Armstrong 
relation and inferring FDs. 

Let us give some necessary definitions and results that are used in the next 
sections. The concepts given in this section can be found in [1,3,4,6,7,8,10,11,13,19]. 

Let R = { d i , . . . , a „ } be a nonempty finite set of attributes. A functional 
dependency is a statement of the form A B, where A,BCR. The FD A -> B 
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holds in £L relation T — { / l i , . . . , HM } over R if V/ii, hj £ r we have h{(a) = hj(a) for 
all a e -A implies hi(b) =-hj(b) for all b 6 B. We also say that r satisfies the FD 
A-+ B. 

Let Fr be a family of all FDs that hold in r. Then F = FT satisfies 

(1) A^AeF, 

(2) (A B e F, B C £ F) => (A -t C £ F), 

(3) (A -t B £ F, A C C, D C B) => (C D £ F), 

(4) (A B £ F, C D £ F) => (A U C B U D £ F). 

A family of FDs satisfying (l)-(4) is called an f-family ( sometimes it is called 
the full family ) over R. 

Clearly, Fr is an /-family over R. It is known [1] that if F is an arbitrary 
/-family, then there is a relation r over R such that Fr = F. 

Given a family F of FDs, there exists a unique minimal f-family F+ that contains 
F. It can be seen that F+ contains all FDs which can be derived from F by the 
rules (l)-(4). 

A relation scheme s is a pair < R,F >, where R is a set of attributes, and F is 
a set of FDs over R. Denote A+ = {a: A {a} £ F+}. A+ is called the closure of 
A over s. It is clear that A ->• B £ F+ iff B C A+. 

Clearly, if s =< R, F > is a relation scheme, then there is a relation r over R 
such that FT = F+ ( see, [1] ). Such a relation is called an Armstrong relation of s. 

Let r be a relation, s =< R,F > be a relation scheme. Then A is a key of r ( a 
key of s) if A R € Fr ( A R £ F + ) . A is a minimal key of r(s) if A is a key 
of r(s) and any proper subset of A is not a key of r(s). 

Denote Kr(Ks) the set of all minimal keys of r(s). 
Clearly, Kr,Ks are Sperner systems over R, i.e. A,B £ Kr implies A% B. 

Let i f be a Sperner system over R. We define the set of antikeys of K, denoted 
by K - 1 , as follows: • 

K-1 = {A C R : (B £ K) => {B % A)and(A c C) = > (3B € K)(B C C)}. 

It is easy to see that K~l is also a Sperner system over R. 

Let R be a nonempty finite set, P(R) its power set, and I C P(R), R £ I, and 
A,B £ I => A n B £ I. I is called a meet-semilattice over R. Let M C P(R). 
Denote M+ — {C\M' : M' C M}. We say that M is a generator of I if M+ = I. 
Note that R £ M+ but not in M, by convention it is the intersection of the empty 
collection of sets. 

Denote N = {A € / : A ± D{A' £ I : A C A ' } } . 
It can be seen that N is the unique minimal generator of I. 
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2 Algorithms 
It is known [3,9,17] that the worst-case time complexities of generating Armstrong 
relation and inferring FDs are exponential. In this section we present some char-
acterizations of the Armstrong relation of a given relation scheme. An effective 
algorithm finding all minimal transversals of a given hypergraph is also given. 
These results and the results, presented in [9], are used to construct algorithms 
for generating Armstrong relation and inferring FDs. 

Let s =< R,F > be a relation scheme. A FD A {a } G F+ is called 
the primitive maximal dependency ( PMD for short ) of s if a $ A and for all 
A' C A : A' {a } € F+ implies A — A'. 

Denote Ta = {A : A {a } is a PMD of s}. It can be seen that {a } , i ? £ Ta, 
and Ta is a Sperner system over R. It is possible that Ta = 0.. 

Let s =< R,F> be a relation scheme, a G R. Set Ka = {A C R: A —• {a} , 
,BB: (B {a})(B C A)}. Ka is called the family of minimal sets of the attribute 
a. 

Clearly, R & Ka, {a} G Ka and Ka is a Sperner system over R. It is easy to 
see that Ka — {a } = Ta. 

Based on the results, presented in [9], we show some characterizations of the 
Armstrong relation of a given relation scheme. 

Lemma 2.1 [9] Let F be an /-family over R, a G R. Denote LF(A) = {a 
G R: (A, {a} ) 6 F},ZF = {A: LF(A) = A}. Clearly, RE ZF, A,B E ZF => ANB 
€ ZF. Denote by NF the minimal generator of ZF. Set MA = {A € NF:a £ A, 
FIB € NF:a £ B, A C B}. T h e n MA = MAX(F,a), where MAX(F, a) = { K 
R : A is a nonempty maximal set such that (A, {a} ) ^ F } . 

Let r be a relation over R. Clearly, FR is an f-family over R. Denote LFR(A) = 
{a € R : A {a } £ FR}, ZFR = {A : LFR (A) = A}. Put 

Er = {Eij : 1 <i<j< |r|}, where Eij = {a 6 R : hi(a) = hj(a)}. Er is called 
the equality set of r. 

From Er we compute N = {A 6 Er : A ± 6 Er : A C A ' } } . It can be 
seen that N is the minimal generator of ZFr. Then for each a € R we have 

Ma = {A e N : a $ A, £B e N : A C B). 
It can be seen that Ma = {A e Er : a £ A, fiB G Er : A C B}. 

It is known [5] that an arbitrary full family of FDs can be uniquely determined 
by its primitive maximal dependencies. 

From the result, presented in [9] ( see, Remark 2.9 ), and Lemma 2.1 we obtain 
K~l = Ma for all a G R. Clearly, if K is a Sperner system, then K and K'1 are 
uniquely determined by each other. Consequently, the next proposition is clear 
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Proposition 2.2 Let s be a relation scheme, and r a relation over R. Then r is 
an Armstrong relation of s if and only if for every a £ R 

K-1 = Ma. 

Now we present the concept of hypergraph that is in [4]. 

Let R be a nonempty finite set and P{R) its power set. The family H = 
{Ei'.Ei £ P(R),i — l , . . . , m } is called a hypergraph over R if Ei ^ 0. ( In [4] 
author requires that the union of EiS is R, in this paper we do not). 

A hypergraph H is simple if Ei c Ej implies i = j, i.e., H is a Sperner system 
over R. 

The elements of R are called vertices, and the sets E\,..., Em axe the edges of 
the hypergraph H. 

It is easy to see that a simple graph is a simple hypergraph with |i?i| = 2. 
Let H = {Ei,..., Em} be a hypergraph over R. Set 
m(H) = {Ei £ H: fiEj £ H : Ej C Ei}. 
It can be seen that m(H) is a simple hypergraph, and the family H uniquely 

determines the family m(H). 
Let H be a hypergraph over R. A set A C R is called a transversal of H 

(sometimes it is called a hitting set ) if E £ H implies A D E ± 0. 
The family of all minimal transversals of H is called the transversal hypergraph 

of H, and denoted by tr(H). Clearly, tr(H) is a simple hypergraph. 

Remark 2.3 Let K be a Sperner system over R. Based on the definitions of K~l 

and tr(K) we can see that tr(K) = {R- A: AE K'1}. 

Denote Na = {R - A : A £ Ma}. From Proposition 2.2 and Remark 2.3 we have 

Proposition 2.4 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a £ R 

tr(Ka) = Na. 

It is known [4] that if H, H' are two simple hypergraph over R, then H = tr(H') 
iff H' = tr(H). From this and Remark 2.3, we can see that if K is a Sperner system, 
then tr({R — A : A £ K-1}) = K. According to the definitions of the set of all 
antikeys, the family of all minimal transversals, and Proposition 2.2 we obtain 

Proposition 2.5 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a £ R 

Na-1 = {B : R - B £ Ka)-

Clearly, from Proposition 2.4 we have 
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Proposition 2.6 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a G R 

Ka= tr(Na). 

It is obvious that a G R - A, where A 6 Ma. Clearly, Ta = Ka - {a} . Thus, 
from the definition of the transversal hypergraph we obtain Ta = tr({(R — a) — A : 
A G M a } ) for all a G R(*). 

Let r be a relation over R. A FD A —> {a} G Fr is called the primitive maximal 
dependency of r if a A and for all A! C A : A' {a } € Fr implies A = A'. 

Denote Va = {A : A {a } is a PMD of r } , and N^ = {(R - a) - A : A G Ma). 
By (*) and according to the definitions of Fr, and F+ we have 

Proposition 2.7 Let r be a relation over R. Then for all a 6 R, Va = tr(N'a). 

Proposition 2.7 was independently discovered in [18]. 
In this paper, we consider the comparison of two attributes as an elementary 

step of algorithms. Thus, if we assume that subsets of R are represented as sorted 
lists of attributes, then a Boolean operation on two subsets of R requires at most 
\R\ elementary steps. 

Now we construct an algorithm that finds all minimal transversals of a given 
hypergraph. 

Algorithm 2.8 ( Finding all minimal transversals ). 
Input: Let H = {E\,..., Em} be a hypergraph over R. 
Output: tr(H). 
Step 1: Set Li = {{a} : a G ¿?i}. It is obvious that L\ = tr({Ex}). 
Step q-f-1 (q <m) : 
Assume that Lq = Sq U {Bi,..., Bt<1}, where Bi H = 0, i = 1 , . . . , tq and 

Sq = {A G Lq : A fl Eq+i # 0 } . 
For each i (i = 1 , . . . , tq) construct the set {Bi Ub.be Eq+j}. Denote them by 

A[,...,Ai. (i = l,...,tq). Let 

Lq+1 = 5 , U {A], : A G Sq => A £ A],, 1 < i < tq, 1 < p < r4}. 

Set tr(H) = Lm. 

Theorem 2.9 For every q (1 < q < m), Lq = tr({Eu • • -,Eq}), i.e., Lm = tr(H). 

Proof. We prove this theorem by induction. It is obvious that Li = tr({E\}). 
We have to show that Lq+\ = tr({Ei,... ,Eq+i}). For this using the inductive 
hypothesis Lq = tr({Ei,... ,Eq}). 

Firstly, assume that D is the minimal subset of R such that D n Et 0 (t = 
1 , . . . , q + 1). By the inductive hypothesis, there is a X £ Lq such that X C D. 

If X e Sq, then X fl Et ^ 0 for all t = 1 , . . . ,q + 1. Because D is the minimal 
subset of R such that Etr\D ± %(t = 1 , . . . , q + 1), we have X = D. Hence, D G Sq 

holds. Consequently, we obtain D e Lq+\. 
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If X n Eq+i = 0, then X = Bi holds for some i in { 1 , . . . , tq}. By D n Eq+1 ± 0 
we have J3j c D. Thus, (D - Bi) fl Eq+i £ 0 holds. According to the construction 
of Lq+1, we have Alp C D for some p in {1 , . . . ,r¿}. Clearly, Alp n E¡ / 0 for all 
I = 1 , . . . , q + 1, i.e., A'p is a transversal of the family {Ei,..., Eq+1}. By D £ 
tr({E\,..., we obtain D = Ap. Because D does not contain the elements of 
Sq, we have D £ Lq+i. 

Conversely, assume that D £ Lq+1. If D £ 5 , , then DC\EP 0 (p = 1 , . . . , q) and 
D is minimal for this property, and at the same time D n Eq+i £ 0. Consequently, 
we have D £ tr(E\,.. .,Eq+i). 

Let D £ Lq+i - Sq. Clearly, there is an Ap (1 < i < tq and 1 < p < r¿) such 
that D = Ap. Our construction shows that Ei D Ap ^ 0 for all / = 1 , . . . , q 4-1. By 
the construction of algorithm we obtain Alp = B¡ U {b} for some b £ Eq+\. 

Suppose that C is a proper subset of Alp, and C £ tr({Ex,..., Eq+1}). Clearly, 
b £ C holds. According to the definitions of the transversal and the family of 
all minimal transversals, C is a transversal of the collection {E\,..., Eq}. By the 
inductive hypothesis (Lq = tr({E\,.-.., Eq})), if there is A £ Sq such that A C C, 
then we have A C A^. This contradicts A Ap for all A £ Sq. If there is B j (1 < 
j <tq) Bj n Eq+1 = 0 such that Bj C C, then b g Bj and Bj C Bj. This conflicts 
with the fact that Lq is a simple hypergraph. Hence, D £ tr({E\,..., Eq+\}) holds. 

Thus, Lq+1 = tr({Eu... ,Eq+i}). Hence, Lm = tr(H) holds. The theorem is 
proved. 

It can be seen that the hypergraph H uniquely determines the family tr(H), 
and the determination of tr(H) based on our algorithm does not depend on the 
order of Ei,..., Em. 

Remark 2.10 Denote Lq = Sq U {Bx,... ,Btq), and lq (1 < q < m - 1) is the 
number of elements of Lq. It can be seen that the worst-case time complexity of 
our algorithm is 

m—1 
0(\R\2 Y, w , 

<,=0 

where IQ = to = 1 and 

_ J lq — tq if lq > tq, 
U 9 - \ l if lq=tq. 

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known 
that the size of arbitrary simple hypergraph over R can not be greater than CÍT^, 
where n = |ü|. Cln/2] is asymptotically equal to 2n+1 /2 /(7r • n)1/2. From this, the 
worst-case time complexity of our algorithm can not be more than exponential in the 
number of attributes. In cases for which lq < lm(q = 1 , . . . , m — 1), it is easy to see 
that the time complexity of our algorithm is not greater than 0{\Rf\H\\tr{H)\2). 
Thus, in these cases this algorithm finds tr(H) in polynomial time in |fl|, \H\ and 
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|ir(if)|: Obviously, if the number of elements of H is small, then this algorithm is 
very effective. It only requires polynomial time in |ii|. 

It can be seen that our algorithm is better than the algorithm, presented in [4], 
finding all minimal transversals. 

We give the next example which illustrates our algorithm. 

Example 2.11 Let R = {1,2,3,4,5,6} , and 
# = {(1,2), (2,3,4), (2,4,5), (4,6)}. 

From Algorithm 2.8 we obtain 

U = { ( 1 ) , ( 2 ) } ; 

¿2 = {(1,3), (1,4), (2)}; 

L3 = {(1,3,5), (1,4), (2)}; 

¿4 = {(2,6), (2,4), (1,3,5,6), (1,4)}. 

Clearly, tr(H) = L4. 
Now we give the algorithm, presented in [9], that finds Ka 

Algorithm 2.12 [9] ( Finding a minimal set of the attribute a ). 
Input: Let s =< R,F > be a relation scheme, A = { a i , . . . ,at} —• {a}. 
Output: A' £ Ka. 
Step 0: We set L{0) = A. 
Step i+1: Set 

L(i + 1) = I L^ ~ ai+1 if L® ~ °i+1 ^ \ L(i) otherwise. 

Then set A' = L(t). 

Algorithm 2.13 [9] ( Finding a family of all minimal sets of attribute a ). 
Input: Let s =< R, F > be a relation scheme, a € R. 
Output: Ka. 
Step 1: Set L( 1) = E^ = {a}. 
Step i+1: If there are C and A -4 B such that C € L(i), A -¥ B e F, VE G 

L(i) => E % A U (C - B), then by Algorithm 2.12 construct an Ei+1, where 
Ei+1 C i u ( C - B ) , Ei+1 e Ka. We set L{i + 1) = L(i) U Ei+1. In the converse 
case we set Ka = L(i). 
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It is shown [9] that there exists a natural number n such that Ka = L(n). 
It can be seen that the worst-case time complexity of algorithm is 

Thus, the time complexity of this algorithm is polynomial in |iZ|, |F|, and \Ka\. 
Clearly, if the number of elements of Ka for a relation scheme s =< R, F > is 

polynomial in the size of s, then this algorithm is effective. Especially, when \Ka\ 
is small. 

Based on Proposition 2.4, Algorithms 2.8 and 2.13 we construct the next algo-
rithm. 

Algorithm 2.14 ( Generating Armstrong relation). 
Input: Let s =< R,F> be a relation scheme. 
Output: A relation r such that Fr = F + . 
Step 1: For each a G R by Algorithm 2.13 we compute Ka, and from Algorithm 

2.8 find tr(Ka). 
Step 2: N — U H^a) 

a€i? 
Step 3: Denote elements of TV by A\,... ,At construct a relation 
R = {ho, hi,..., ht} as follows: 
For all a G R, h0(a) = 0, Vi = 1 , . . . , t 

h (a) = / i if a G Ai 
' \ 0 otherwisi otherwise 

It is known [16] that if s =< R, F > is a relation scheme. Denote Zs — {A: A+ = 
A}, and Ns is a minimal generator of Zs. Then 

N„= [J MAX(F+,a) 
aeR 

where 

MAX{F+,a) = {AC R: A -t {a } 0 F+, A C B B {a } € F+}. 

From this and the definitions of Ma, and Na of the relation r we have tr(Ka) = 
Na for all aeR. Consequently, by Proposition 2.4 we obtain Fr = F+. 

The estimation and the effectiveness of this algorithm are analogous to the 
algorithm, presented in [9] ( see, Remark 2.12 in [9] ), so its proof will be omitted. 

Now we give the algorithm finding all antikeys, presented in [20]. 
Let K — { B i , . . . , Bm} be a Sperner system over R. 
For each q = 1 , . . . , m we construct Kq = {B\,..., Bq}_1 by induction: 
Set K\ = {R — {a } : a G S i } . It is obvious that Kx - { £ i } - 1 . 
By the inductive hypothesis we have constructed Kq = { S i , . . . , 5 ? } _ 1 for 

(q <m). 
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We assume that Kq = Fq U { X i , . . . , Xtq}, where Xi,..., Xtq containing B q + i 

and' Fq = {A € Kq : Bq+l % A}. 
Fór all i (i = 1 , . . . ,tq) construct the antikeys of {£?g + 1} on Xi in an analogous 

way as K\. Denote them by A\,..., A\. (i = 1 , . . . , tq).-Let 

Kq+1 = Fq U {A* : A 6 Fq A'p <£_ A, 1 < i < tq> 1 < p < n}. 

Set K-1 = Km. 
Denote Kq = Fq U { X i , . . . ,Xtq} and lq (1 < q < m - 1) is the number of 

elements of Kq. 

Remark 2.15 [20] The time complexity of algorithm finding all antikeys is 

According to Proposition 2.5 and the algorithm finding all antikeys we will 
construct the following algorithm. 

Algorithm 2.16 ( Inferring FDs ). 
Input: r be a relation over R. 
Output: s =< R, F > such that F+ = Fr. 
Step 1: From r compute the equality set Er 

Step 2: Set N = {A e Er: A ^ n { £ e Er: A C B}} 
Step 3: For each a € R find Ma = {A G NR: a £ A, fiB e NR: a g B, A C B}: 

Compute Na = {R - A : A e Ma}. 
Step 4: By the algorithm finding all antikeys, for each a £ R construct 
Step 5: Construct s =< R,F >, where F = {R - B {a} : Va £ R: B e 

By Proposition 2.5 we have Fr = F+. 

Remark 2.17 Clearly, for all o € R Na is computed in polynomial time in the 
size of r. It can be seen that the complexity of Algorithm 2.16 is the complexity of 
step 4. By Remark 2.15, it is easy to see that the worst-case time complexity of 
Algorithm 2.16 is 

m—1 

0(\R\2 Y W 

where 

N-\R-B*{a}} 

¿=i q=o 

where R = { a i , . . . , a„ } , m* = | and 
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Meaning of liq, ¿¿9, Uiq see Remaxk 2.15. 
In cases for which hq < lmi (Vi, V<j: 1 < q < rrij) the time complexity of our 

n 2 ' 
algorithm is 0(n2 J2 |N0,l|Arai-1| ). Thus, the complexity of Algorithm 2.16 is 

i=l 
polynomial in |AT0i |, |A â>.-1|. Clearly, in these cases if |A 0̂>._1| is polynomial 
(Especially, it is small ) in the size of r, then our algorithm is effective. 

According to Proposition 2.6 and algorithm 2.8 we give the next algorithm for 
inferring FDs. 

Algorithm 2.18 ( Inferring FDs ). 
Input: r be a relation over R. 
Output: s —< R,F> such that F+ = FT. 
Step 1: From r compute the set Na for all a £ R. 
Step 2: By Algorithm 2.8, construct ir(JVQ), for every a £ R. 
Step 3: Construct s =< R,F >, where F = {A {a}:Va G R, A € 

tr(Na), A ^ { a } } . 

By Proposition 2.6 we have Fr = F+. 
The estimation of Algorithm 2.18 is analogous to Algorithm 2.16, so its proof 

, will be omitted. 

It can be seen that Algorithm 2.18 is similar to the algorithm inferring FDs, 
presented in [18]. However, it can be seen that Algorithm 2.8 is better than the 
algorithm, presented in [4], that is used in [18]. 

3 NP-complete Problems 
In this section, we present some NP-complete problems related to PMDs, and the 
sets MCT. In Section 2, we show that these sets play important roles in generating 
Armstrong relation and inferring FDs. 

Let s = < R,F > be a relation scheme over R. Denote La = {A : A —y {a } , 
a & A}. It can be seen that La contains all PMDs concerning a, i.e., Ta C La. 

Firstly, we introduce the following problem related to the set La. 

Theorem 3.1 The following problem is NP-complete: 
Let s =< R,F> be a relation scheme over R, a G R, and an integer m (m < 

|ii|), decide whether there is an A such that a & A, A {a} , ( i.e., A G La), and 
|A| < m. 

Proof. We nondeterministically choose a set A so that < m, a g A, and decide 
whether A {a} is an element of F+. Clearly, by the polynomial time algorithm 
finding the closure ( see [2] ), our algorithm is nondeterministic polynomial. Thus, 
our problem lies in NP. 
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Now we shall show that our problem is NP-hard. It is known [15] that the 
problem deciding whether there exists a key having cardinality less than or equal 
to a given integer for relation scheme is NP-complete. Now we prove that this 
problem is polynomially reducible to our problem. 

Let s' =< P,F' > be a relation scheme over P. Now we construct the relation 
scheme s =< R, F > , as follows: 

R = P U a, where a £ P and F = F' U P -* {a}. 
It is obvious that s is constructed in polynomial time in the sizes of P and F'. 

Based on the construction of s and the definition of the minimal key we can see 
that if A G Ks', then A € Ks. Conversely, if B is a minimal key of s, then by 
R —» {a } G F we have a B. On the other hand, by the definition of the minimal 
key B G Ks>. Thus, K,- = Ks holds. By P {o } G F, and a $ P, if B {a } is 
a PMD of s, then B e Ks. It can be seen that if A G Ks>t then A ->• {a} G F+. 
According to the definition of PMD, A —• {a} is a PMD of s. Consequently, C is a 
key of s' if and only if a £ C, and C —• {a} e F+. The theorem is proved. 

Now we give the NP-complete problem concerning Ma, ( see, Lemma 2.1 ). 

Theorem 3.2 The following problem is NP-complete: 
Let s =< R, F > be a relation scheme over R, a € R, and an integer m(m < 

|i?|), decide whether there is an A such that a $ A, A {a } 0 F+, and m < |A|. 

Proof. By the proof of Theorem 3.1, it is clear that our problem lies in NP. 
It is known [14] that the independent set problem is NP-complete : 
Given integer m and a non-directed graph G =< V,E >, where V is the set of 

vertices and E is the set of edges. An independent set in G is a subset A C V such 
that for all a, b G A, the edge (a, b) is not in E. The independent set problem is 
deciding whether G contains an independent set A having cardinality greater than 
or equal to m. 

We shall prove that the independent set problem is polynomially reducible to 
our problem. 

Let G =< V, E > be a non-directed graph, m < Set 
s' =< V,F' >, where F1 = { {c^a,-} -+ V : (a u a j ) G E}, and 
s = < R,F >, where R = V I) {a} , a £ V, and F = F' U V ->• {a}. 
Clearly, s, s1 are constructed in polynomial time in the size of G. 
According to the definition of the set of edges, E is a simple hypergraph over 

V. From this, we can see that s' is in BCNF. Because E is the set of edges, and 
by the definition of the minimal key, we can see that if (aj,aj) G E, then {a;, a ; } 
is a minimal key of s'. Conversely, if £ € Ks>, then there is an {ai,a,j} such that 
{ai,a,j} C B. Because B is a minimal key, we have {a;,a^} = B. Hence, Ks> = E 
holds. 

Consequently, A is not a key of s' if and only if {a*, } £ A for all (ai, aj) G E. 
Thus, A is not a key of s' if and only if A is an independent set of G. 

On the other hand, by the proof of Theorem 3.1 C is a key of s' if and only if 
C {a } G F+, and a £ C. Consequently, A is not a key of s' if and only if a g A, 
and A {a}$F+}. 



178 Janos Demetrovics, Vu Due Thi 

Thus, A is an independent set of G if and only if A does not contain a, and 
A—y {a } ^ F+. The theorem is proved. 

Now we will show that Theorem 3.1 is still true for the relations. 

Theorem 3.3 The following problem is NP-complete: 
Let r be a relation over R, a £ R, and an integer m (m < |i?|), decide whether 

there is an A such that a & A, A -y {a} € Fr, and < m.N 

Proof. 
We nondeterministically choose a set A so that |A| < m, a g A, and decide 

whether A —y {a } £ FT. Clearly, using the definition of the functional dependency, 
we can test in polynomial time that the functional dependency A -y { o } holds or 
does not hold in r. It is obvious that our algorithm is nondeterministic polynomial. 
Thus, the problem lies in NP. 

It is shown [14] that the the vertex cover problem is NP-complete: 
Given integer m and a non-directed graph G =< V,E >, where V is the set 

of vertices and E is the set of edges, decide whether G has a vertex cover having 
cardinality not greater than m. 

Let G =< V, E > be a non-directed graph, m < | V j. Put R = V U a, where 
a 

Denote the elements of E by E\,..., Et construct a relation 
r = {ho, .,ht}, as follows: 
For all b £ R, h0(b) = 0, Vi = 1 , . . . , t 

h ffj\ — f * if b £ Ei or b = a 
*. \ 0 otherwise. 

Clearly, the set E is a Sperner system. From this and by the definition of 
Na we can see that Na = { {a j ,a , , a} : (a{, a,j) £ E}. Consequently, we obtain 
N'a = {{aj,aj} : (a{,aj) £ E}. According to Proposition 2.7, Va = tr({{a,i,a,j} : 
(aj, a,j) £ E}). On the other hand, by the definition of the vertex cover we can see 
that A is a vertex cover of G if and only if A does not contain a, and A —y {a } is 
an element of Fr. The proof is complete. 

Thus, for the relations Theorem 3.1 is still true. However, the next proposition 
shows that the problem, presented in Theorem 3.2, can be solved in polynomial 
time if the relation scheme is changed to the relation. 

Proposition 3.4 Let r be a relation over R, a £ R, and an integer m(m < |i?|). 
Then the problem deciding whether there is an A such that a & A, A -yg Fr, and 
m <\A\ can be solved by a polynomial time algorithm. 

Proof. 
According to the difinitions of Ma and the antikey, and by Proposition 2.2 we 

can see that Ma is the family of all maximal sets A such that A doesn't contain 
a, and A -y {a } £ FT. Clearly, for every a £ R, we can compute the family Ma in 
polynomial time in the size of r. 
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Consequently, for relations, given an attribute a, and an integer m the problem 
deciding whether there is an A such that a & A, A —> {a} , and the cardinality of A 
is greater than or equal to m can be solved by a polynomial time algorithm. The 
proposition is proved. 
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