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On Binary Minimal Clones* 

L. Lévai t p. P. Pálfyt . 

Abstract 
W e determine all minimal clones which contain 3, 4, or 6 binary operations 

(including the two projections). Furthermore, we give examples of minimal 
clones containing 2k + 2 (k > 1), and 3fc + 2 (k > 2) binary operations. 

1 Introduction 
Clones play a central role in universal algebra and in multiple valued logic (see e.g. 
[15]). A set of finitary operations is a clone of operations (or a concrete clone) if it 
is closed under composition and contains all projections. The clones on a fixed set 
form a complete lattice with respect to inclusion. If the set is finite, the lattice of 
clones is atomic and coatomic. The coatoms, i.e. the maximal clones, were classified 
in Ivo Rosenberg's profound paper [12]. On the contrary, quite little is known about 
the minimal clones (see Problem P12 in [10]). In a pioneering work Béla Csákány 
determined all minimal clones on the three-element set [1], [2]. Recently Bogdan 
Szczepara [14] has obtained all binary minimal clones on the four-element set. 

As opposed to maximality, being a minimal clone is an inner property. It means 
that the clone is generated by any of its nontrivial members (i.e. non-projections). 
Therefore it is advantageous to consider clones abstractly, what we will do in 
Section 2. 

In this paper we will consider only such minimal clones which are generated 
by a binary operation. So we investigate algebras with a single binary operation. 
Formerly such algebras were called groupoids, but the 1993 MSRI workshop on 
Universal Algebra and Category Theory reserved this word for describing certain 
categories. Hence we will use the newly coined word binar for such algebras. All 
binars we consider will be idempotent, i.e. satisfying xx = x. In Section 3 we 
describe a method for constructing free (relative to some variety) binars. 

In Section 4 we give four types of examples of binary minimal clones. One of 
them yields a negative answer to a problem of Dudek [4]. 

In Csákány's list [1] all binary minimal clones contain one or two nontrivial 
binary operations. This observation motivated the investigation of binary minimal 
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clones containing a given number of binary operations. We carry out this program 
in Section 5 for the cases where the number of binary operations is 3, 4, or 6 
(including the two projections). The minimal clones with 5 or 7 binary operations 
have been determined by Dudek [3], [4]. 

Acknowledgments. We are deeply indebted to Béla Csákány: his pioneering 
work in the area inspired several ideas of the present paper, and our correspondence 
and discussions helped to develop these ideas. The method of Bernhard Ganter to 
construct free binars proved crucial to our computational approach. Discussions 
with Keith Kearnes paved the way to the discovery of minimal clones with an odd 
number of binary operations; such clones have been found independently by him 
at the same time. 

2 Generalities 
We consider abstract clones, i.e. heterogeneous algebras C on a series of base 
sets C\, C2, • • • equipped with composition operations : Ck x C* —> Cn 

(k,n = 1,2, . . . ) and constants (that correspond to the projections) p\ 6 Cj 
(i = 0,..., j - l;j = 1,2, . . . ) satisfying the identities 

Fk{x,F™{y0,Z0,. . . . Z M - I ) , . . . , z0,. ..,zM_I)) = 

FniFm(X> Vk-l), 20, . . . , Z m - l ) 

F„(Pi,x o , . . . , Z f c - i ) =Xi 

FZ(x,pZ,...,pZ_1)=x, 

where k,m,n = 1 ,2 , . . . and i — — 1. See Taylor [16] (pp. 360-361), for 
more details consult [17]. 

Subclones, homomorphisms, etc. are defined in the natural way. A homomor-
phism of C into the clone of operations on a set A is called a representation of 
C. If we single out a set of generators of C then representations of C give rise to 
algebras of the given type. All representations of C form a variety. Conversely, 
for any variety the clone of the variety is the clone of term functions over the free 
algebra with countably many generators. Its representations are exactly the alge-
bras in the given variety. In virtue of this correspondence between varieties and 
(abstract) clones we will freely switch between the two viewpoints. In this respect 
C„ corresponds to the free algebra on n generators in the variety determined by C. 

An operation will be called trivial if it is a projection. A representation of C is 
trivial if its image consists of projections only. An algebra will be called trivial if 
its basic operations are projections. 

A clone is minimal, if it is not trivial but the only proper subclone is the clone 
of trivial operations (i.e. projections). In other words, a clone is minimal if it is 
generated by any nontrivial member of it (and there are nontrivial members). The 
clone generated by / will be denoted by [/]. So a minimal clone can be generated 
by a single operation. It is convenient to choose one of minimum arity. According 
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to a result of Rosenberg [13] a minimum arity operation / generating a minimal 
clone falls under the following five types: 

(i) / is unary; 

(ii) / is binary idempotent, i.e. satisfies f(x,x) = x; 

(iii) / is ternary majority, i.e. satisfies f(x,x,y) = f(x,y,x) = f(y,x,x) = x\ 

(iv) / is fc-ary semiprojection {k > 3), i.e. — up to renumbering the variables — 
f(xi,..., Xk) = x\ for any identification of variables Xi = Xj (1 < i < j < k) ; 

(v) f(x,y,z) = x + y + z for an elementary abelian 2-group with addition +. 

In this paper we investigate case (ii). Although several results hold more gen-
erally, we do not attempt to formulate them here in full generality. In order to 
simplify notation we will write xy instead of f(x,y). Moreover, to save parentheses 
we adopt the convention that x\x2x3 ... xn = (... ((xix2)x3).. .)xn, i.e. products 
are left-normed. In particular, we write xy" for ( . . . ( (xy )y ) . . .)y. 

By an absorption identity we mean an identity of the form x = t(x, yi,..., yn), 
i.e. an identity where one side is a variable. 

Lemma 2.1 Let V be a variety with minimal clone and A € V a nontrivial algebra. 
Then V satisfies every absorption identity that holds in A. 

Proof: The clone of A is a nontrivial homomorphic image of the clone of V, 
hence the inverse image of the trivial subclone on A is a proper subclone of the 
clone of V. Since the latter is a minimal clone, the inverse image of the trivial clone 
on A must be the trivial subclone of the clone of V, i.e. if a term is trivial on A 
then it is trivial in the whole variety V. This is what had to be proved. • 

Now let us restrict our attention to algebras with one binary operation, i.e. 
binars. 

Lemma 2.2 Let A be an idempotent binar with minimal clone and define a variety 
V of binars by all 2-variable identities and absorption identities that hold in A. Then 
V has minimal clone. 

Proof: Let i be a nontrivial term of V. Then tA is also nontrivial, since V 
satisfies all absorption identities of A. We have assumed that A has minimal clone, 
hence fA G [tA] where / denotes the basic operation. This containment is expressed 
by a 2-variable identity in A. By the definition of V this identity holds in V as well, 
hence / G [T], so [T] = [/], indeed. • 

Lemma 2.3 Let the binar A satisfy an equation xyk = x (k > 2). Then every 
identity on A is equivalent to an absorption identity. 
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Proof: Let t — t' be an identity. We prove the statement by induction on 
the length of t. If this length is 1 then t is a variable and we have an absorption -
identity, so there is nothing to prove. Otherwise, write t = uv with terms u, v 
shorter than t and observe that t = t' implies u = uvk = (uw)wfc_1 = t'vk~l, and 
vice versa: u = t'vk~x implies t — uv = (t'vk~1)v = t'. Hence t — t' is equivalent to 
an identity with shorter left-hand side, which is in turn equivalent to an absorption 
identity by the induction hypothesis. • 

Corollary 2.1 Let the variety V of binars have minimal clone and assume that 
xyk — x (k> 2) holds in V. Then V is generated by any nontrivial algebra in V. 

Proof: Let A 6 V be a nontrivial algebra. Then by Lemma 2.1V satisfies every 
absorption identity that holds in A. However, in this case every identity on A is 
equivalent to an absorption identity by Lemma 2.3, hence V satisfies every identity 
that holds in A. • 

We introduce a technical notion. We will say that the clone of the binar A is 
2-minimal if every nontrivial binary term function of A generates the same clone 
as the basic operation. 

Lemma 2.4 Let A be an idempotent binar with 2-minimal clone. Assume that A 
contains an element 0 such that ab = 0 only if a — 0 = b (a, b S A). Lét V be the 
variety defined by all 2-variable identities that hold in A. Then the clone of V is 
minimal. 

Proof: Let t(x i , . . . , xn) be a term in which each variable x\,...,xn does occur 
as a factor. If n = 1, then idempotence of the operation yields that t is a projection. 
If n > 2 then let t(x,y) = t(x,y,... ,y). An easy induction argument yields that 
tA(a,b) = 0 only if a = 0 = b (a, b € A). Hence tA is nontrivial. By 2-minimality 
fA G [t }. Now we can finish the proof as in Lemma 2.2. • 

3 Free binars 
In constructing free binars we will follow a method we have learned from Bernhard 
Ganter [6]. 

Let C be a clone and V the corresponding variety. Then Ci can be identified 
with the 2-generator free algebra in V. The elements of the free algebra can be 
viewed in two different ways: on one hand as elements of that algebra, on the other 
hand as binary terms. The two viewpoints are united in the composition operation 
F| of the clone: In i f {t>uo, ) t behaves as a term operation and uo, u i as elements 
to which t is applied. Now fix uq, UI and consider the map t (t, uo,ui). In 
this way we obtain the endomorphism of the algebra given by substituting m 
for Xi (i = 0,1) in the terms t. The set of the endomorphisms 

£«o UlW = -P? (*!"(> I " l ) 
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forms a sharply 2-transitive transformation monoid, in the sense that for every u0l 

u\ £ C2 there is a unique endomorphism eUoUl such that eUoUl (xi) = ui (i = 0,1). 
Conversely, this property can be used for constructing free algebras. 

Lemma 3.1 Let F be a set with designated elements 0 ^ 1 and let M be a sharply 
2-transitive transformation monoid on F, i.e. M C Ff such that for every pair of 
elements u\ £ F there is a unique mUoUl £ M with mUoUl(i) = Ui (i = 0,1). 
For every f £ F define a binary operation by f(uo,ui) = mUoUl(f). Then F = 
(-P1; {/1/ £ F}) is a free algebra over the set {0,1} in the variety generated by F. 

Proof: We have to show that for every uo, u\ £ F there is an endomorphism 
e of F such that e(i) = m (i = 0,1) (see [7], p. 165, Corollary 1). We show that 
in fact m = mUoUl £ End(F). Indeed, since / (m(a0 ) ,m(a1 ) ) = m m ( a o ) m ( a i ) ( / ) 
and m{f(a0,a 1)) = m(m a o a i ( / ) ) we have to check that m o maoai = mm{ao)m{ai). 
Both sides are members of M, so by sharp 2-transitivity of M it suffices to verify 
whether they agree on 0 and 1. Indeed, we have for i = 0,1: rn(maoai(i)) = 
m(a,i) = m m ( o o ) m ( o i ) ( ! ) . • 

Note that each operation / is idempotent if and only if all constant maps belong 
to M. Furthermore, observe that the clone is 2-minimal if and only if each nontrivial 
binary operation generates all others, i.e. if and only if 0 and 1 generate the binar 
(F, f) for each / ^ 0,1. 

As an illustration of this method we give a new proof of a result of J. Dudek 
[5], Theorem 2.3(a): 

Proposition 3.1 Assume that a binary minimal clone contains finitely many bi-
nary operations. If every nontrivial binary operation in the clone is commutative, 
then there is only one nontrivial binary operation. 

Proof: Let us consider the sharply 2-transitive monoid M associated with the 
clone. Let us denote by (3 £ M the permutation interchanging the generators 0, 1 
and fixing all other elements: 0(f) = F^if, 1,0). Take an arbitrary a £ M with 
a(Q) = 0 and a( l ) g {0,1}, and let k be such that 0, l , a ( l ) , . . . , a f c - 1 ( l ) are all 
different but a f c( l ) £ {0, l , a ( l ) , . . . , ak~1 (1)}. We distinguish three cases: 

(a) ak(l) = 0. Set 7 = ak~l £ M and <5 = (7/3)2 £ M. Then 7 (0 ) = 0, 
m = 7(/3(7(/?(0)))) = 7(^(7(1))) = 7(/?(a f c~1(l))) = 7 ( ^ - 1 ( l ) ) = a 2 * * " 1 ^ ) = 
0, ¿ (1) = 7(/3(7(/?(l)))) = j(/8(0)) = 7 ( 1 ) , so 7 and 6 agree on 0 and 1. However, 
we have 7 (a f c _ 1 ( l ) ) = 0, but 

¿(ak-1(l))=7(/3(7(/l(ak-1(l))))) = 7(/?(7(«fc-1(l)))) =. 

7(0 (0 ) )= 7(1) = a*"1 (1)5*0, 

contradicting the properties of M. So this case cannot occur. 
(b) a f c ( l ) = 1. Then ak fixes both 0 and 1 hence it is the identity, therefore 

a is a permutation. Restricting a and /3 to the set S = {0, l , a ( l ) , . . . , a f c _ 1 ( l ) } 
we get a fc-cycle and a transposition with one common point. These permutations 
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generate the full symmetric group on 5. If k — 1 > 2, it would contain a nontrivial 
permutation fixing 0 and 1, which is impossible. Hence S = {0,1, a ( l ) } and a 2 ( l ) = 
1. The two transpositions a|s and 5 generate the full .symmetric group of order 6 
on S, and that together with the three constants form a sharply 2-transitive monoid 
on S. This means that S is closed under the clone operation F2, so by minimality 
of the clone S = C2-

(c) a*(l ) = aJ '(l) for some 1 < j < k. Set 7 = , 7 ( 1 ) = 2 
and S = {0,1,2}. Then ak~i{2) = ak~i {a^'M (I)) = •a<*- ' -1»(a f c ( l ) ) = 
a ( A - i - i ) j ( a i ( ! ) ) = . a ( * - i W ( i ) = 2 and 7(2) = {ak~i)'(2) = 2. Now /?, 7 and 
the constants restricted to S again generate a sharply 2-transitive monoid on 5, 
and the minimality of the clone yields again that S = C2. • 

4 Examples 
In this section we describe four series of minimal clones. Two of them, the affine 
spaces over GF(p) and the p-cyclic binars (p prime), are well-known, the other two 
are new. Further examples appear in Section 5, namely in Theorems 5.1(b), 5.2(b) 
— the rectangular bands, 5.2(c), 5.2(e), 5.4(b), 5.4(c), and 5.4(e). 

4.1 Affine spaces 
Let V ^ 0 be a vector space over the field F. Then the affine space on the set V 
has the following basic operations: x — y + z and Arc + (1 — A)y for each A G F. 
The clone of the affine space consists of the terms ^ixi where Aj G F , Aj = 1. 
This clone is minimal if and only if F is a p-element field for some prime p. lip = 2 
then the clone is generated by the ternary minority function x + y + z. If p > 2 
then the clone contains nontrivial binary operations, e.g. 2x — y, so it is within the 
scope of our present interest. However, even then it is more convenient to use the 
ternary operation f(x,y,z) = x —y.+ z to axiomatize the variety: 

f(x,x,y) = f(y,x,x) = y 

/ ( / ( a r i l , X12, ari3 ) , f{x21,x22, x23), /(ar3i, x32,x33)) = 
/ ( / ( a r i l , x2i, ar3 i ) , f { x 12, x22, ar3 2) , / ( a r i 3 , x 2 3 , ar3 3 ) ) 

fp(x,y,z)=x 

where }l{x,y,z) = f{x,y,z), fj+1(x,y,z) = f(fj(x,y,z),y,z). 
We will denote this clone by A(p). Note that the number of binary operations 

in A (p) is p. 

4.2 p-cyclic binars 
The term p-cyclic binar ("groupoid") has been introduced by Plonka [9] using the 
following axioms: 
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xx = x, x(yz) = a;?/, (a;i/)z = (xz)y, xyp = x 

(Recall that xyp = (... ((a:y)y). i.)y with p factors y.) He showed [8] that they 
have minimal clones, whenever p is a prime. 

We will denote this clone by C (p). For representations of C(p) see [11]. The 
binary operations in C(p) are xyi, yxJ (j = 0 ,1 , . . . ,p— 1), their number is 2p. 

4.3 Binary minimal clones with 2k + 2 (k > 1) binary opera-
tions 

Define a binar F on the set {0,1, ao , . . . , i, bo, • • •, with the operation 

ao if x = 0, y = 1 
ai+1 if x = 0, y = bj 
bo if x = 1, y = 0 
bj+1 if x = 1, y = a3 
X otherwise 

where the indices are taken modulo k. Examples for k = 1 and 2 can be found in 
Section 5: F6 and Fi3 respectively. (There ao = 2, 60 = 3, ai = 4, bx = 5.) 

Lemma 4.1 F is a free binar generated by 0 and 1, and it has 2-minimal clone. 

Proof: Let fo(x,y) = xy and fj+i(x,y) = xfj(y,x) for j = 0 , . . . ,k — 1. One 
can check by induction on j that 

{ aj if x = 0, y = 1 
bj i f x = l , y = 0 
xy otherwise 

In particular, fk = fo- Now it is straightforward to verify that x,y,fo{x,y), 
..., /fc_i(x, y), fo{y, x), ..., fk-i(y, x) is a complete list of the binary term func-
tions of F and i 4 0, j 4 1, fj(x,y) >-» aj, fj(y,x) bj gives an isomorphism 
between the free binar of term functions over F and F. Hence F is free. 

We also have / J + i ( x . y ) = fj(x,fj(y,x)), hence every nontrivial binary term 
generates all other binary terms, i.e. the clone is 2-minimal. • 

Lemma 4.2 F satisfies the identities 

x(xyi.. .ym) = x (m = 0 , 1 , 2 , . . . ) (2) 

Proof: If x = aj or x = bj then xy = x for all y, so the equation holds. If 
x = 0 then we can prove by induction on m that for arbitrary y\,..., ym we have 
xyi • • .ym G {0 ,ao, . . . Then x{xyx .. .ym) = x holds again. The case x = 1 
is symmetric. • 
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Proposition 4.1 Let V be the variety defined by the 2-variable identities of F and 
by the identities (2). Then V has minimal clone. 

Proof: Let t be a term with first variable x. We prove by induction on the 
length of t that either t is a projection in V, or identification of all variables different 
from x yields a nontrivial binary term in V. Then it will follow that the clone of 
V is minimal, since V satisfies all 2-variable identities of F and the clone of F is 
2-minimal by Lemma 4.1. 

If t is a variable, the statement is obvious. So let t = t\t2. After the said 
identification of variables we obtain a binary term t' = t\ t'2. By the induction 
hypothesis either ii = x or t\ is a nontrivial binary term. In the latter case 
(1) yields t' = ij ¿2 = ¿i, be. t' is nontrivial. So assume ii = x. If the first 
variable of t2 is also x, then (2) implies t = xt2 = x, a projection. If the first 
variable of t2, say, y is different from x, then t2 G {y,fo(y,x),..., fk-i(y,x)} and 
so t' = xt'2 G {fo(x,y), • • •, fk-i(x,y)} is a nontrivial binary term. • 

4.4 Binary minimal clones with 3k + 2 (k > 2) binary opera-
tions 

We are going to construct very many free binars with minimal clone over 
the set {0 ,1 ,ao , . . . , a / t - i , bo,... ,bk-i,co,... ,Ck-i}- Let r be the permutation 
(0 l)(bo Co) • • • {bk~I Ck-1). (The elements AO,..., AK-1 are fixed by r. ) Let T be 
any binar on this set satisfying the following four conditions: 

(i) for each j — 0 , . . . , k — 1 we have the following part of the multiplication table 
of T: 

0 1 aj bj cj 
0 0 a0 bj bj Cj 
1 ao 1 ci bj Cj 

aj b3 cJ aj bj Cj 
bj bj bj bj bj aj+1 
Cj Cj Cj CJ aj+1 Cj 

(The subscripts are taken modulo k, i.e. ak = ao-) 

(ii) for each j = 0 , . . . , k - 1 we have the following part of the multiplication table 
of T: 

bj Cj aj+l 
bj b3 aj+1 aj+1 
Cj a3+1 Cj aj+1 

aj+1 aj+1 aj+1 aj+1 

(Again ak = ao ) 
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(iii) for every 0 <i<j<k,u£ {a,i,bi,Ci}, v € {aj, bj,Cj} {u ,u} is a semilattice 
as a subalgebra of T. 

(iv) r is an automorphism of T. 

Requirements (i) and (ii) uniquely determine the product of certain pairs of 
elements. For the remaining pairs {u, v} (iii) leaves two choices: either uv = vu = u 
or uv = vu = v. However, this choice determines also T(U)T(V) = T(V)T(U) = T(UV), 
and (T(U),T(V)) and (u,v) are different pairs unless u = a, and v = aj. .Hence the 
number of binars satisfying (i)—(iv) is 

Proposition 4.2 Any T satisfying' (i)-(iv) is a free binar generated by 0 and 1 
and has minimal clone. 

Proof: Let fo(x,y) = xy and define for j = 0 , . . . , k — 1 the terms gj{x,y) = 
xfj(x,y) and fj+i(x,y) = gj{x,y)gj{y,x). One can check that 

In particular, fk = /o- Now it is straightforward to verify that x,y,f0(x,y), 
•••,fk~i(x,y), go{x,y), ...,gk-i(x,y), go{y,x),...,gk-i{y,x) is a complete list 
of binary term functions of T and x 0, y 1, fj(x,y) aj, gj{x,y) bj, 
gj(y,x) H> Cj gives an isomorphism between the free binar of term functions over 
T and T. Hence T is free. 

We also have gj{x,y) = fj(x,fj{x,y)) and fj+1{x,y) = gj(gj{x,y),gj(y,x)), 
hence every nontrivial binary term generates all other binary terms, i.e. the clone 
is 2-minimal. 

Since uv = 0 only if u = v = 0, the clone of T is minimal Lemma 2.4. • 

Corollary 4.1 Let V be the variety defined the 2-variable identities ofT. Then V 
has minimal clone. 

Our construction disproves a conjecture of Dudek [4], Problem 2: There are 
binary minimal clones other than the afRne clones which contain a prime number 
of binary operations. Indeed, for any prime number p > 5, p = 5 (mod 6) our 
construction yields (a lot of) binary minimal clones with p = + 2 binary 
operations. 
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5 Minimal clones with few binary operations 
We are going to determine all binary minimal clones C with |C2| = 3, 4, or 6. 
For the sake of completeness we will quote results of Dudek concerning the cases 
\C2\ = 5 and 7. 

First of all we need a complete list — up to term equivalence — of 2-generator 
free binars with n elements (n = 3, 4, or 6). Then we check whether the clones of 
these free binars are 2-minimal, i.e. if every nontrivial binary term generates the 
basic operation. These two steps can be done automatically. Though they require 
tedious calculations, they pose no theoretical difficulties. For n = 3,4 we did these 
calculations by hand, for n = 6 we used a computer. In fact we enumerated the 
sharply 2-transitive monoids on the set {0,1,2,3,4,5} . Monoids were represented 
by 6 x 36 arrays whose entries were elements of the set {u, 0,1,2,3,4, 5} (u stands 
for an undefined entry). Rows corresponded to transformations, columns to binary 
operations. The enumeration process was a backtrack search and it consisted of 
the following seven steps. In Step 1 a yet undefined entry of the array was chosen, 
in Steps 2 through 7 the chosen entry was defined to be 0 , . . . , 5, respectively, and 
consequences of this definition were recorded in the array (consequences arise from 
composition of rows). Of course, Step 1 is the critical point of the procedure, one 
wishes to choose an entry yielding as many consequences as possible. Our strategy 
was to choose the topmost undefined entry in the column of the most frequently 
appearing symbol. 

Here we just present the results. The particular free binars Fi (i = 1 , . . . , 15) 
will be.dealt with separately below, where we give their multiplication tables. 

Lemma 5.1 Up to term equivalence the following is a complete list of 2-generator 
free idempotent binars with n elements having a 2-minimal clone: 

(a) F\ and F2, if n = 3; 

(b) F3,...,F9, if n — 4; 

( c ) F 1 0 , . . . , F i 5 , ifn = 6. 

Now we determine case-by-case which of these 15 binars have minimal clone. 
Either we exhibit a nontrivial ternary term operation that turns into a projection 
by every identification of the variables — and hence the clone is not minimal, or 
we give some absorption identities which together with the 2-variable identities of 
Fi determine a variety with minimal clone. In some cases we will be able to reduce 
the number of 2-variable identities needed to define the variety by making use of 
certain implications, some of which are taken from Szczepara's thesis [14]. 
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Lemma 5.2 The following implications hold: 

(a) x(yx) = xy implies (xy)(yx) = xy2, x(yx2) = xy, (xy2)(yx) = xy3, 
(.xy){yx2) = xy2, (a:y2)(yx2) = xy3 ; 

(b) xx = x and x(yxz) = x imply x(yxzx ... zm) = x for all m > 0, and x(xy) = 

x{yx) = x, (a:y)x = (xy)y = (xy)(yx) = xy; 

(c) (cf. [14], Lemma 121) xx = a:, x(xy) = xy and x{yx) = xy imply (xy)x = xy; 

(d) (cf. [14], Lemma 125) (xy)y = xy and x(y(xy)) = xy imply (xy)(y(xy)) = xy. 

Proof: (a) Substituting xy for x we get (xy)(y(xy)) = (xy)y. Since y{xy) = yx, 
we obtain the first identity. Substituting yx for y yields x((yx)x) = x(yx) = 
xy. Now let us substitute xy for x in (xy)(yx) = xy2, then it follows that 
(xy2)(y(xy)) = xy3. Here y{xy) = yx, hence we get the third identity. Fur-
thermore, (xy ) { yx 2 ) = (xy)({yx){xy)) = (xy)(yx) = xy2 and (xy 2 ) ( yx 2 ) = 
((xy){yx)){(yx)(xy)) = ((xy){yx))(yx) = (xy2){yx) = xy3. 

(b) First we derive the 2-variable identities: x{xy) = x((xx)y) = x, x{yx) = 
x(yx(yx)) = x, (xy)x = (xy)(x(xy)) = xy, (xy)y = {xy)(y(xy)) = xy, and 
(xy)(yx) = (xy){{y(xy))x) = xy. Next we show by induction on m that 
x(yxzi ... zm) = x holds. Let t = yxz\... zm-\. Then xt = x by the induction 
hypothesis. Now tx = t(xt) = t, hence x(yxzx . . .zm) = x{tzm) = x((tx)zm) = x. • 

Theorem 5.1 Let C be a binary minimal clone with 3 binary operations. Then 
either 

(a) C = A(3), the clone of affine spaces over the 3-element field; or 

(b) the nontrivial binary operation in C satisfies xx = x, xy = yx and x(xy) = xy. 
The variety definied by these identities has minimal clone. 

Proof: By Lemma 5.1(a) there are two possibilities for the 2-generator free 
binar C'2 • 

0 1 2 0 1 2 
0 0 2 1 J7 • 0 0 2 2 
1 2 1 0 r 2 . 1 2 1 2 
2 1 0 2 2 2 2 2 

Clearly, Fi is the affine line over GF(3) [xy = 2x + 2y (mod 3)]. In Fx (xy)y = x 
holds, hence by Corollary 2.1 C is equal to the clone of operations of F\, i.e. 
C = A(3). 

By Lemma 5.1(a) the clone of F2 is 2-minimal. It is easy to check that xx = x, 
xy = yx, x(xy) = xy is a basis for 2-variable identities of F2. By Lemma 2.4 the 
variety defined by the 2-variable identities of F2 has minimal clone. • 



290 L. Lévai, P. P. Pálfy 

Theorem 5.2 Let C be a binary minimal clone with 4 binary operations. Then C 
contains a nontrivial binary operation for which one of the following holds: 

(a) C = C(2), the clone of2-cyclic binars; 

(b) C = RB, the clone of rectangular bands, defined by xx = x, x(yz) = (xy)z = 

xz; 

(c) C satisfies xx = x, x(xy) = x(yx) = (xy)y = xy; 

(d) C satisfies x{xy\ ... ym) = x for m = 0,1,2,... and x(yx) = (xy)x = (xy)y = 

xy; 

(e) C satisfies xx = x and x((yx)z) = x. 

All clones defined by the equations in (a)-(e) are minimal. 
Proof: By Lemma 5.1(b) we get seven possibilities for the 2-generator free 

binar 
0 1 2 3 0 1 2 3 

0 0 2 0 2 0 0 2 2 0 
1 3 1 3 1 F4 : 1 3 1 1 3 
2 2 0 2 0 2 0 2 2 0 
3 1 3 1 3 3 3 1 1 3 

0 1 2 3 
0 0 2 2 2 
1 3 1 3 3 
2 2 2 2 2 
3 3 3 3 3 

Clearly, F3 is the 2-generator free 2-cyclic binar. In F3 (xy)y = x holds, hence 
by Corollary 2.1 C is equal to the clone of operations of F3, i.e. C = C(2). 

F4 is a rectangular band. Hence it satisfies the absorption identities xx = x, 
((xy)z)x = x, x(y(zx)) = x and (xy)(zx) = x. In fact, these imply the usual 
defining identities of RB: xz = [{{xy)z)x][z((xy)z)} = (xy)z, and similarly xz — 
[(x(yz))x][z(x(yz))} — x{yz). In virtue of Lemma 2.1 C = RB, as the clone of 
rectangular bands is obviously minimal. 

By Lemma 5.1 the clone of F5 is 2-minimal. By Lemma 2.4 the variety defined 
by the 2-variable identities of F5 has minimal clone. Idempotence, Lemma 5.2(a) 
and (c), and the interchanging of x and y yield that all 2-variable identities of F5 
follow from the ones listed in (c). 

0 1 2 3 0 1 2 3 
0 0 2 0 2 0 0 2 0 0 
1 3 1 3 1 F7 : 1 3 1 1 1 
2 2 2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 3 3 
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Fe is the free binar with k = 1 constructed in Section 4.3. The identities given 
in (d) imply all the remaining 2-variable identities of F6 using idempotence, Lemma 
5.2(a) and the interchanging of x and y. Hence the results in Section 4.3 yield (d). 

For F-? we can proceed similarly. We show that x(yxzx... zm) = x for m = 
0,1 ,2 , . . . holds in Fj. If x = 2 or x = 3, it is obvious. Let x = 0. Then 
yx e {0,2,3} , and it follows by induction that yxzx... zm e {0,2,3} . Hence 
x(yxzi ... zm) = x in this case. The case x = 1 is symmetric. Conversely, we show 
that any nontrivial operation satisfying the identities in (e) generates a minimal 
clone. Lemma 5.2(b) gives x{yxz\ ... zm) = x for all m > 0 and also some 2-variable 
identities. Now we can proceed similarly as in the proof of Proposition 4.1. Let 
t be an arbitrary term with first variable x, and identify all other variables with 
y. Then t turns into either x or xy. In the latter case we are done. In the first 
case we write t = ii (¿2̂ 3 • • - tr), where t2 is a variable. After the said identification 
we get x = t[(t'2t3 ... t'r). From the 2-variable identities it follows that t\ = x and 
t2 .. .t'r = x, xy, or yx. In the first two cases t2 = x. By the induction hypothesis 
t\ = x and so t = ¿i (t2t3 ... tr) = x(xt3 .. .tr) = x. In the third case t2 = y. Let s 
be such that t2...t'j = y for j = 2 , . . . , s - 1, but t'2 ... t's ± y. Then t2... t's = yx 
and t's = x. By the induction hypothesis we have t\ = x and ts = x, so we infer 
t = h(t2 ...ts...tr)= x((t2 • ..ts-i)xts+1 ...tr) = x. 

0 1 2 3 
0 0 2 0 0 
1 3 1 1 1 
2 2 2 2 0 
3 3 3 1 3 

0 1 2 3 
0 0 2 3 1 
1 3 1 0 2 
2 1 3 2 0 
3 2 0 1 3 

In the last two cases the clones are not minimal. For F& we construct a nontrivial 
ternary semiprojection t = (x(yz))(zx). Indeed, i(0,0,1) = ¿(0,1,0) = i(0,1,1) = 
0, hence t(x,x,z) = t(x,y,x) = t(x,y,y) = x\ but i(0,1,2) = 2, so t is not the 
projection onto the first variable. Hence t generates a nontriyial proper subclone. 

Finally, for Fs we have that t = (xy)(zx) is a ternary minority operation, as 
¿(0,0,1) = ¿(0,1,0) = ¿(1,0,0) = 1. Thus the clone of Fg is not minimal. (In fact, 
Fg is the affine line over the 4-element field.) • 

Remark 5.1 The binary minimal clones on the three-element set found by 
Csákány [1] fall into the following cases: 

Theorem 5.1(a): [624]; (b): [0], [10], [178]; Theorem 5.2(a): [68]; (c): [8], [11], 
[16], [17], [26]; (d): [35]; (e): [33]. 

Theorem 5.3 (Dudek [3]) Let C be a binary minimal clone with 5 binary opera-
tions: Then C = A(5), the clone of affine spaces over the 5-element field. 
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Theorem 5.4 Let C be a binary minimal clone with 6 binary operations. Then C 
contains a- nontrivial binary operation for which one of the following holds: 

(a) C = C(3), the clone of 3-cyclic binars; 

(b) C satisfies xx = x, x(xy) = x(y(xy)) = (xy)x = (xy)y = (xy)(yx) = 
(xy)(x(yx)) = xy, (x(yx))y = (x(yx))(xy) = (a:{yx))(y{xy)) = x(yx); 

(c) C satisfies xx = x, x(xy) = x(y(xy)) — (xy)x = (xy)y = (xy)(yx) — 
(xy)(x(yx)) = (x(yx))(xy) = xy, (x(yx))y = (x{yx))(y(xy)) = x(yx); 

(d) C satisfies x(xzi... zm) = x for m = 0 , 1 , 2 , . . x ( y ( x y ) ) = (xy)x = (xy)y = 
(xy)(yx) = (xy)(x(yx)) = (xy)(y(xy)) = xy, (x{yx))y = (x(yx))(xy) = 
(x(yx))(y(xy)) = x{yx); 

(e) C satisfies x(xzi ... zm) = x for m = 0 , 1 , 2 , . . x ( y x ) = {xy)x = ((xy)y)x = 
xy, {{xy)y)y = \xy)y; 

All clones defined by the equations in (a)-(e) are minimal. 

Proof: By Lemma 5.1(c) we get 6 possibilities (up to term equivalence) for the 
2-generator free binar • 

0 1 2 3 4 5 
0 0 2 0 2 0 2 
1 3 1 3 1 3 1 
2 2 4 2 4 2 4 
3 5 3 5 3 5 3 
4 4 0 4 0 4 0 
5 1 5 1 5 1 5 

Clearly, F10 is the 2-generator free 3-cyclic binar. In Fi0 ((xy)y)y = x holds, 
hence by Corollary 2.1 C is equal to the clone of operations of Flo, be- C = C(3). 

0 1 2 3 4 5 0 1 2 3 4 5 
0 0 2 2 4 4 2 0 0 2 2 4 4 2 
1 3 1 5 3 3 5 1 3 1 5 3 3 5 
2 2 2 2 2 2 2 F12 : .2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 
4 4 4 4 4 4 4 4 4 4 2 4 4 4 
5 5 5 5 5 5 5 5 5 5 5 3 5 5 

By Lemma 5.1(c) the clones of Fn and FL2 are 2-minimal. By Lemma 2.4 the 
varieties defined by the 2-variable identities of Fu , resp. FI2 have minimal clones. 
Using Lemma 5.2(d) and obvious substitutions one can check that the identities 
given in (b) and (c) imply all 2-variable identities of Fu and F12, respectively. 
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'13 

0 1 2 3 4 5 0 1 2 3 4 5 
0 0 2 0 4 0 2 0 0 2 0 2 0 2 
1 3 1 5 1 3 1 1 3 1 3 1 3 1 
2 2 2 2 2 2 2 F14 : 2 2 4 2 4 2 4 
3 3 3 3 3 3 3 3 5 3 5 3 5 3 
4 4 4 4 4 4 4 4 2 4 4 4 4 4 
5 5 5 5 5 5 5 5 5 3 5 5 5 5 

F13 is the free binar with k = 2 constructed in Section 4.3. The results there 
yield (d). 

For F14 one can proceed similarly, leading to (e). Here one should apply Lemma 
5.2(a). We leave proving the analog of Proposition 4.1 to the reader. 

0 1 2 3 4 5 
0 0 2 0 0 0 0 
1 3 1 1 1 1 1 
2 2 2 2 4 2 2 
3 3 3 5 3 3 3 
4 4 4 4 4 4 0 
5 5 5 5 5 1 5 

Here we define a ternary operation t(x,y,z) = [(x(yz))(zx)][(yx)(xy)]. Now 
i(0,1,1) = t(0,0,1) = t(0,1,0) = 0, so t is a semiprojection onto the first variable. 
As i(0,1,2) = 2, we see that t is nontrivial. Hence t generates a nontrivial proper 
subclone. • 

Remark 5.2 Let Wix denote the variety defined by the equations in Theorem 5.i 
(x). (So the number of different nontrivial binary terms is i.) For a variety V 
and a term t let V[t] denote the variety of algebras in V with basic operation t. 
Then we have the following relationship between our results and the six minimal 
clone varieties Vi,... ,Ve and their subvarieties V3, V3', V6', V6" found by Szczepara 
[14], pp. 205-206: Wia has no four-element model, Wn = V^, W2a = Vi[yx], 
W2b = V5, W2c = Vf, = Vi', W2e = V4, W4a = V2[yx], W4b = Ve, every 
four-element binar in W4c belongs to W2c, every four-element binar in W4a belongs 
to W2d, W4e = y3[(a;i/)a;]. Furthermore, W4d n W4e = W2d D V3' and W4b n Wic = 
W2c D Wlb. 

Theorem 5.5 (Dudek [4]) Let C be a binary minimal clone with 7 binary opera-
tions. Then C = A(7), the clone of affine spaces over the 7-element field. 
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