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On Competence and Completeness in CD 
Grammar Systems* 

Henning BORDIHN * Erzsébet CSUHAJ-VARJÚ * § 

Abstract 

In this paper, different concepts of i-mode derivations in CD grammar sys-
tems which can be encountered in the literature and generalizations thereof 
are considered both in generating and in accepting case. Moreover, the influ-
ence of completeness of the components as an additional requirement to the 
derivational capacity of CD grammar systems is investigated. 

1 Introduction 
The theory of grammar systems is a recent vivid field of formal language the-
ory describing multi-agent symbol systems by tools of formal grammars and lan-
guages ([4]). Cooperating/distributed grammar systems, (CD grammar systems, 
for short) is one the important subfields of the area, launched for syntactic mod-
elling distributed problem solving systems based on blackboard architectures ([3]). 

. We note, however, that the term "cooperating grammars" was introduced first in 
[9], as a generalization of two-level substitution grammars to a multi-level concept. 

A CD grammar system consists of a finite set of grammars that cooperate in 
deriving words of a common language. At any moment in time there is exactly 
one sentential form in derivation and the grammars work on this string in turns, 
according to some cooperation protocol. In this model, the cooperating grammars 
correspond to the cooperating independent problem solving agents, the sentential 
form in deriva tion represents information on the current state of the problem solving 
stored in a global database, the blackboard, and the obtained language describes 
the set of problem solutions. 
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Turning to the original motivation, it is a sensible question whether some impor-
tant properties and features of agents that influence the behaviour of blackboard-
type problem solving systems can be formalized and interpreted in the syntactic 
framework provided by CD grammar systems. In this paper we deal with two 
of these properties: competence and completeness of components, moreover, we 
study them both in the case of generating CD grammar systems and in the case of 
accepting ones. 

The idea of accepting grammars and systems ([11]) is the following: Starting 
from a "terminal" word, the system tries to derive a given goal word (the axiom) 
where, according to [1, 2, 6], the yield relation is defined by textually the same 
words as in generating case. Possible restrictions to production sets are turned 
"around", e.g., coming to productions of the form v —• a in the context-free case, 
where v is a (possibly empty) word and a is a symbol. 

CD grammar systems as accepting devices (CD grammar systems consisting of 
accepting grammars), corresponding to backward deduction systems in contrast to 
generating CD grammar systems which correspond to forward deduction systems, 
were considered in [8]. 

Both competence and completeness can form a basis of the cooperation protocol. 
According to our approach, an agent is competent in a current state of the problem 
solving if it is able to contribute to the problem solution. In grammatical terms, 
the component grammar is competent in the derivation of the current sentential 
form if it is able to apply at least one of its productions to it. 

So far there have been two kinds of cooperation protocols (¿-modes of derivation) 
based on competence/incompetence of grammars introduced and examined: in the 
first case (hard ¿-mode), a grammar can start with the derivation if it is competent 
in the sentential form and stops with the derivation if it is no longer competent in 
the actual string (it has no production to apply; the agent is not able to contribute 
to the problem solving). In the second case, the start condition is the same but the 
stop condition differs: the grammar finishes the derivation if it is not able to derive a 
word different from the actual one (the competence of the grammar is not enough 
to change the state of the problem solving). We generalize the latter concept 
to a cooperation protocol called stagnation derivation mode (s-mode), where a 
component has to continue its work until and unless a word is derived from which 
no new word can be rewritten, i.e., it is impossible to derive a word which does 
not appear in the derivation before. Thus, the competence of the agent (of the 
component grammar) is not enough to leave a stagnating phase of the problem 
solving (the derivation). 

In this paper we compare the power of context-free CD grammar systems work-
ing on the basis of the above cooperation protocols. We show that the three variants 
are equally powerful. In the case of generating CD grammar systems they identify 
the class of ETOL languages and in the case of accepting CD grammar systems 
they provide a description of the class of context-sensitive languages (supposing 
that A-free productions are taken into account). These results, in the case of weak 
t-mode and stagnation mode of derivation do not change if we incorporate some 
requirement concerning completeness of the components. 
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The notion of completeness is well-known from Lindenmayer systems: For a 
set of productions of a usual L system it is required that, for any symbol a of 
the alphabet, there is at least one production rule replacing a. In [6], accepting L 
systems were investigated, where this concept of completeness does not apply any 
more. 

Since a production set of an accepting (ET)OL system is seen as an inverse finite 
substitution it is required that, for any symbol a, there is at least one rule of the 
form v —• a. One might wish to replace this "right-completeness" condition by a 
"left-completeness" condition as one is used to have in generating case, but such a 
condition must be in accord with the finiteness of the set of productions. 

One sensible approach to define completeness can be inherited from [9], where 
the derivation strategy of the cooperating generative context-free grammars is de-
fined as follows: every component grammar can start with the derivation if it is full 
competent in the generation of the current sentential form (if it has a production 
for any nonterminal symbol appearing in the actual string) and stops with it if it 
is no longer satisfies this criteria (there is at least one nonterminal in the string for 
which the grammar has no rewriting rule). 

Clearly, this idea can be transferred to the accepting case (also applying to ac-
cepting Lindenmayer systems): a grammar component / set of productions is com-
plete (thus full competent) for the current sentential form iff this sentential form 
can be partitioned into non-overlapping subwords each of which can be rewritten by 
a rule in the production set. We call this concept, that exhibits both completeness 
and competence, sentential-form-completeness («/-completeness for short). Obvi-
ously, in generating case this concept coincides with the usual "left-completeness" 
condition known from L systems. 

In [9] it is shown that context-free CD grammar systems with components 
working in « / -mode of derivation are equally powerful to the class of context-
free programmed grammars with appearance checking. We show that in the case 
of accepting context-free CD grammar systems this protocol leads to the power of 
context-sensitive grammars, morevover, to reach this capacity at most five cooper-
ating grammars are sufficient. 

2 Basic definitions 
We assume that the reader is familiar with the basic notions of formal language 
theory, for further details we refer to [11], and [5]. With our notations, we mostly 
follow [5]. Especially, we use C to denote inclusion, C to denote strict inclusion, 
and A to denote the empty word. The length of a word w is denoted by |io|, N 
denotes the set of positive integers. Two languages L\ and L2 are considered to be 
equal iff L\ \ {A} = L2 \ {A}. 

The family of languages generated by regular, context-free, context-sensitive, 
type-0 Chomsky grammars, ETOL systems, context-free programmed grammars, 
and context-free programmed grammars with appearance checking are denoted 
by £ g e n (REG), £ g e n (CF), £g e n (CS), ¿ g e n ^ J ^ ¿ g e n ^ T O ^ £gen(p C F ) i a n d 
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£gen(P,CF,ac), respectively. In order to denote the family of languages accepted 
by a device of the corresponding type, we write the superscript acc instead of gen. 
If we want to exclude A-productions, we add —A in our notations. Whenever we 
use bracket notations like £ee n(P,CF[-A]) c £g«n(P,CF[-A],ac) we mean that the 
statement is true both in the case of neglecting the bracket contents and in the case 
of ignoring the brackets themselves. 

We define CD grammar systems in a way suitable for the interpretation of both 
generating and accepting systems. 

A CD grammar system of degree n, with n > 1, is an (n + 3)-tuple 

G = (N,T,S,Plt...,Pn), 

where N and T are two disjoint alphabets, the set of nonterminal and terminal 
symbols, respectively, V = N U T is the total alphabet of G, S E N is the axiom, 
and P\,... ,Pn are finite sets of rewriting rules of the form or —»• /3, a, /3 G (N U T)+. 
In addition, we allow A-rules of the form a —» A in the generating case and A —* f3 in 
the accepting case. For x, y E (N U T)*, we write x => y iff x = x\ax2, y = x\fix-z 
for some a —• (3 G F,-. Hence, subscript i refers to the production set (component) 
to be used. Furthermore, we denote by ==>• a derivation executed by the ¿-th 

t 
< k > k component according to some cooperation protocol / . For example, (—=> , i I 

— k * 
= > , or , respectively) denotes a derivation of at most k (at least k, exactly k, 
or an arbitrary number of) derivation steps as above. 

For some cooperation protocol / , the language generated in / -mode (e.g., in 
< fc-mode) by a CD grammar system G of degree n is 

£ f n ( G ) = {w G T*\S = w0 wi •••=U =J=> wm = w with J >1 '2 ' m — 1 "m 

m > 1, 1 < ij < n, 1 < j < m} . 

The language accepted in / -mode by G is defined by 
£ « * ( G ) = {w £ T* \ w = w0 ==> wi => •••=U wm-i M- wm = S with 1 >1 "2 1 m — 1 'm 

m > 1, 1 < ij < n, 1 < j < m} . 

The families of languages generated (accepted, respectively) in the / -mode by CD 
grammar systems with at most n [A — free] context-free components are denoted 
by jC®en(CDn, CF[—A], / ) (or £ a c c (CD„ , CF[—A], / ) ) . If the number of cdmponents 
is not restricted then we write £ « e n ( C D 0 0 l C F [ - A ] ) / ) ( £ a c c (CDoo ,CF[ -A] , / ) ) . 

3 Cooperation and Competence 
In this section we compare the derivational capacity of CD grammar systems work-
ing under cooperation protocols based on competence/incompetence of the cooper-
ating grammars. Since incompetence (disability of rewriting) realizes a terminat-
ing condition for the component grammar, these kind of cooperation protocols are 
called i-modes of derivations. 
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Let us have formal definitions. 
A derivation 

D : x = xo => xi => X2 =>•••• => x„_i =}> xn = y 

from x to y is said to be 

(i) of type hard-t ( ) iff there is no z such that y => z, 

(ii) of type weak-t ( t w ) iff there is no z ^ y such that y z, 

(iii) stagnating (s) iff there is no z ^ {z^ | 0 < i < n} such that y =>•* z. 

Let G = (N, T, S, Pi,..., Pn) be a CD grammar system and let / £ {th,tw,s}-
For x, y 6 (N U T)m, we write x =>• y iff x =>• y and x ==>• y is a derivation of type 
/• . . . 

Then, ¿^ " (CDo^CF^u , ) is exactly the family of languages generated by CD 
grammar systems with an arbitrary number of context-free components working in 
<-mode as defined, e.g., in [4], whereas £gen(CDoo, CF,th) equals the corresponding 
family as defined, e.g., in [8]. 

Observation 3.1 By definition, if a derivation is of type th then it is of type tw, 
and if it is of type tw then it is stagnating. 
Hence, for a CD grammar system G, we have 

(i) Lf:n(G) C L?:n(G) C L f " (G) and 

(ii) LJT(G) C L - C ( G ) C L r ( G ) . D 

Note that productions of the form A —• A block derivations in hard-t-mode 
whereas they can be neglected in CD grammar systems working in weak-<-mode. 
Nevertheless, we find the following lemma. 

Lemma 3.2 For n E N U {oo} , we have 

£sen(CD„, CF\—\],th) = £Sen(CDn,CF[-\],tw) and 
C*c{CDn,CF\-Xlth) = C*cc{CDn,CF\-\],tw) 

Proof. Suppose we have a CD grammar system working in t^-mode. A simulating 
CD grammar system working in </,-mode can be obtained by cancelling all rules of 
the form A —• A from the productions sets of the original one. Conversely, if we 
replace all rules of the form A —* A by A —* F, where F is a trap symbol, in a 
CD grammar system working in th-mode, we obtain a simulating grammar system 
working in the i^-mode of derivations. • 

In order to compare these families of languages with that one generated (ac-
cepted) by CD. grammar systems working in s-mode, we take a better look at 
stagnating derivations. 
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Let 
D : x = x0 => £1 =>•••=> xn =>• • • • 

be a stagnating derivation which is not terminating. Then there is a finite language 
Ls tag(Z)) which consists of all words appearing in D such that, for any pair (u, v) E 
¿stag(^) x ¿stag(D), we have u v and v =>• u in D. 

Lemma 3.3 Let G be a generating CD grammar system with context-free compo-
nents. For any derivation D of G which is stagnating, all words in Lstag(-D) have 
one and the same length. 

Proof. Assume the contrary. Let u be a word of maximum length in L s t a g (D) , 
i.e., if a rule is applicable to u then this rule has the form A —• B or A —• A, where 
A and B are symbols. Here, renaming rules (A —* B) cannot introduce symbols B 
to which productions B —• /3 with |/?| > 1 can be applied, since otherwise u is not 
the word of maximum length in Lstag(-D)- Thus, we can apply only rules of the 
form A —* B and A —• A also to any word derived from u. In particular, this holds 
for any word u' E £stag(-D) with |u'| < |u|. This contradicts u' => u. • 

In conclusion, if a derivation D is stagnating then there is a word in D such that 
only renaming rules can be applied in the sequel or it is a terminating derivation. 

Lemma 3.4 C^n{CD^, CF\-X),s) = Csen(ET0L). 

Proof. The inclusion £®en(ET0L) C ^ " ( C D » , CF[-A], s) follows by the con-
struction given in [4, pp. 40-42] for the <>,-mode case. 

Thus, it is left to prove ¿^"(CDoo, CF[-A], s) C £8en(ET0L). Let T = (N,T, 
Pi, P2,..., Pn, S) be a generating CD grammar system. For any nonterminal A 
and 1 < i < n, we set L'A = SF(G'A) where G\ is the context-free grammar 
G\4 = ( N , T , Pi, A), i.e., L\ is the set of all sentential forms which can be generated 
by the i-th component of T starting with A. Furthermore, let 

Qi _ { la i f f la C n and> f o r a11 B G L\, we have UB = L\ 
A ~ ^ 0 otherwise ' 

M' = {B E iV | there is no j3 such that B ¡3 E Pi] , 

and 

iVJtag = 
AeN 

Obviously, N*tag is the set of nonterminal symbols which induce stagnation of 
the z'-th component, more precisely, if the i-th component is active, stagnation 
appears iff a sentential form w E (-NgtagUT)* has been derived. Now, construct the 
ETOL system G = (V,T,V,S), with V = N U T U {A{ \ A E N, 1 < i < n } U {F} 
and, for 1 < i < n, "P contains the following tables: 

Pi, 1 = {A^ Ai\Ae N}u{a-+ a\a£T}u{X ^ F\X $ NUT} 
Pi,2 = {At hi(w) | A w E Pi} U {a a | a E T} U {At A{ | A E N} U 

{Aj — F | A E N, j # i} U {A — F \ A E N} U {F F}, 
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where hi is the morphism defined by hi(A) — Ai for A € N and hi(a) = a for 
a£ T, 

Pi,3 = {Ai^A\AeKtas}U{a^a\aeT}U{X ^N'stagUT}. 

Here, table i ^ i simulates the selection of component P,- of T by "colouring" the 
nonterminals in the sentential form (replacing them by their corresponding sub-
scripted version), P,-_2 simulates the application of the chosen component, and P,-^ 
allows the system to leave the z-th component iff stagnation appears. The rules 
with the trap symbol F on their right-hand sides forbid shortcuts. Thus, we have 
Z,gen(G) = L g e n ( r ) . • 

The proof for £g e n (ET0L) C £ g e n (CD 3 , CF[-A], <) in [4, pp. 40-42] is given 
by a construction of a CD grammar system working in hard-<-mode with three 
components. Together with Observation 3.1, we can summarize the results as 
follows. 

Corollary 3.5 For f £ s}, we have 

£sen(ET0L) = ^(CDoo.Cft-AJ.tft) 
= £ « e n ( C A » ) C f t - A ] ) t I I , ) 
= £gen(CT>oo, Cif—A],s) 
= C*™{CD3,Cf\-\],f). 

Let us turn to the accepting case. Clearly, it is impossible to get any terminating 
or stagnating derivation of a component of an accepting CD grammar system if A-
rules, i.e., rules of the form A —• v, are present. Hence, we restrict ourselves to the 
A-free case. Moreover, it is a direct consequence that as in the case of generating 
CD grammar systems, also in the case of accepting CD grammar systems with 
context-free components it holds that all words in Lstas(D) have one and the same 
length for any stagnating derivation D. 

In [8] it is shown how to construct an accepting CD grammar system with two 
context-free A-free components working in hard-<-mode in order to simulate a given 
context-senstive grammar. On the other hand, it is obvious that any accepting CD 
grammar system with non-erasing context-free components in th- or <w-mode can 
be simulated by a linear-bounded automaton. But even such a system working in 
s-mode can be simulated by a linear-bounded automaton. This fact is obvious if 
we take into consideration that a derivation is stagnating only if it is terminating 
or after deriving a certain sentential form the rules that can be applied to the 
sentential form are only certain renaming rules, that is, productions of the form 
A—*B, with A,B £ N. Thus, we easily find the next theorem. 

Theorem 3.6 For f £ {th,tw,s}, we have 

£ g e n (CP) = £ a c c (CF) = £ a c c (CDi , CF — A , / ) 
C £ a c c (CD 2 , CF — A, / ) 
= £ a c c ( C £ o o , C P - A , / ) 
= £g e n (CS) = £a c c (CS). 
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4 Cooperation and Completeness 
In this section we investigate how the derivational capacity of CD grammar systems 
changes when the components satisfy some completeness criteria. We show that 
these additional conditions do not necessarily alter the derivational power, even in 
some i-mode cases, where, actually, the communication protocol is determined by 
the incompleteness of the components. 

First, let us discuss the concept of completeness. 
From the theory of (generating) (ET)OL systems we know a condition called 

left-completeness: For each symbol a of the alphabet V of the system there is at 
least one production a —• v, v £ V*. Analogously, right-completeness (originally for 
accepting (ET)OL systems) is defined: For each symbol a of the alphabet V there 
is at least one production v —* a, v £ V*. These conditions can be modified for 
CD grammar systems as follows: A set P of generating context-free productions (a 
component of the CD grammar system) is said to be left-complete (right-complete) 
iff there is at least one production of the form A —• ¡3 for each nonterminal A (at 
least one production of the form A —+ x for each symbol x of the total alphabet, 
respectively) in P. A set P of accepting context-free productions is called left-
complete (right-complete) iff there is at least one production of the form x —• A 
for each symbol x of the total alphabet (at least one production of the form 
for each nonterminal A, respectively) in P. 

We concede that the above concept of right-completeness for the generating 
case and that of left-completeness for the case of accepting sets of productions 
are not very satisfying. For, e.g., the accepting case, one might take into account 
the possibility to require the following: If w —• a, with |u>| = k, is in the set of 

k 
productions P then P Ç V* x V is surjective from |J V into V. This requirement 

¿=1 
is no restriction, since we can simply add rules of the form v —• F for such words 

k 
v £ (J V* which do not appear on left-hand sides in the given production set, and 

: = 1 
those "dummy rules" are out of any influence to the rewriting process. Moreover, 
we get no genuine completeness at all. 

Another concept of completeness which is appropriate both for generating and 
for accepting devices can be defined, based on the cooperation protocol used in [9], 
as follows: 

Let V be an alphabet and let L Ç V* be a language over V. A set of production 
rules P is said to be sentential-form-complete (sf-complete, for short) with respect 
to L iff every word w £ L \ {A} has a factorization w = X\X2 • • xn such that, for 
each i, 1 < i < n, there is a rule xt- —• ¡3 £ P, with ¡3 £ V*. 

Then, e.g., in a (generating) EOL system G = {V,Y,, P,u), P has to be sf-
complete with respect to V*. 

Observation 4.1 If a set of production rules P is left-complete then it is sf-
complete with respect to (domP)*, where domP denotes the set of all symbols ap-
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pearing on left-hand sides of the rules in P. 
For a generating context-free set P, we even find equivalence between these two 

properties. • 

A CD grammar system G = (N, T, S, Pi,..., Pn) is called left-complete or right-
complete iff each Pi, 1 < i < n, is left-complete or right-complete, respectively. G 
is said to be s/-complete iff each Pi, 1 < i < n, is «/-complete with respect to N* 
if G has generating context-free components, and with respect to (NUT)* if G has 
accepting context-free components. 

Note that it is sensible to differentiate between generating and accepting mode in 
this definition since in generating mode only nonterminal symbols can be rewritten 
whereas in accepting case there must also be rules for rewriting terminals. 

Theorem 4.2 The requirement of left-completeness, right-completeness, and / or 
sf-completeness does not alter the derivational power in the case of the following 
grammars and systems: 

(i) generating and accepting [E][T]0L systems, 

(ii) generating and accepting context-free grammars, 

(Hi) generating and accepting CD grammar systems with [A-free] context-free com-
ponents working in *-, in weak-t-, or in stagnating mode, 

(iv) generating and accepting CD grammar systems with [A-/ree] context-free com-
ponents working in < k-, > k-, or = k-mode, with k > 1. 

Proo f . Let N be the set of nonterminals and T be the set of terminals of the 
system under consideration. 

(i) Add rules x —• x for any x £ V to the set of productions (or to each 
production table, respectively) both in the generating and in the accepting case. 

(ii)-(iii) In the generating case, to the set of productions (or to each component, 
respectively) add rules A —• A for any A £ N U{.F}, where F is a new nonterminal 
symbol and add F —* a for any a £ T (in order to get right-completeness). In the 
accepting case, add T' = {a' \ a £ T } to the set of nonterminal symbols. Then, to 
the set of productions (or to each component, respectively), add rules A —» A for 
each A £ NUT', and a —• a' for each a £ T. Moreover, in the case of CD grammar 
systems working in weak-< or stagnating mode, we have to add the rules in {t; —• ¡3 \ 
v £ s(a), ot —• ¡3 £ Pj} to component Pi, where s is the finite substitution defined 
by s(vl) = for A £ N, and s(a) = {a, a '} , for a £ T. 

(iv) Let Fi and F2 be two new nonterminal symbols. Add Fi Fi and F2 —* F2 

to each component. Moreover, add rules x —• Fi for x £ N in the generating case 
and for x £ N UT in the accepting case, respectively. This guarantees left- and sf-
completeness. Furthermore, add rules F2 —i> x for x £ iVUT in the generating case 
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and for i G in the accepting case, respectively, in order to get right-completeness, 
too. • 

The next theorem deals with the hard-i-mode of derivation where the situation 
is different. 

Theorem 4.3 (i) Right-completeness is no restriction for generating as well 
as for accepting CD grammar systems with [A-free] context-free components 
working in hard-t-mode. 

(it) Both the family of languages generated by left-complete CD grammar systems 
with [A-free] context-free components working in hard-t-mode and the family 
of languages generated by sf-complete CD grammmar systems with [A-/ree] 
context-free components working in hard-t-mode is equal to C(CF). 
The corresponding families of languages in the accepting case are empty. 

Proof. (i) Add rules F —* x for all symbols x of the total alphabet in the 
generating case and for all nonterminal symbols in the accepting case, respectively, 
and the rule F —» F, where F is a new nonterminal symbol, again. Statement (ii) 
is obvious. O 

5 Cooperation and sf-completeness 
In [9], cooperating (generating) grammar systems were defined in such a way that 
the concept of «/-completeness was used as the basis of the cooperation protocol. In 
this section we present results about the derivational capacity and size complexity of 
accepting CD grammar systems with components cooperating in the above manner. 

Using our notation, we first give the following definition which is appropriate 
both for generating and accepting CD grammar systems. 

Let G = (N, T, S, Pi,..., Pn) be a context-free CD grammar system and let h be 
a morphism defined by h(A) = A, for A € N and h(a) = A, for a £T. In sf-mode 
of derivation the rewriting has to be performed by one and the same component Pi 
until and unless it is disabled, i.e., a sentential form w has been derived such that 
Pi is not s/-complete any more with respect to h(w) in the generating case and 
with respect to w in the accepting case. 

The family of languages generated by CD grammar systems with at most 
n [A-free] context-free components working in the s / -mode is denoted by 
£8 e n (CD„, CF[—A], sf). If there is no limit for the number of components then 
we write the subscript oo instead of n. The language families defined by the corre-
sponding accepting devices are denoted analogously. 

In contrast to the results about generating CD grammar systems with context-
free components working in (weak-)i-mode, for the systems defined by Meersman 
and Rozenberg the following result is shown ([9]): 

Theorem 5.1 ¿« " " (CA», CF[-X],sf) = &en(P, CF[-A], ac). • 
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As it concerns the A-free accepting case, we find the same hierarchical relation-
ship as for (hard-)i-mode proved in [8], but here, we have also nonempty families 
of languages accepted by devices containing A-rules. 

Theorem 5.2 (i) ¿ " » ( C D « , , CF — A, sf) = £«e n(CS) = £ a c c (CS) 

(ii) £a c c(CDoo, CF, sf) = £ g e n (RE) = £ a c c (RE) 

Proof, (i) Since any CD grammar system from (CDoo,CF — A , s f ) can be sim-
ulated by a linear-bounded automaton (that is, by a context-sensitive grammar), 
we only show that the reverse inclusion holds. For, our proof is based on the 
underlying idea of the proof of [5, Theorem 3.3]. Let us have a generating context-
sensitive grammar G = ( N , T , P , S ) in Kuroda normal form, without A produc-
tions. Assume that a unique label r is attached to any context-sensitive rule, of 
the form XU —• YZ with X,U,Y,Z £ N, in P. Let us denote the set of labels by 
Lab(P) = { r i , r 2 , . . . , r f i } . Let T = {d | a £ T } , { ? = {a | a £ T} and let h be 
a morphism defined by h(a) = A for A £ N and h(a) = a for a £ T. For a string 
w £ (N U T)* let us denote by w = h(w). 

We construct an accepting CD grammar system 

T — (N', T, S', Pi„it,PcF, Pi,i, Pi,2, Pi,3, P^i, P[t2> P[t3 • • • i PR,\I'PR,2> PR,3) 

such that L°jc(T) = L(G) holds. Let T be defined with 

N' = i V u T u f u { 5 ' , / 1 } U {[A, r], (A, r) \ A £ N and r £ Lab(P)} 
U{x' | x £ W U T } U { < x , r > | x £ ./V U T and r £ Lab(P)} 

(the unions being disjoint). The components of T are constructed as follows: 

-Pinit = {a —• a, a -+ a, a —• a | a £ T } , 
PCF = {S->S'}U{x-+xlx£Nuf}U{w->CIC->w£P}U 

{Y ->[Y,r]\r : XU ->YZ £ P}U{x' ^ x\x £ N u f } u 
{a a\a £ T} , 

and, for 1 < r < R, r : XU — YZ: 

Pr,i = { [>>] [y,r], Z — (Z,r)}U {x — x \x £ NUT} U {x' — x\x £ N U T ) 
Pr 2 = {[y, r](Z, r) F) U {x -»• x | x £ N U f } U {x —< x, r > | x £ N U T} 
Pr3 = {[Y,r]->X,(Z,r)^U}U{x^x\x£NUT}U 

{< x ,v >-• x'\x £ NUT} 
P'r, i = {[Y,r]^[Y,r},Z^Z'} 
Pr, 2 = {[Y,r]Z>-*F,[Y,r}^Y'} 
Pr,3 = {Y'-+X,Z'-+U,X-+X} 

Production set Pmit is for starting the derivation process. Obviously, by 
PQF context-free derivation steps of G are simulated whereas the components 
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Pr,i, Pr,2, Pr,3 and Pj. P{. 2, Pf. 3 simulate applications done by the rule with la-
bel r after replacing exactly one appearance of symbol Y in the sentential form 
by [Y, r], The first group of production sets handles the situation when the sen-
tential form is of the form u[Y,r]Zv, with uv £ (N U T ) + , and the second is for 
the situation when the sentential form is [Y,r\Z. In the first case it is necessary 
to replace a symbol < x , r > in order to leave Pr 3 which can only be introduced 
by application of Pri2. But Pri2 can be active only if the symbols [V, r] and (Z, r) 
are neighbouring in the "correct" manner or they do not appear at all. In the 
latter case, the application of Pr<2 and Pr<3 remain without any effect. Shortcuts 
are impossible since a component must be fully competent when applied. Similarly, 
it is easy to see that production sets P'r t , Pf. 2 , P{. 3 can be successfully applied only 
if the sentential form is of the form [Y,'r]Z. Hence, L a c c ( r ) = Lgen(G). 

(ii) Without loss of generality we can assume the given type-0 grammar to have 
only rules as a grammar in Kuroda normal form only having rules of the form 
A —• A, with A £ N, in addition. Thus, we can use the same construction as in (i) 
only giving additional rules A —• A to component Per if needed. The other direction 
of the proof follows by the Church theses or it can be shown by construction of a 
Turing machine. • 

Finally, we investigate the question if the number of components can be re-
stricted for devices working in s/-mode. Indeed, we find that 5 components are 
sufficient in order to describe the whole language family. 

T h e o r e m 5.3 (i) £Sen(CDoo,CF[-A], sf) = £« e n (CD 5 , CF[-A], sf) 

(ii) ¿ ^ ( C D o c C F f - A ] , * / ) = £ a c c ( C D 5 , C F [ - A ] , s / ) 

Proo f . Let G = (N, T, S, Pi,..., Pn) be a CD grammar system of degree n > 5 
working in «/-mode. Construct a CD grammar system working in « / -mode of the 
same type with 5 components according to the following basic idea: 
Component 1 contains all rules of the given system, but the symbols in the rules 
carry the number of the component of G, where they originally belong to, as sub-
script. For simulating work of component Pi, the symbols in the sentential form 
must carry subscript i, too. Then, this component becomes disabled iff there is no 
rule stemming from P,- which is applicable to the current sentential form, and one 
can continue with component 2 or 3. 
In component 2 to even subscripts i of the symbols of the sentential form, one is 
added (modulo n) in order to change the production set of G which shall be simu-
lated. 
Component 2' is the only component which can get active after applying compo-
nent 2. Here, it is checked whether all symbols have changed their subscript. If 
yes, a continuation with component 1 or 3 is possible, otherwise the derivation is 
blocked. 
Components 3 and 3' do the analogous job as components 2 and 2' for odd sub-
scripts. 
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Now, we give the formal description of that system for the accepting case. The 
construction for the generating case can be given analogously. 

Let G' = {N',T,S',Pl,P2,P^P3,P^), where 

N' = N U { 5 ' } U {At, A'0 A'l\ A £ N U T and 1 < i < n} 

(the unions being disjoint). Furthermore, let hi be the morphism defined by hi(A) — 
Ai for A £ NUT, 1 < i < n. Then, the components of G' are constructed as follows: 

Pi = {hi(a) —> hj(P) | a —• /? £ P,-, 1 < i < n} U {A" —>• yl, 11 < i < n} U 
{Si — S' 11 < i < n} , 

P2 = {A, Ai+1 | i = 0 mod 2} U {Ai+1 Ai+l \ i = 0 mod 2} U 
{Ai A'i+11 i = 0 mod 2} U {A" A{ | i = 0 mod 2} U 
{,4 -h. Ai | A £ N U T} U {A -* A\ \A £ N U T} U Q2, 

P'2 = {Ai+i -* ,4i+i 11 = 0 mod 2}U {A'i+1 A"+l \i = 0 mod 2 } , 
P3 = {,4,- Ai+1 | i = 1 mod 2} U {Ai+1 Ai+1 \i = 1 mod^^2} U 

{Ai — A'i+1 | i = 1 mod 2} U { A " — A{ | i = 1 mod 2} U Q3 , 
P^ = {^¿+1 —+ Ai+\ |« = 1 mod 2} U {A- + i —> A"+l | ? = 1 mod 2} , 

where 
Au An ^ A[\Ae NUT}U 

Q2 = {Ai Ai IA £ N U T} if n = 0 mod 2 and 
if n = 1 mod 2 

Ai , An A[ | A £ N U T}U 
Q3 = {Ai Ai | A £ N U T) if n = 1 mod 2 . 

if n = 0 mod 2 

Clearly, the system has to start with component P2 by rewriting any terminal 
a by ai. The axiom can be derived after yielding Si for some i with Pi. Note that, 
by technical reasons, after applying the rules in Q3 the system has to continue with 
component P2 and then with P3. Moreover, each component is a set of accepting 
context-free productions; in this connection the modifications are necessary for 
proving the statement in the generating case. • 

Acknowledgements: The authors are grateful to Henning Fernau and Markus 
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