
Acta Cybernetica 12 (1995) 209-216.

On a tour construction heuristic for the asymmetric
TSP

I. Bartalos * T. Dudást B. Imreh *

Abstract

In this paper we deal with a new tour construction procedure for the asym-
metric traveling salesman problem. This heuristic is based on a new patching
operation which joins three subtours together. Regarding the efficiency of
this procedure, we present an empirical analysis.

It is well-known that the assignment problem is a relaxation of the traveling
salesman problem (TSP). Thus, if the optimal assignment is a tour, then it is also
an optimal solution of the TSP. Otherwise it consists of disjoint cycles. For some
special cases of the TSP, these cycles can be patched into an optimal tour. The
first algorithm based on this technique was presented by P. C. Gilmore and R.
E. Gomory in [1]. Their idea was involved in several procedures solving different
special TSP models. A nice discussion of the well-solved cases can be found in [3].

For the general TSP there is no effective procedure to convert the optimal as-
signment into an optimal tour. Nevertheless as the computational experiments of
E. Balas and P. Toth (see [3]) show, the lower bound resulting from the assignment
problem is often very tight. On the other hand, the number of the cycles of the
optimal assignment is not large in general. These facts suggest that a suitable sub-
tour patching method may result in a good TSP heuristic. The first such heuristic
for the asymmetric TSP was presented by R. M. Karp [5] and a similar one was
given in [3]. In both cases the method converts the optimal assignment into a tour
by a sequence of patching operations, each of which joins two cycles together. Our
procedure is based on such a patching operation which joins three cycles together if
the number of the cycles of the optimal assignment is not large. Algorithms joining
four or more cycles in each step have too high complexity.

As far as the number of the cycles is concerned, it is known that if we choose
a permutation of {1 , . . . ,n) at random, then the expected number of its cycles is
log(n) (see e.g. [4]). We can, however, restrict our consideration for permutations
without a fixpoint. Indeed, without loss of generality we may assume that the
optimal assignment does not contain diagonal elements. Such an assignment can
be achieved by choosing suitably large coefficients in the diagonal of the cost matrix.

"Department of Informatics, József Attila University, P.O. Box 652, H6701 Szeged, Hungary
^Institute of Mathematics, Technical University of Graz, Kopernikusgasse 24, A-8010 Graz,

Austria.

209

210 I. Bartalos, T. Dudas, B. Imreh

The expected number of cycles in a randomly chosen permutation without a fixpoint
has not been calculated as yet. Here we prove that the approximate value of this
number is still log(n).

To start with, let us denote by Rn the set of permutations without a fixpoint
on the set { 1 , . . . ,n } and let |i?„| = rn . It is known (see [2] p.10) that

r n = „ ! (l - i + . . . + (- l) " i) » ^ .
I! n\ e

Let 2 < k < n — 2 be an arbitrary fixed integer and i £ { 1 , . . . , n} where n > 5.
Let us count those permutations of Rn in which i is contained in a cycle of length
k. There are (£ l j) possible ways to choose the elements of this cycle and (k — 1)!
ways to order them. The number of the permutations without a fixpoint of the
remaining n — k elements is rn-k- Therefore, the number we seek is

It is obvious that the number of the permutations in which i is contained in a cycle
of length n is (n — 1)!.

Now let us consider Rn as a sample space in which each permutation is assigned
a probability l/r„. For any i 6 {1 , . . . n} and fee {2,3 . . . , n - 2, n} , let us denote

Ik) by Q the random variable on RN for which

£(*) _ 11 if i is contained in a fc-cycle,
1 10 otherwise.

Using the numbers determined above, we obtain

£ (£ «) = ^ " ^ (f c - l) ! ^ if 2 < k < n — 2 and

£ (d n)) = (n - i) ! - .
rn

Now + . . . + is the number of points which are contained in fc-cycles, and
Vk = is the number of /c-cycles. The expected value of i]k is

rn

Then Tf2+T]3...+ i]n-2 + Vn is the number of cycles and for the expected value it„
of this number, we obtain

On a tour construction heuristic for the asymmetric TSP 211

1 (. nh
k)\ •

Now substituting rn -k and exchanging the order of the summation, we get that un

is equal to

" \ t=2 k=2 /

r . L . i i ic ¿ -I h i '

Let

rn \ n i\ ' k i\ k " \ ¿=2 fc=2 t=3 Jfc=n-t+l

1 1
Wi = n E i' i = 3>->n-2-

k=n—i-fl

Then

I /-I n—2 / n —2 - n —2

n \ ¿=2 k=2 ¿=3
It is easy to see that w3 > . . . > w„-2 > 0, and so,

n-2
0 < < w3.

t = 3

On the other hand,

1 1 1 7
+ x : x < n 3! n - 2 6(n — 2)

Therefore,

(n—2 , n—2 -, \ i / _ n—2 / n—2 n! n! / 7 ^ (- 1) ' ^ 1
r n I Z . ¿1 J < < r n 1 6 (n _ 2) + i! k

" \ t = 2 fc=2 / n \ V ' -i=2 fc=2

If n is large enough, then

n t = 2 v ' fc=2

and so, log(n - 1) - 1 < un < log(n — 2).

Now we recall the definition of the patching operation (see [3]). For this reason
let us consider an asymmetric TSP of n cities with cost matrix C and let ip denote

212 I. Bartalos, T. Dudas, B. Imreh

an optimal assignment which is not a.tour. For the sake of notation simplicity, we
shall identify every cycle with the set of its cities. Assuming that <p has no fixpoint,
let i and j be two cities that occur in two distinct cycles U and V. Then deleting
the arcs (i,tp(i)), (j, f(j)) and inserting the arcs (i,(p(j)), (j,ip(i)), we join U and
V into a new cycle, and thus obtain a new assignment (p. This operation is called
the (i,j)-patching operation. For the cost of the new assignment, we get

z(<p) = z(<p) + civ(j) + Cjip{i) - citp{i) - cjv(j) •

The difference z(<p) - z(ip) = civ>^ + - - Cjvyj is called the patching
cost of the (i, j)-patching operation. The minimal patching cost with respect to U
and V is

A(¥>, U, V) = min{cr¥,(s) + cMr) - crtp{r) - csv>(s) : r £ U, s E V} .
This means that the cycles U and V can be joined into a new cycle with cost
A((p,U,V), but they cannot be joined with a lower cost by any (i,^-patching
operation. Therefore we say that the 2-patching cost of the cycles U and V is
A (<p,U,V).

Now we are ready to present the algorithm developed in [3].

The 2-patching algorithm

Step 1. Determine an optimal assignment <p.
Step 2. If the current ip is a cyclic permutation then terminate.

Otherwise go to Step 3.
Step 3. Choose two cycles U and V of ip such that |£/| and |V| are maximal.

Calculate A (ip, U, V) and let i € U, j e V such cities for which the patching
cost is A (ip ,U,V) . Perform the (i, j)-patching operation and consider the
new assignment as the current (p. Return to Step 2.

Extending the patching idea for three cycles, we can define the (i,j, k)-patching
operation as follows.

Let i,j,k be three cities which occur in three distinct cycles U,V,W. Then delet-
ing the arcs (i,<p(i)), (j, vO')). (k,<Pik)) and inserting the arcs (i , tp(j)) , (j,<p(k)),
(fc, <p(i)), we join U, V and W into a new cycle. The patching cost of this operation
is

CMj) + CMk) + CM*) ~ CMi) ~ CjfU) ~ Ck<p(k) •

The minimal patching cost with respect to U, V, W is
®{<P,U,V,W) = min{c rv ,(s)+cs¥3(t)+c t¥ ,(r)-c r¥ ,(r)-cs¥ ,(s)-c tv (t):

reu,sev,tew}.

On a tour construction heuristic for the asymmetric TSP 213

Then there are cities ieU,j£V,keW such that the cycles U,V,W can be
joined into a cycle with cost 0(</>, U, V, W). This cost is called the 3-patching cost
of the cycles U,V,W.

Now we present a procedure based on the introduced (i, j, fc)-patching opera-
tions. Since 9 ~ log(8100), the expected value of the disjoint cycles is not greater
than 9 under the problem size 8100. In practical point of view this limit of problem
size is enough large, and so, our procedure uses (i, j, A;)-patching operations while
the number of the disjoint cycles is not greater than 9. For the extreme cases,
when the number of the disjoint cycles is greater than 9, we apply an additional
step (Step 3) to pair the small cycles with the large ones and to join them by
suitable (i, j)-patching operations.

The 3-patching algorithm
Step 1. Determine an optimal assignment <p.

Step 2. If the current </? is a cyclic permutation then terminate.
Otherwise go to Step 3.

Step 3. Let m denote the number of the cycles of ip. If m < 9 then go to Step 4.
Otherwise order the cycles with respect to the number of vertices belonging
to them. Let Ui,..., Um denote the sequence of the cycles in increasing
order. Calculate the 2-patching cost drs of the cycles Ur and Um-i+s for all
1 < r < I and 1 < s < I, where / = [m/2]. Solve the assignment problem
of type I x I with the cost matrix D = (drs). Let r denote an optimal
assignment. For all 1 < r < I, join the cycles Ur and Um-i+T(r) with
patching cost drT{r), using a suitable (i, j)-patching operation. Consider
the assignment obtained after the I joins as the current assignment <p and
repeat Step 3.

Step 4- If rn = 2, then determine the 2-patching cost of the two cycles of join
them with a suitable (i, j)-patching operation and terminate. If m > 2,
then choose three cycles U, V,W of ip for which 0(ip, U, V, W) is minimal.
Determine three cities i£U,j£V,k£W with the 3-patching cost
Q(cp,U,V,W). Perform the (i,j, /c)-patching operation and consider the
new assignment as the current tp. If (p is a cyclic permutation then termi-
nate. Otherwise repeat Step 4 with the current ip.

In order to efficiently find the three cycles having minimal 3-patching cost re-
quired in Step 4, we maintain a 3-dimensional array of the values 0(<p, U,V,W).
To set up this array we firstly need 0(n 3) operations, but during the iterations one
can compute the new array from the previous one easily.

In both patching procedures above the starting point is an optimal assignment
which can be computed by the Hungarian method in 0(n3) steps. This method

214 I. Bartalos, T. Dudas, B. Imreh

starts with an independent set of zeroes in the reduced cost matrix. These in-
dependent zeroes can be determined randomly. In general, different independent
sets of zeroes result in different optimal assignments. Using this observation and
executing the procedure k times, we can obtain k distinct heuristic solutions and
we choose the best of them.

To test the efficiency of our procedure we performed the following computational
experiment on a 33MHz 486 machine. We randomly generated 100-100 problems
under n = 100, n = 150, n = 200 n = 250, respectively, with costs independently
drawn from a uniform distribution of the integers over the interval [0,100]. We
applied some classical tour construction heuristics and three versions of both the
2-patching and the 3- patching methods to obtain heuristic solutions for the gen-
erated problems. The difference among the three versions appears in the number
k of executions under a randomly choosen independent set of zeroes. We worked
with the values k = 1,3,5. Simultaneously, we solved these problems by a branch
and bound procedure, using the best heuristic solution as the best known feasible
solution. Regarding the classical heuristics we applied the all cities versions of the
nearest addition, nearest insertion and farthest insertion algorithms, and our cheap-
est insertion procedure started from a shortest two city subtour. The results of our
computational experiments axe reported in Table 1. Here the first column gives the
averages of the ratios z(heuristic solution)/z(optimal solution), the second column
contains the averages of the run-times in seconds and the third column shows how
many times the suitable heuristic gave the best solution among the ones provided
by all the 11 heuristics considered.

On a tour construction heuristic for the asymmetric TSP 215

n = 100
•

n = 150 n = 200 n = 250
average

ratio
average

sec.
best

value
average

ratio
average

sec.
best

value
average

ratio
average

sec.
best

value
average

ratio
average

sec.
best

value

BkB 1.000 40.78 _ 1.000 87.69 - 1.000 194.1 - 1.000 320.9 ,

3- patchini
k=5 1.054 19.53 88 1.056 58.55 81 1.052 190.2 82 1.059 370.8 80

3- patching
k—3 1.061 11.60 70 1.063 34.93 67 1.061 122.0 54 1.078 218.6 48

3- patchini
k=l 1.069 3.84 55 1.096 11.90 39 1.094 39.8 25 1.134 72.6 24

2- patchini
k=5 1.090 11.14 33 1.082 29.70 38 1.069 88.4 40 1.101 158.3 37

2- patchini
k=3 1.092 6.69 28 1.097 17.92 26 1.085 53.1 27 1.119 94.8 23

2- patchini
k=l 1.108 2.21 21 1.127 6.04 15 1.127 17.7 13 1.177 31.5 12

cheapest
insertion 4.654 7.77 0 6.794 37.48 0 9.934 89.7 0 18.11 175.4 0
nearest
insertion 4.392 9.19 0 7.047 43.66 0 11.39 104.6 0 18.60 205.1 0
farthest
insertion 4.534 8.76 0 7.110 43.71 0 11.39 104.6 0 18.60 205.3 0
nearest
addition 18.43 7.09 0 33.84 32.72 0 57.51 77.0 0 98.43 149.7 0

Table 1

According to the obtained results, both patching algorithms appear to be better
than the investigated insertion procedures. Moreover, the 3-patching method seems
to provide a good approximate solution almost independently of the problem size.
Due to the very good starting feasible solution, the branch and bound method also
turns out to be rather effective.

Acknowledgment. The authors would like to thank R. E. Burkard for his valuable
comments.

References
[1] P. C. Gilmore and R. E. Gomory, Sequencing a one state-variable machine:

a solvable case of the traveling salesman problem, Oper. Res. 12, 655-679
(1964).

[2] M. Hall, Combinatorial Theory, Blaisdell, Waltham, 1967.

[3] E. L. Lawler, J. K. Lenstra, A. H..G. Rinnooy Kan, D. B. Shmoys, The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimiza-
tion, John Wiley & Sons, 1985

[4] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Bu-
dapest, 1979.

216 I. Bartalos, T. Dudas, B. Imreh

[5] R. M. Karp, A patching algorithm for the nonsymmetric traveling salesman
problem, SIAM J. Comput., 8, 561-575 (1979). •

Received April, 1995

