
Acta Cybernetica 12 (1996) 347-360.

On Competence and Completeness in CD
Grammar Systems*

Henning BORDIHN * Erzsébet CSUHAJ-VARJÚ * §

Abstract

In this paper, different concepts of i-mode derivations in CD grammar sys-
tems which can be encountered in the literature and generalizations thereof
are considered both in generating and in accepting case. Moreover, the influ-
ence of completeness of the components as an additional requirement to the
derivational capacity of CD grammar systems is investigated.

1 Introduction
The theory of grammar systems is a recent vivid field of formal language the-
ory describing multi-agent symbol systems by tools of formal grammars and lan-
guages ([4]). Cooperating/distributed grammar systems, (CD grammar systems,
for short) is one the important subfields of the area, launched for syntactic mod-
elling distributed problem solving systems based on blackboard architectures ([3]).

. We note, however, that the term "cooperating grammars" was introduced first in
[9], as a generalization of two-level substitution grammars to a multi-level concept.

A CD grammar system consists of a finite set of grammars that cooperate in
deriving words of a common language. At any moment in time there is exactly
one sentential form in derivation and the grammars work on this string in turns,
according to some cooperation protocol. In this model, the cooperating grammars
correspond to the cooperating independent problem solving agents, the sentential
form in deriva tion represents information on the current state of the problem solving
stored in a global database, the blackboard, and the obtained language describes
the set of problem solutions.

'Research supported by the German-Hungarian Research Project "Formal Languages, Au-
tomata and Petri-Nets" (1995-1997), No. D/102 (formerly: No. OMFB-NPI-102) of the TÉT
Foundation, Budapest, Hungary, and No. 233.6. of Forschungszentrutn Karlsruhe, Germany

'Otto-von-Guericke-Universitat Magdeburg, Fakultát für Informatik, P.O.Box 4120, D-39016
Magdeburg, Germany. E-mail:bordihn@irb.cs.uni-magdeburg.de

'Research supported by Hungarian Scientific Research Fund OTKA T 017105
^Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u.

13-17, H-l l l l Budapest, Hungary. E-mail: csuhaj@sztaki.hu

347

mailto:bordihn@irb.cs.uni-magdeburg.de
mailto:csuhaj@sztaki.hu

348 Henning Bordihn. Erzsébet Csuhaj-Varjú

Turning to the original motivation, it is a sensible question whether some impor-
tant properties and features of agents that influence the behaviour of blackboard-
type problem solving systems can be formalized and interpreted in the syntactic
framework provided by CD grammar systems. In this paper we deal with two
of these properties: competence and completeness of components, moreover, we
study them both in the case of generating CD grammar systems and in the case of
accepting ones.

The idea of accepting grammars and systems ([11]) is the following: Starting
from a "terminal" word, the system tries to derive a given goal word (the axiom)
where, according to [1, 2, 6], the yield relation is defined by textually the same
words as in generating case. Possible restrictions to production sets are turned
"around", e.g., coming to productions of the form v —• a in the context-free case,
where v is a (possibly empty) word and a is a symbol.

CD grammar systems as accepting devices (CD grammar systems consisting of
accepting grammars), corresponding to backward deduction systems in contrast to
generating CD grammar systems which correspond to forward deduction systems,
were considered in [8].

Both competence and completeness can form a basis of the cooperation protocol.
According to our approach, an agent is competent in a current state of the problem
solving if it is able to contribute to the problem solution. In grammatical terms,
the component grammar is competent in the derivation of the current sentential
form if it is able to apply at least one of its productions to it.

So far there have been two kinds of cooperation protocols (¿-modes of derivation)
based on competence/incompetence of grammars introduced and examined: in the
first case (hard ¿-mode), a grammar can start with the derivation if it is competent
in the sentential form and stops with the derivation if it is no longer competent in
the actual string (it has no production to apply; the agent is not able to contribute
to the problem solving). In the second case, the start condition is the same but the
stop condition differs: the grammar finishes the derivation if it is not able to derive a
word different from the actual one (the competence of the grammar is not enough
to change the state of the problem solving). We generalize the latter concept
to a cooperation protocol called stagnation derivation mode (s-mode), where a
component has to continue its work until and unless a word is derived from which
no new word can be rewritten, i.e., it is impossible to derive a word which does
not appear in the derivation before. Thus, the competence of the agent (of the
component grammar) is not enough to leave a stagnating phase of the problem
solving (the derivation).

In this paper we compare the power of context-free CD grammar systems work-
ing on the basis of the above cooperation protocols. We show that the three variants
are equally powerful. In the case of generating CD grammar systems they identify
the class of ETOL languages and in the case of accepting CD grammar systems
they provide a description of the class of context-sensitive languages (supposing
that A-free productions are taken into account). These results, in the case of weak
t-mode and stagnation mode of derivation do not change if we incorporate some
requirement concerning completeness of the components.

On Competence and Completeness in CD Grammar Systems 349

The notion of completeness is well-known from Lindenmayer systems: For a
set of productions of a usual L system it is required that, for any symbol a of
the alphabet, there is at least one production rule replacing a. In [6], accepting L
systems were investigated, where this concept of completeness does not apply any
more.

Since a production set of an accepting (ET)OL system is seen as an inverse finite
substitution it is required that, for any symbol a, there is at least one rule of the
form v —• a. One might wish to replace this "right-completeness" condition by a
"left-completeness" condition as one is used to have in generating case, but such a
condition must be in accord with the finiteness of the set of productions.

One sensible approach to define completeness can be inherited from [9], where
the derivation strategy of the cooperating generative context-free grammars is de-
fined as follows: every component grammar can start with the derivation if it is full
competent in the generation of the current sentential form (if it has a production
for any nonterminal symbol appearing in the actual string) and stops with it if it
is no longer satisfies this criteria (there is at least one nonterminal in the string for
which the grammar has no rewriting rule).

Clearly, this idea can be transferred to the accepting case (also applying to ac-
cepting Lindenmayer systems): a grammar component / set of productions is com-
plete (thus full competent) for the current sentential form iff this sentential form
can be partitioned into non-overlapping subwords each of which can be rewritten by
a rule in the production set. We call this concept, that exhibits both completeness
and competence, sentential-form-completeness («/-completeness for short). Obvi-
ously, in generating case this concept coincides with the usual "left-completeness"
condition known from L systems.

In [9] it is shown that context-free CD grammar systems with components
working in « / -mode of derivation are equally powerful to the class of context-
free programmed grammars with appearance checking. We show that in the case
of accepting context-free CD grammar systems this protocol leads to the power of
context-sensitive grammars, morevover, to reach this capacity at most five cooper-
ating grammars are sufficient.

2 Basic definitions
We assume that the reader is familiar with the basic notions of formal language
theory, for further details we refer to [11], and [5]. With our notations, we mostly
follow [5]. Especially, we use C to denote inclusion, C to denote strict inclusion,
and A to denote the empty word. The length of a word w is denoted by |io|, N
denotes the set of positive integers. Two languages L\ and L2 are considered to be
equal iff L\ \ {A} = L2 \ {A}.

The family of languages generated by regular, context-free, context-sensitive,
type-0 Chomsky grammars, ETOL systems, context-free programmed grammars,
and context-free programmed grammars with appearance checking are denoted
by £ g e n (REG), £ g e n (CF), £g e n (CS), ¿ g e n ^ J ^ ¿ g e n ^ T O ^ £gen(p C F) i a n d

350 Henning Bordihn. Erzsébet Csuhaj-Varjú

£gen(P,CF,ac), respectively. In order to denote the family of languages accepted
by a device of the corresponding type, we write the superscript acc instead of gen.
If we want to exclude A-productions, we add —A in our notations. Whenever we
use bracket notations like £ee n(P,CF[-A]) c £g«n(P,CF[-A],ac) we mean that the
statement is true both in the case of neglecting the bracket contents and in the case
of ignoring the brackets themselves.

We define CD grammar systems in a way suitable for the interpretation of both
generating and accepting systems.

A CD grammar system of degree n, with n > 1, is an (n + 3)-tuple

G = (N,T,S,Plt...,Pn),

where N and T are two disjoint alphabets, the set of nonterminal and terminal
symbols, respectively, V = N U T is the total alphabet of G, S E N is the axiom,
and P\,... ,Pn are finite sets of rewriting rules of the form or —»• /3, a, /3 G (N U T)+.
In addition, we allow A-rules of the form a —» A in the generating case and A —* f3 in
the accepting case. For x, y E (N U T)*, we write x => y iff x = x\ax2, y = x\fix-z
for some a —• (3 G F,-. Hence, subscript i refers to the production set (component)
to be used. Furthermore, we denote by ==>• a derivation executed by the ¿-th

t
< k > k component according to some cooperation protocol / . For example, (—=> , i I

— k *
= > , or , respectively) denotes a derivation of at most k (at least k, exactly k,
or an arbitrary number of) derivation steps as above.

For some cooperation protocol / , the language generated in / -mode (e.g., in
< fc-mode) by a CD grammar system G of degree n is

£ f n (G) = {w G T*\S = w0 wi •••=U =J=> wm = w with J >1 '2 ' m — 1 "m

m > 1, 1 < ij < n, 1 < j < m} .

The language accepted in / -mode by G is defined by
£ « * (G) = {w £ T* \ w = w0 ==> wi => •••=U wm-i M- wm = S with 1 >1 "2 1 m — 1 'm

m > 1, 1 < ij < n, 1 < j < m} .

The families of languages generated (accepted, respectively) in the / -mode by CD
grammar systems with at most n [A — free] context-free components are denoted
by jC®en(CDn, CF[—A], /) (or £ a c c (CD„ , CF[—A], /)) . If the number of cdmponents
is not restricted then we write £ « e n (C D 0 0 l C F [- A]) /) (£ a c c (CDoo ,CF[-A] , /)) .

3 Cooperation and Competence
In this section we compare the derivational capacity of CD grammar systems work-
ing under cooperation protocols based on competence/incompetence of the cooper-
ating grammars. Since incompetence (disability of rewriting) realizes a terminat-
ing condition for the component grammar, these kind of cooperation protocols are
called i-modes of derivations.

On Competence and Completeness in CD Grammar Systems 351

Let us have formal definitions.
A derivation

D : x = xo => xi => X2 =>•••• => x„_i =}> xn = y

from x to y is said to be

(i) of type hard-t () iff there is no z such that y => z,

(ii) of type weak-t (t w) iff there is no z ^ y such that y z,

(iii) stagnating (s) iff there is no z ^ {z^ | 0 < i < n} such that y =>•* z.

Let G = (N, T, S, Pi,..., Pn) be a CD grammar system and let / £ {th,tw,s}-
For x, y 6 (N U T)m, we write x =>• y iff x =>• y and x ==>• y is a derivation of type
/• . . .

Then, ¿^ " (CDo^CF^u ,) is exactly the family of languages generated by CD
grammar systems with an arbitrary number of context-free components working in
<-mode as defined, e.g., in [4], whereas £gen(CDoo, CF,th) equals the corresponding
family as defined, e.g., in [8].

Observation 3.1 By definition, if a derivation is of type th then it is of type tw,
and if it is of type tw then it is stagnating.
Hence, for a CD grammar system G, we have

(i) Lf:n(G) C L?:n(G) C L f " (G) and

(ii) LJT(G) C L - C (G) C L r (G) . D

Note that productions of the form A —• A block derivations in hard-t-mode
whereas they can be neglected in CD grammar systems working in weak-<-mode.
Nevertheless, we find the following lemma.

Lemma 3.2 For n E N U {oo} , we have

£sen(CD„, CF\—\],th) = £Sen(CDn,CF[-\],tw) and
C*c{CDn,CF\-Xlth) = C*cc{CDn,CF\-\],tw)

Proof. Suppose we have a CD grammar system working in t^-mode. A simulating
CD grammar system working in </,-mode can be obtained by cancelling all rules of
the form A —• A from the productions sets of the original one. Conversely, if we
replace all rules of the form A —* A by A —* F, where F is a trap symbol, in a
CD grammar system working in th-mode, we obtain a simulating grammar system
working in the i^-mode of derivations. •

In order to compare these families of languages with that one generated (ac-
cepted) by CD. grammar systems working in s-mode, we take a better look at
stagnating derivations.

352 Henning Bordihn. Erzsébet Csuhaj-Varjú

Let
D : x = x0 => £1 =>•••=> xn =>• • • •

be a stagnating derivation which is not terminating. Then there is a finite language
Ls tag(Z)) which consists of all words appearing in D such that, for any pair (u, v) E
¿stag(^) x ¿stag(D), we have u v and v =>• u in D.

Lemma 3.3 Let G be a generating CD grammar system with context-free compo-
nents. For any derivation D of G which is stagnating, all words in Lstag(-D) have
one and the same length.

Proof. Assume the contrary. Let u be a word of maximum length in L s t a g (D) ,
i.e., if a rule is applicable to u then this rule has the form A —• B or A —• A, where
A and B are symbols. Here, renaming rules (A —* B) cannot introduce symbols B
to which productions B —• /3 with |/?| > 1 can be applied, since otherwise u is not
the word of maximum length in Lstag(-D)- Thus, we can apply only rules of the
form A —* B and A —• A also to any word derived from u. In particular, this holds
for any word u' E £stag(-D) with |u'| < |u|. This contradicts u' => u. •

In conclusion, if a derivation D is stagnating then there is a word in D such that
only renaming rules can be applied in the sequel or it is a terminating derivation.

Lemma 3.4 C^n{CD^, CF\-X),s) = Csen(ET0L).

Proof. The inclusion £®en(ET0L) C ^ " (C D » , CF[-A], s) follows by the con-
struction given in [4, pp. 40-42] for the <>,-mode case.

Thus, it is left to prove ¿^"(CDoo, CF[-A], s) C £8en(ET0L). Let T = (N,T,
Pi, P2,..., Pn, S) be a generating CD grammar system. For any nonterminal A
and 1 < i < n, we set L'A = SF(G'A) where G\ is the context-free grammar
G\4 = (N , T , Pi, A), i.e., L\ is the set of all sentential forms which can be generated
by the i-th component of T starting with A. Furthermore, let

Qi _ { la i f f la C n and> f o r a11 B G L\, we have UB = L\
A ~ ^ 0 otherwise '

M' = {B E iV | there is no j3 such that B ¡3 E Pi] ,

and

iVJtag =
AeN

Obviously, N*tag is the set of nonterminal symbols which induce stagnation of
the z'-th component, more precisely, if the i-th component is active, stagnation
appears iff a sentential form w E (-NgtagUT)* has been derived. Now, construct the
ETOL system G = (V,T,V,S), with V = N U T U {A{ \ A E N, 1 < i < n } U {F}
and, for 1 < i < n, "P contains the following tables:

Pi, 1 = {A^ Ai\Ae N}u{a-+ a\a£T}u{X ^ F\X $ NUT}
Pi,2 = {At hi(w) | A w E Pi} U {a a | a E T} U {At A{ | A E N} U

{Aj — F | A E N, j # i} U {A — F \ A E N} U {F F},

On Competence and Completeness in CD Grammar Systems 353

where hi is the morphism defined by hi(A) — Ai for A € N and hi(a) = a for
a£ T,

Pi,3 = {Ai^A\AeKtas}U{a^a\aeT}U{X ^N'stagUT}.

Here, table i ^ i simulates the selection of component P,- of T by "colouring" the
nonterminals in the sentential form (replacing them by their corresponding sub-
scripted version), P,-_2 simulates the application of the chosen component, and P,-^
allows the system to leave the z-th component iff stagnation appears. The rules
with the trap symbol F on their right-hand sides forbid shortcuts. Thus, we have
Z,gen(G) = L g e n (r) . •

The proof for £g e n (ET0L) C £ g e n (CD 3 , CF[-A], <) in [4, pp. 40-42] is given
by a construction of a CD grammar system working in hard-<-mode with three
components. Together with Observation 3.1, we can summarize the results as
follows.

Corollary 3.5 For f £ s}, we have

£sen(ET0L) = ^(CDoo.Cft-AJ.tft)
= £ « e n (C A ») C f t - A]) t I I ,)
= £gen(CT>oo, Cif—A],s)
= C*™{CD3,Cf\-\],f).

Let us turn to the accepting case. Clearly, it is impossible to get any terminating
or stagnating derivation of a component of an accepting CD grammar system if A-
rules, i.e., rules of the form A —• v, are present. Hence, we restrict ourselves to the
A-free case. Moreover, it is a direct consequence that as in the case of generating
CD grammar systems, also in the case of accepting CD grammar systems with
context-free components it holds that all words in Lstas(D) have one and the same
length for any stagnating derivation D.

In [8] it is shown how to construct an accepting CD grammar system with two
context-free A-free components working in hard-<-mode in order to simulate a given
context-senstive grammar. On the other hand, it is obvious that any accepting CD
grammar system with non-erasing context-free components in th- or <w-mode can
be simulated by a linear-bounded automaton. But even such a system working in
s-mode can be simulated by a linear-bounded automaton. This fact is obvious if
we take into consideration that a derivation is stagnating only if it is terminating
or after deriving a certain sentential form the rules that can be applied to the
sentential form are only certain renaming rules, that is, productions of the form
A—*B, with A,B £ N. Thus, we easily find the next theorem.

Theorem 3.6 For f £ {th,tw,s}, we have

£ g e n (CP) = £ a c c (CF) = £ a c c (CDi , CF — A , /)
C £ a c c (CD 2 , CF — A, /)
= £ a c c (C £ o o , C P - A , /)
= £g e n (CS) = £a c c (CS).

354 Henning Bordihn. Erzsébet Csuhaj-Varjú

4 Cooperation and Completeness
In this section we investigate how the derivational capacity of CD grammar systems
changes when the components satisfy some completeness criteria. We show that
these additional conditions do not necessarily alter the derivational power, even in
some i-mode cases, where, actually, the communication protocol is determined by
the incompleteness of the components.

First, let us discuss the concept of completeness.
From the theory of (generating) (ET)OL systems we know a condition called

left-completeness: For each symbol a of the alphabet V of the system there is at
least one production a —• v, v £ V*. Analogously, right-completeness (originally for
accepting (ET)OL systems) is defined: For each symbol a of the alphabet V there
is at least one production v —* a, v £ V*. These conditions can be modified for
CD grammar systems as follows: A set P of generating context-free productions (a
component of the CD grammar system) is said to be left-complete (right-complete)
iff there is at least one production of the form A —• ¡3 for each nonterminal A (at
least one production of the form A —+ x for each symbol x of the total alphabet,
respectively) in P. A set P of accepting context-free productions is called left-
complete (right-complete) iff there is at least one production of the form x —• A
for each symbol x of the total alphabet (at least one production of the form
for each nonterminal A, respectively) in P.

We concede that the above concept of right-completeness for the generating
case and that of left-completeness for the case of accepting sets of productions
are not very satisfying. For, e.g., the accepting case, one might take into account
the possibility to require the following: If w —• a, with |u>| = k, is in the set of

k
productions P then P Ç V* x V is surjective from |J V into V. This requirement

¿=1
is no restriction, since we can simply add rules of the form v —• F for such words

k
v £ (J V* which do not appear on left-hand sides in the given production set, and

: = 1
those "dummy rules" are out of any influence to the rewriting process. Moreover,
we get no genuine completeness at all.

Another concept of completeness which is appropriate both for generating and
for accepting devices can be defined, based on the cooperation protocol used in [9],
as follows:

Let V be an alphabet and let L Ç V* be a language over V. A set of production
rules P is said to be sentential-form-complete (sf-complete, for short) with respect
to L iff every word w £ L \ {A} has a factorization w = X\X2 • • xn such that, for
each i, 1 < i < n, there is a rule xt- —• ¡3 £ P, with ¡3 £ V*.

Then, e.g., in a (generating) EOL system G = {V,Y,, P,u), P has to be sf-
complete with respect to V*.

Observation 4.1 If a set of production rules P is left-complete then it is sf-
complete with respect to (domP)*, where domP denotes the set of all symbols ap-

On Competence and Completeness in CD Grammar Systems 355

pearing on left-hand sides of the rules in P.
For a generating context-free set P, we even find equivalence between these two

properties. •

A CD grammar system G = (N, T, S, Pi,..., Pn) is called left-complete or right-
complete iff each Pi, 1 < i < n, is left-complete or right-complete, respectively. G
is said to be s/-complete iff each Pi, 1 < i < n, is «/-complete with respect to N*
if G has generating context-free components, and with respect to (NUT)* if G has
accepting context-free components.

Note that it is sensible to differentiate between generating and accepting mode in
this definition since in generating mode only nonterminal symbols can be rewritten
whereas in accepting case there must also be rules for rewriting terminals.

Theorem 4.2 The requirement of left-completeness, right-completeness, and / or
sf-completeness does not alter the derivational power in the case of the following
grammars and systems:

(i) generating and accepting [E][T]0L systems,

(ii) generating and accepting context-free grammars,

(Hi) generating and accepting CD grammar systems with [A-free] context-free com-
ponents working in *-, in weak-t-, or in stagnating mode,

(iv) generating and accepting CD grammar systems with [A-/ree] context-free com-
ponents working in < k-, > k-, or = k-mode, with k > 1.

Proo f . Let N be the set of nonterminals and T be the set of terminals of the
system under consideration.

(i) Add rules x —• x for any x £ V to the set of productions (or to each
production table, respectively) both in the generating and in the accepting case.

(ii)-(iii) In the generating case, to the set of productions (or to each component,
respectively) add rules A —• A for any A £ N U{.F}, where F is a new nonterminal
symbol and add F —* a for any a £ T (in order to get right-completeness). In the
accepting case, add T' = {a' \ a £ T } to the set of nonterminal symbols. Then, to
the set of productions (or to each component, respectively), add rules A —» A for
each A £ NUT', and a —• a' for each a £ T. Moreover, in the case of CD grammar
systems working in weak-< or stagnating mode, we have to add the rules in {t; —• ¡3 \
v £ s(a), ot —• ¡3 £ Pj} to component Pi, where s is the finite substitution defined
by s(vl) = for A £ N, and s(a) = {a, a '} , for a £ T.

(iv) Let Fi and F2 be two new nonterminal symbols. Add Fi Fi and F2 —* F2

to each component. Moreover, add rules x —• Fi for x £ N in the generating case
and for x £ N UT in the accepting case, respectively. This guarantees left- and sf-
completeness. Furthermore, add rules F2 —i> x for x £ iVUT in the generating case

356 Henning Bordihn. Erzsébet Csuhaj-Varjú

and for i G in the accepting case, respectively, in order to get right-completeness,
too. •

The next theorem deals with the hard-i-mode of derivation where the situation
is different.

Theorem 4.3 (i) Right-completeness is no restriction for generating as well
as for accepting CD grammar systems with [A-free] context-free components
working in hard-t-mode.

(it) Both the family of languages generated by left-complete CD grammar systems
with [A-free] context-free components working in hard-t-mode and the family
of languages generated by sf-complete CD grammmar systems with [A-/ree]
context-free components working in hard-t-mode is equal to C(CF).
The corresponding families of languages in the accepting case are empty.

Proof. (i) Add rules F —* x for all symbols x of the total alphabet in the
generating case and for all nonterminal symbols in the accepting case, respectively,
and the rule F —» F, where F is a new nonterminal symbol, again. Statement (ii)
is obvious. O

5 Cooperation and sf-completeness
In [9], cooperating (generating) grammar systems were defined in such a way that
the concept of «/-completeness was used as the basis of the cooperation protocol. In
this section we present results about the derivational capacity and size complexity of
accepting CD grammar systems with components cooperating in the above manner.

Using our notation, we first give the following definition which is appropriate
both for generating and accepting CD grammar systems.

Let G = (N, T, S, Pi,..., Pn) be a context-free CD grammar system and let h be
a morphism defined by h(A) = A, for A € N and h(a) = A, for a £T. In sf-mode
of derivation the rewriting has to be performed by one and the same component Pi
until and unless it is disabled, i.e., a sentential form w has been derived such that
Pi is not s/-complete any more with respect to h(w) in the generating case and
with respect to w in the accepting case.

The family of languages generated by CD grammar systems with at most
n [A-free] context-free components working in the s / -mode is denoted by
£8 e n (CD„, CF[—A], sf). If there is no limit for the number of components then
we write the subscript oo instead of n. The language families defined by the corre-
sponding accepting devices are denoted analogously.

In contrast to the results about generating CD grammar systems with context-
free components working in (weak-)i-mode, for the systems defined by Meersman
and Rozenberg the following result is shown ([9]):

Theorem 5.1 ¿« " " (CA», CF[-X],sf) = &en(P, CF[-A], ac). •

On Competence and Completeness in CD Grammar Systems 357

As it concerns the A-free accepting case, we find the same hierarchical relation-
ship as for (hard-)i-mode proved in [8], but here, we have also nonempty families
of languages accepted by devices containing A-rules.

Theorem 5.2 (i) ¿ " » (C D « , , CF — A, sf) = £«e n(CS) = £ a c c (CS)

(ii) £a c c(CDoo, CF, sf) = £ g e n (RE) = £ a c c (RE)

Proof, (i) Since any CD grammar system from (CDoo,CF — A , s f) can be sim-
ulated by a linear-bounded automaton (that is, by a context-sensitive grammar),
we only show that the reverse inclusion holds. For, our proof is based on the
underlying idea of the proof of [5, Theorem 3.3]. Let us have a generating context-
sensitive grammar G = (N , T , P , S) in Kuroda normal form, without A produc-
tions. Assume that a unique label r is attached to any context-sensitive rule, of
the form XU —• YZ with X,U,Y,Z £ N, in P. Let us denote the set of labels by
Lab(P) = { r i , r 2 , . . . , r f i } . Let T = {d | a £ T } , { ? = {a | a £ T} and let h be
a morphism defined by h(a) = A for A £ N and h(a) = a for a £ T. For a string
w £ (N U T)* let us denote by w = h(w).

We construct an accepting CD grammar system

T — (N', T, S', Pi„it,PcF, Pi,i, Pi,2, Pi,3, P^i, P[t2> P[t3 • • • i PR,\I'PR,2> PR,3)

such that L°jc(T) = L(G) holds. Let T be defined with

N' = i V u T u f u { 5 ' , / 1 } U {[A, r], (A, r) \ A £ N and r £ Lab(P)}
U{x' | x £ W U T } U { < x , r > | x £ ./V U T and r £ Lab(P)}

(the unions being disjoint). The components of T are constructed as follows:

-Pinit = {a —• a, a -+ a, a —• a | a £ T } ,
PCF = {S->S'}U{x-+xlx£Nuf}U{w->CIC->w£P}U

{Y ->[Y,r]\r : XU ->YZ £ P}U{x' ^ x\x £ N u f } u
{a a\a £ T} ,

and, for 1 < r < R, r : XU — YZ:

Pr,i = { [>>] [y,r], Z — (Z,r)}U {x — x \x £ NUT} U {x' — x\x £ N U T)
Pr 2 = {[y, r](Z, r) F) U {x -»• x | x £ N U f } U {x —< x, r > | x £ N U T}
Pr3 = {[Y,r]->X,(Z,r)^U}U{x^x\x£NUT}U

{< x ,v >-• x'\x £ NUT}
P'r, i = {[Y,r]^[Y,r},Z^Z'}
Pr, 2 = {[Y,r]Z>-*F,[Y,r}^Y'}
Pr,3 = {Y'-+X,Z'-+U,X-+X}

Production set Pmit is for starting the derivation process. Obviously, by
PQF context-free derivation steps of G are simulated whereas the components

358 Henning Bordihn. Erzsébet Csuhaj-Varjú

Pr,i, Pr,2, Pr,3 and Pj. P{. 2, Pf. 3 simulate applications done by the rule with la-
bel r after replacing exactly one appearance of symbol Y in the sentential form
by [Y, r], The first group of production sets handles the situation when the sen-
tential form is of the form u[Y,r]Zv, with uv £ (N U T) + , and the second is for
the situation when the sentential form is [Y,r\Z. In the first case it is necessary
to replace a symbol < x , r > in order to leave Pr 3 which can only be introduced
by application of Pri2. But Pri2 can be active only if the symbols [V, r] and (Z, r)
are neighbouring in the "correct" manner or they do not appear at all. In the
latter case, the application of Pr<2 and Pr<3 remain without any effect. Shortcuts
are impossible since a component must be fully competent when applied. Similarly,
it is easy to see that production sets P'r t , Pf. 2 , P{. 3 can be successfully applied only
if the sentential form is of the form [Y,'r]Z. Hence, L a c c (r) = Lgen(G).

(ii) Without loss of generality we can assume the given type-0 grammar to have
only rules as a grammar in Kuroda normal form only having rules of the form
A —• A, with A £ N, in addition. Thus, we can use the same construction as in (i)
only giving additional rules A —• A to component Per if needed. The other direction
of the proof follows by the Church theses or it can be shown by construction of a
Turing machine. •

Finally, we investigate the question if the number of components can be re-
stricted for devices working in s/-mode. Indeed, we find that 5 components are
sufficient in order to describe the whole language family.

T h e o r e m 5.3 (i) £Sen(CDoo,CF[-A], sf) = £« e n (CD 5 , CF[-A], sf)

(ii) ¿ ^ (C D o c C F f - A] , * /) = £ a c c (C D 5 , C F [- A] , s /)

Proo f . Let G = (N, T, S, Pi,..., Pn) be a CD grammar system of degree n > 5
working in «/-mode. Construct a CD grammar system working in « / -mode of the
same type with 5 components according to the following basic idea:
Component 1 contains all rules of the given system, but the symbols in the rules
carry the number of the component of G, where they originally belong to, as sub-
script. For simulating work of component Pi, the symbols in the sentential form
must carry subscript i, too. Then, this component becomes disabled iff there is no
rule stemming from P,- which is applicable to the current sentential form, and one
can continue with component 2 or 3.
In component 2 to even subscripts i of the symbols of the sentential form, one is
added (modulo n) in order to change the production set of G which shall be simu-
lated.
Component 2' is the only component which can get active after applying compo-
nent 2. Here, it is checked whether all symbols have changed their subscript. If
yes, a continuation with component 1 or 3 is possible, otherwise the derivation is
blocked.
Components 3 and 3' do the analogous job as components 2 and 2' for odd sub-
scripts.

On Competence and Completeness in CD Grammar Systems 359

Now, we give the formal description of that system for the accepting case. The
construction for the generating case can be given analogously.

Let G' = {N',T,S',Pl,P2,P^P3,P^), where

N' = N U { 5 ' } U {At, A'0 A'l\ A £ N U T and 1 < i < n}

(the unions being disjoint). Furthermore, let hi be the morphism defined by hi(A) —
Ai for A £ NUT, 1 < i < n. Then, the components of G' are constructed as follows:

Pi = {hi(a) —> hj(P) | a —• /? £ P,-, 1 < i < n} U {A" —>• yl, 11 < i < n} U
{Si — S' 11 < i < n} ,

P2 = {A, Ai+1 | i = 0 mod 2} U {Ai+1 Ai+l \ i = 0 mod 2} U
{Ai A'i+11 i = 0 mod 2} U {A" A{ | i = 0 mod 2} U
{,4 -h. Ai | A £ N U T} U {A -* A\ \A £ N U T} U Q2,

P'2 = {Ai+i -* ,4i+i 11 = 0 mod 2}U {A'i+1 A"+l \i = 0 mod 2 } ,
P3 = {,4,- Ai+1 | i = 1 mod 2} U {Ai+1 Ai+1 \i = 1 mod^^2} U

{Ai — A'i+1 | i = 1 mod 2} U { A " — A{ | i = 1 mod 2} U Q3 ,
P^ = {^¿+1 —+ Ai+\ |« = 1 mod 2} U {A- + i —> A"+l | ? = 1 mod 2} ,

where
Au An ^ A[\Ae NUT}U

Q2 = {Ai Ai IA £ N U T} if n = 0 mod 2 and
if n = 1 mod 2

Ai , An A[| A £ N U T}U
Q3 = {Ai Ai | A £ N U T) if n = 1 mod 2 .

if n = 0 mod 2

Clearly, the system has to start with component P2 by rewriting any terminal
a by ai. The axiom can be derived after yielding Si for some i with Pi. Note that,
by technical reasons, after applying the rules in Q3 the system has to continue with
component P2 and then with P3. Moreover, each component is a set of accepting
context-free productions; in this connection the modifications are necessary for
proving the statement in the generating case. •

Acknowledgements: The authors are grateful to Henning Fernau and Markus
Holzer for discussions on the topic.

References
[1] H. Bordihn and H. Fernau. Accepting grammars with regulation. International

Journal of Computer Mathematics, 53:1-18, 1994.

[2] H. Bordihn and H. Fernau. Accepting grammars and systems via context
condition grammars. Journal of Automata, Languages and Combinatorics,
1(2):97-112, 1996.

360 Henning Bordihn. Erzsébet Csuhaj-Varjú

[3] E. Csuhaj-Varju and J. Dassow. On cooperating/distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.),
26(l/2):49-63, 1990.

[4] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Gh. Paun. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach,
London,1994.

[5] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory,
volume 18 of EATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

[6] H. Fernau and H. Bordihn. Remarks on accepting parallel systems. Interna-
tional Journal of Computer Mathematics, 56:51-67, 1995.

[7] H. Fernau and M. Holzer. Accepting multi-agent systems II. Acta Cybernetica,
1996. In this volume.

[8] H. Fernau, M. Holzer, and H. Bordihn. Accepting multi-agent systems: The
case of cooperating distributed grammar systems. Computers and Artificial
Intelligence, 15(2-3): 123-139, 1996.

[9] R. Meersman and G. Rozenberg. Cooperating grammar systems. In Proc.
MFCS'78, volume 64 of LNCS, pages 364-373. Berlin: Springer, 1978.

[10] Gh. Paun. On the generative capacity of hybrid CD grammar systems. J. Inf.
Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.), 30(4):231-244,
1994.

[11] A. Salomaa. Formal Languages. Academic Press, 1973.

