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On a tour construction heuristic for the asymmetric 
TSP 

I. Bartalos * T. Dudást B. Imreh * 

Abstract 

In this paper we deal with a new tour construction procedure for the asym-
metric traveling salesman problem. This heuristic is based on a new patching 
operation which joins three subtours together. Regarding the efficiency of 
this procedure, we present an empirical analysis. 

It is well-known that the assignment problem is a relaxation of the traveling 
salesman problem (TSP). Thus, if the optimal assignment is a tour, then it is also 
an optimal solution of the TSP. Otherwise it consists of disjoint cycles. For some 
special cases of the TSP, these cycles can be patched into an optimal tour. The 
first algorithm based on this technique was presented by P. C. Gilmore and R. 
E. Gomory in [1]. Their idea was involved in several procedures solving different 
special TSP models. A nice discussion of the well-solved cases can be found in [3]. 

For the general TSP there is no effective procedure to convert the optimal as-
signment into an optimal tour. Nevertheless as the computational experiments of 
E. Balas and P. Toth (see [3]) show, the lower bound resulting from the assignment 
problem is often very tight. On the other hand, the number of the cycles of the 
optimal assignment is not large in general. These facts suggest that a suitable sub-
tour patching method may result in a good TSP heuristic. The first such heuristic 
for the asymmetric TSP was presented by R. M. Karp [5] and a similar one was 
given in [3]. In both cases the method converts the optimal assignment into a tour 
by a sequence of patching operations, each of which joins two cycles together. Our 
procedure is based on such a patching operation which joins three cycles together if 
the number of the cycles of the optimal assignment is not large. Algorithms joining 
four or more cycles in each step have too high complexity. 

As far as the number of the cycles is concerned, it is known that if we choose 
a permutation of {1 , . . . ,n ) at random, then the expected number of its cycles is 
log(n) (see e.g. [4]). We can, however, restrict our consideration for permutations 
without a fixpoint. Indeed, without loss of generality we may assume that the 
optimal assignment does not contain diagonal elements. Such an assignment can 
be achieved by choosing suitably large coefficients in the diagonal of the cost matrix. 
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The expected number of cycles in a randomly chosen permutation without a fixpoint 
has not been calculated as yet. Here we prove that the approximate value of this 
number is still log(n). 

To start with, let us denote by Rn the set of permutations without a fixpoint 
on the set { 1 , . . . ,n } and let |i?„| = rn . It is known (see [2] p.10) that 

r n = „ ! ( l - i + . . . + ( - l ) " i ) » ^ . 
I! n\ e 

Let 2 < k < n — 2 be an arbitrary fixed integer and i £ { 1 , . . . , n} where n > 5. 
Let us count those permutations of Rn in which i is contained in a cycle of length 
k. There are (£ l j ) possible ways to choose the elements of this cycle and (k — 1)! 
ways to order them. The number of the permutations without a fixpoint of the 
remaining n — k elements is rn-k- Therefore, the number we seek is 

It is obvious that the number of the permutations in which i is contained in a cycle 
of length n is (n — 1)!. 

Now let us consider Rn as a sample space in which each permutation is assigned 
a probability l/r„. For any i 6 {1 , . . . n} and fee {2,3 . . . , n - 2, n} , let us denote 

Ik) by Q the random variable on RN for which 

£(*) _ 11 if i is contained in a fc-cycle, 
1 10 otherwise. 

Using the numbers determined above, we obtain 

£ ( £ « ) = ^ " ^ ( f c - l ) ! ^ if 2 < k < n — 2 and 

£ ( d n ) ) = ( n - i ) ! - . 
rn 

Now + . . . + is the number of points which are contained in fc-cycles, and 
Vk = is the number of /c-cycles. The expected value of i]k is 

rn 

Then Tf2+T]3...+ i]n-2 + Vn is the number of cycles and for the expected value it„ 
of this number, we obtain 
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1 ( . nh 
k)\ • 

Now substituting rn -k and exchanging the order of the summation, we get that un 

is equal to 

" \ t=2 k=2 / 

r . L . i i ic ¿ -I h i ' 

Let 

rn \ n i\ ' k i\ k " \ ¿=2 fc=2 t=3 Jfc=n-t+l 

1 1 
Wi = n E i' i = 3>->n-2-

k=n—i-fl 

Then 

I /-I n—2 / n —2 - n —2 

n \ ¿=2 k=2 ¿=3 
It is easy to see that w3 > . . . > w„-2 > 0, and so, 

n-2 
0 < < w3. 

t = 3 

On the other hand, 

1 1 1 7 
+ x : x < n 3! n - 2 6(n — 2) 

Therefore, 

(n—2 , n—2 -, \ i / _ n—2 / n—2 n! n! / 7 ^ ( - 1 ) ' ^ 1 
r n I Z . ¿1 J < < r n 1 6 ( n _ 2) + i! k 

" \ t = 2 fc=2 / n \ V ' -i=2 fc=2 

If n is large enough, then 

n t = 2 v ' fc=2 

and so, log(n - 1) - 1 < un < log(n — 2). 

Now we recall the definition of the patching operation (see [3]). For this reason 
let us consider an asymmetric TSP of n cities with cost matrix C and let ip denote 
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an optimal assignment which is not a.tour. For the sake of notation simplicity, we 
shall identify every cycle with the set of its cities. Assuming that <p has no fixpoint, 
let i and j be two cities that occur in two distinct cycles U and V. Then deleting 
the arcs (i,tp(i)), (j, f(j)) and inserting the arcs (i,(p(j)), (j,ip(i)), we join U and 
V into a new cycle, and thus obtain a new assignment (p. This operation is called 
the (i,j)-patching operation. For the cost of the new assignment, we get 

z(<p) = z(<p) + civ(j) + Cjip{i) - citp{i) - cjv(j) • 

The difference z(<p) - z(ip) = civ>^ + - - Cjvyj is called the patching 
cost of the (i, j)-patching operation. The minimal patching cost with respect to U 
and V is 

A(¥>, U, V) = min{cr¥,(s) + cMr) - crtp{r) - csv>(s) : r £ U, s E V} . 
This means that the cycles U and V can be joined into a new cycle with cost 
A((p,U,V), but they cannot be joined with a lower cost by any (i,^-patching 
operation. Therefore we say that the 2-patching cost of the cycles U and V is 
A (<p,U,V). 

Now we are ready to present the algorithm developed in [3]. 

The 2-patching algorithm 

Step 1. Determine an optimal assignment <p. 
Step 2. If the current ip is a cyclic permutation then terminate. 

Otherwise go to Step 3. 
Step 3. Choose two cycles U and V of ip such that |£/| and |V| are maximal. 

Calculate A (ip, U, V) and let i € U, j e V such cities for which the patching 
cost is A ( ip ,U,V) . Perform the (i, j)-patching operation and consider the 
new assignment as the current (p. Return to Step 2. 

Extending the patching idea for three cycles, we can define the (i,j, k)-patching 
operation as follows. 

Let i,j,k be three cities which occur in three distinct cycles U,V,W. Then delet-
ing the arcs (i,<p(i)), (j, vO')). (k,<Pik)) and inserting the arcs ( i , tp( j ) ) , (j,<p(k)), 
(fc, <p(i)), we join U, V and W into a new cycle. The patching cost of this operation 
is 

CMj) + CMk) + CM*) ~ CMi) ~ CjfU) ~ Ck<p(k) • 

The minimal patching cost with respect to U, V, W is 
®{<P,U,V,W) = min{c rv ,(s)+cs¥3( t)+c t¥ ,( r)-c r¥ ,( r)-cs¥ ,(s)-c tv ( t): 

reu,sev,tew}. 
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Then there are cities ieU,j£V,keW such that the cycles U,V,W can be 
joined into a cycle with cost 0(</>, U, V, W). This cost is called the 3-patching cost 
of the cycles U,V,W. 

Now we present a procedure based on the introduced (i, j, fc)-patching opera-
tions. Since 9 ~ log(8100), the expected value of the disjoint cycles is not greater 
than 9 under the problem size 8100. In practical point of view this limit of problem 
size is enough large, and so, our procedure uses (i, j, A;)-patching operations while 
the number of the disjoint cycles is not greater than 9. For the extreme cases, 
when the number of the disjoint cycles is greater than 9, we apply an additional 
step (Step 3) to pair the small cycles with the large ones and to join them by 
suitable (i, j)-patching operations. 

The 3-patching algorithm 
Step 1. Determine an optimal assignment <p. 

Step 2. If the current </? is a cyclic permutation then terminate. 
Otherwise go to Step 3. 

Step 3. Let m denote the number of the cycles of ip. If m < 9 then go to Step 4. 
Otherwise order the cycles with respect to the number of vertices belonging 
to them. Let Ui,..., Um denote the sequence of the cycles in increasing 
order. Calculate the 2-patching cost drs of the cycles Ur and Um-i+s for all 
1 < r < I and 1 < s < I, where / = [m/2]. Solve the assignment problem 
of type I x I with the cost matrix D = (drs). Let r denote an optimal 
assignment. For all 1 < r < I, join the cycles Ur and Um-i+T(r) with 
patching cost drT{r), using a suitable (i, j)-patching operation. Consider 
the assignment obtained after the I joins as the current assignment <p and 
repeat Step 3. 

Step 4- If rn = 2, then determine the 2-patching cost of the two cycles of join 
them with a suitable (i, j)-patching operation and terminate. If m > 2, 
then choose three cycles U, V,W of ip for which 0(ip, U, V, W) is minimal. 
Determine three cities i£U,j£V,k£W with the 3-patching cost 
Q(cp,U,V,W). Perform the (i,j, /c)-patching operation and consider the 
new assignment as the current tp. If (p is a cyclic permutation then termi-
nate. Otherwise repeat Step 4 with the current ip. 

In order to efficiently find the three cycles having minimal 3-patching cost re-
quired in Step 4, we maintain a 3-dimensional array of the values 0(<p, U,V,W). 
To set up this array we firstly need 0(n 3 ) operations, but during the iterations one 
can compute the new array from the previous one easily. 

In both patching procedures above the starting point is an optimal assignment 
which can be computed by the Hungarian method in 0(n3) steps. This method 
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starts with an independent set of zeroes in the reduced cost matrix. These in-
dependent zeroes can be determined randomly. In general, different independent 
sets of zeroes result in different optimal assignments. Using this observation and 
executing the procedure k times, we can obtain k distinct heuristic solutions and 
we choose the best of them. 

To test the efficiency of our procedure we performed the following computational 
experiment on a 33MHz 486 machine. We randomly generated 100-100 problems 
under n = 100, n = 150, n = 200 n = 250, respectively, with costs independently 
drawn from a uniform distribution of the integers over the interval [0,100]. We 
applied some classical tour construction heuristics and three versions of both the 
2-patching and the 3- patching methods to obtain heuristic solutions for the gen-
erated problems. The difference among the three versions appears in the number 
k of executions under a randomly choosen independent set of zeroes. We worked 
with the values k = 1,3,5. Simultaneously, we solved these problems by a branch 
and bound procedure, using the best heuristic solution as the best known feasible 
solution. Regarding the classical heuristics we applied the all cities versions of the 
nearest addition, nearest insertion and farthest insertion algorithms, and our cheap-
est insertion procedure started from a shortest two city subtour. The results of our 
computational experiments axe reported in Table 1. Here the first column gives the 
averages of the ratios z(heuristic solution)/z(optimal solution), the second column 
contains the averages of the run-times in seconds and the third column shows how 
many times the suitable heuristic gave the best solution among the ones provided 
by all the 11 heuristics considered. 
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n = 100 
• 

n = 150 n = 200 n = 250 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 

BkB 1.000 40.78 _ 1.000 87.69 - 1.000 194.1 - 1.000 320.9 , 

3- patchini 
k=5 1.054 19.53 88 1.056 58.55 81 1.052 190.2 82 1.059 370.8 80 

3- patching 
k—3 1.061 11.60 70 1.063 34.93 67 1.061 122.0 54 1.078 218.6 48 

3- patchini 
k=l 1.069 3.84 55 1.096 11.90 39 1.094 39.8 25 1.134 72.6 24 

2- patchini 
k=5 1.090 11.14 33 1.082 29.70 38 1.069 88.4 40 1.101 158.3 37 

2- patchini 
k=3 1.092 6.69 28 1.097 17.92 26 1.085 53.1 27 1.119 94.8 23 

2- patchini 
k=l 1.108 2.21 21 1.127 6.04 15 1.127 17.7 13 1.177 31.5 12 

cheapest 
insertion 4.654 7.77 0 6.794 37.48 0 9.934 89.7 0 18.11 175.4 0 
nearest 
insertion 4.392 9.19 0 7.047 43.66 0 11.39 104.6 0 18.60 205.1 0 
farthest 
insertion 4.534 8.76 0 7.110 43.71 0 11.39 104.6 0 18.60 205.3 0 
nearest 
addition 18.43 7.09 0 33.84 32.72 0 57.51 77.0 0 98.43 149.7 0 

Table 1 

According to the obtained results, both patching algorithms appear to be better 
than the investigated insertion procedures. Moreover, the 3-patching method seems 
to provide a good approximate solution almost independently of the problem size. 
Due to the very good starting feasible solution, the branch and bound method also 
turns out to be rather effective. 
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