
Acta Cybernetica 12 (1996) 397-409.

Parallel Communicating Grammar Systems
with Separated Alphabets*

Valeria MIHALACHE t

Abstract

The generative capacity of parallel communicating grammar systems is
considered in the context that the component grammars have distinct ter-
minal and nonterminal sets. In the regular case, this results in strictly more
powerful systems in comparison to the classical ones. In the context-free case,
characterization of recursively enumerable languages is obtained when A-rules
are allowed in non-centralized returning systems, deriving in the synchronized
mode. Unsynchronized context-free systems with separated alphabets have
the same power as the corresponding usual systems.

1 Introduction
One of the main trends of our days in several fields of computer science is to solve
a complex problem by dividing it into subproblems, and then having it solved in
a cooperative mode by several "processors". The concretization of this trend in
grammar theory are the so-called grammar systems.

There are two basic models of grammar systems: cooperating distributed (CD,
for short) grammar systems, which have been introduced in [2] (a former variant can
be found in [7]; a particular case appears also in [1]), and parallel communicating
(PC, for short) grammar systems, which have been introduced in [10].

Roughly speaking, a grammar system consists of several (Chomsky) grammars
(called components) working together, towards generating a common language. In a
CD grammar system the component grammars work in turn, on the same sentential
form, only one being active at a given moment, according to a predefined protocol.
In a PC grammar system the components work simultaneously, in a synchronized
manner, each having its own sentential form and cooperating with the others by
communication, which is done by request. The Artificial Intelligence counterpart

"Research supported by the Academy of Finland, project 11281
'Faculty of Mathematics, University of Bucharest, Str. Academiei 17, 70109 Bucharest, Ro-

mania. Current address: Turku Centre for Computer Science (TUCS), Lemminkaisenkatu 14 A,
4th Floor, 20520, Turku, Finland

397

398 Valeria Mihalache

of a CD grammar system is the blackboard model in problem solving, whereas to
PC grammar system the classroom model corresponds (see [3]).

In the original definition, for parallel communicating grammar systems it is as-
sumed that all the grammars have the same terminal and nonterminal sets. This
is very convenient in terms of the classroom model. Thus, it is rather natural to
assume that all the pupils in a classroom have similar background and similar ab-
bilities (that is, the associated grammars in the system share the same nonterminal
set), and also that they are asked to perform similar tasks (in the corresponding
formal modélisation, this implies the same terminal set for all the grammars). How-
ever, if one considers that not pupils are working towards solving a problem, but
agents, instead, the working protocol being the same as in the classroom model,
such assumptions are not natural anymore. Agents can have to perform totally
different tasks, and they can have different skills.

Such a set-up can be modeled in the grammar systems framework by a slightly
modification of the original variant of PC grammar systems. One can consider that
any of the component grammars of the system has its own terminal and nonterminal
sets ([3], [9]). The main difference between these systems and the usual ones is that
here the same letter can act as terminal symbol in one grammar and nonterminal
in another one. In the regular case, PC grammar systems modified like that are
proved to be more powerful than systems of the initial form. Furthermore, in the
context-free case, characterization of recursively enumerable languages is obtained.

2 Preliminary definitions
Throughout this paper, we use the notation and basic results of formal language
theory from [4], [11] ; for grammar systems notions we refer to [3], [5]. We specify
here only some notation.

For an alphabet V, V* denotes the free monoid generated by V] the empty
string is denoted by A, |x| is the length of x G V* and \x\u is the number of
occurrences in x G V* of symbols of U C V. The classes of regular, context-free,
type-0 grammars and matrix grammars with appearance checking are denoted by
REG, CF, RE, MATac, respectively. Unless otherwise specified, we consider in this
paper only generative tools without A-productions.

For a class X of generative mechanisms, the family of languages generated by
elements of X is denoted by L (X) .

Definition 1 Let n > 1 be a natural number. A parallel communicating grammar
system of degree n with separated alphabets (PC grammar system of type s, for
short) is an (n + 1)-tuple

T = (K,G1,...,Gn),
where K — {Qi, ..., Q„} and

Gi = (Nil>I<,Ti,Pi,Si),l<i<n,

are usual Chomsky grammars (the sets Ni,Ti,K being mutually disjoint, for any
i, 1 < i < n).

PC Grammar Systems with Separated Alphabets 399

We write Vi = Nt U T{ U K and Vr = \J"=i(Ni u Ti) u K- T h e grammars
G>11 < 1 < i) are called components of the system, and the elements of K are
called query symbols; their indices, 1 , . . . , n, point to the components G\, • •., Gn,
respectively.

Remark that the definiton of PC grammar systems of type s does not require
Ni n Tj = 0 for 1 < i,j <n,i± j.

The convention throughout this paper is to denote the start symbol and the
production set of a component of a system with the same indices as the grammar
component is denoted. This convention holds for query symbols, too, so we do not
need to specify in details the set of query symbols for a given system.

The derivation in PC grammar systems of type s is defined in a similar manner
as for usual PC grammar systems, that is

Definition 2 Given a PC grammar system T = (K, Gi,..., Gn) as above, for two
n-tuples (xi,x2,...,xn),(yi, y2, ...,J/n), 6 ^ , l < i < n, xi £ Tf, we write
(x i , . . . , x „) ==>• (t / i , . . . , yn) if one of the next two cases holds:

(i) = 0,1 < i < n, and for each i, 1 < i < n, we have Xi yi in the
grammar Gi, or Xi E T* and x,- = yi;

(ii) there is an i, 1 < i < n, such that > 0; then for each such i, we write
Xi = ziQilz2Qi2 • • .ztQitzt+i,t > 1, for zj € Vp,\zj\K = 0,1 < j < t + 1;
*/ l^ijlif = 0,1 < j < t, then yi = ziXilz2Xi1... ztXitzt+\, providing that
yi € V*, [and yi:j = Si:j, 1 < j < t]; when, for some j, 1 < j < t, Ix.Jk #
then yi = xa for all i, 1 < i < n, for which yi is not specified above, we have
yi - Xi.

Point (i) defines (componentwise) derivation steps, whereas point (ii) defines
communication steps. * In a communication operation, when the communicated
string Xj replaces the query symbol Qj, we say that Qj is satisfied. The com-
munication has priority over the effective rewriting. If some query symbols are not
satisfied at a given communication step, then they will have to be satisfied at a
next one. No rewriting is possible when at least one query symbol is present.

The work of a PC grammar system with separated alphabets is blocked in three
cases: (1) when a component x,- of the current n-tuple (x i , . . . , x „) (sometimes we
shall call it a configuration) is not terminal with respect to Gi, but no rule of Gi can
be applied to Xj, or (2) when a circular query appears, that is (*?,-, introduces Qi3,Gi3

introduces Qi3, and so on, until Gik_1 introduces Qik and Gik introduces Qj,
(because only strings without query symbols can be communicated), or (3) when
after satisfying a query, the sentential form of a grammar is not a string over the
alphabet of that grammar, that is, in case (ii) we have z\Xilz2Xi3.. .z (x, (z(+i ^ V̂ -*
(we recall that for usual PC grammar systems case (3) does not appear).

Definition 3 The language generated by a PC grammar system T as above is

L(T) = {x € T ; | (Si, S2,..., Sn) (x, a2,..., an), G Vr*, 2 < i < n} .

400 Valeria Mihalache

Observe that due to the definition of the language generated by a PC grammar
system of type s we have that the terminal set of the system is actually the same
as the terminal set of the first component of the system. From the definition of
the derivation relation it follows that once the sentential form of Gi has become a
terminal string, the derivation cannot continue anymore in the system.

Just as in the case of usual PC grammar systems, one distinguishes several
variants.

Definition 4 If in Definition 2 only grammar G\ is allowed to introduce query
symbols, then we say that T is a centralized PC grammar system of type s; in
contrast, the unrestricted case is called non-centralized.

A PC grammar system of type s is said to be returning (to axiom) if, after
communicating, each component returns to axiom. A PC grammar system of type
s is non-returning if in point (ii) of Definition 2, the brackets,

[and yi} = S{j, I < j <t],

are omitted.

A PC grammar system is said to be regular, context-free, A-free, etc., when the
rules of its components are of these types.

For n > 1 and X £ {REG, CF}, we shall denote the families of languages
generated by non-returning centralized, non-returning non-centralized, returning
centralized, and returning non-centralized, respectively, PC grammar systems of
type s, of degree at most n and with components of type X by

L(NCPCnX, s) ; L(NPCnX,s) •, L(CPCnX,s) • L(PCnX,s).

When an arbitrary number of components is considered, we shall use * instead of
n.

If we still require in point (ii) of Definition 2 that those Xij which are to be
communicated must be terminal strings in the grammars whose sentential forms
they are, that is x^. G Tf, then we say that T derives in the terminal mode. The
language generated by T in this way is denoted by LT(V) and the family corre-
s p o n d i n g t o L(YNX, s), L(YMX, s) as a b o v e is d e n o t e d by Lx(Y„X, s), LT(Y*X, S).
Here and in the sequel Y ranges over {NCPC, NPC, CPC, PC) or some specified
subset of it.

If we replace point (i) in Definition 2 by
(i')!®«!^ = 0,1 < i < n and, for each i, 1 < i < n, we have either Xj =>• yi in

grammar Gi, or Xi = j/,-, then, just as in the case of usual PC grammar systems,
we get a PC grammar system of type s deriving in an unsynchronized manner.

Denote by ¿ t / (r) the language generated by T in this way. The family of lan-
guages generated by unsynchronized PC grammar systems of type s corresponding
to a family L(Y N X, s), L(Y,X, s) as above is denoted by LU(YNX, s), LU(Y,X , s).

PC Grammar Systems with Separated Alphabets 401

In order to illustrate the difference between usual PC grammar systems and the
ones studied here, let us consider an example.

Example : Let T = (K , G\, G2), be the returning non-centralized PC grammar
system with

Gj = ({SuA,B,Y},{X,a,b,c},
{Si XA, A XA, Si —• aB, B -+ aB, B aQ2, Y 6}, Si)

G2 = ({S2, X , A}, {Y, c}, {S2 —* YS2,S2 YQi,X —> c,A c} , S2)

If we start a derivation by using in G\ the production Si —• aB, then we have
either (Si, S2) ^(ak+1Q2,Yk+1Z), k> l,Ze{Qi,S2},

and then the derivation is blocked due to circular query, if Z is Q1, or due to
S ^ N t U T i , when attempting to satisfy the query in G1, if Z is S2,

or (Si,S2) (ak+1B, y f c + 1 Q i) , ib > 0,
and then the derivation is blocked because B £ N2 LI T2, and hence we cannot
satisfy the query in G2.

The only successful derivation is the one which starts as
(Si ,S 2) (. X k + 1 A , Y k + 1 Q 1) => (S i , Y * + 1 X * + U) (a'Q2,Yk+1a) =>
(a ' y ' + ^ . S a) ,
where k > 1 and a is obtained from the string Xk+1A by replacing some of the AT-s
and/or A with c, and / = |a|c, if a £ T2*, or / > k + 2, if a e T2* (i.e. a = ck+2).
If a ^ T2, in order to rewrite it as a terminal string, after a number of steps G2

must ask for the sentential form of Gi . But this sentential form contains symbols
a, which are not in the alphabet of G2 , and hence the query would not be satisfied.
This implies that it must be the case a 6 T2, and then the configuration above is

(a'Yk+1ck+2,S2),l >k + 2.

Because, as we have made the observation, G2 cannot accept a sentential form of
Gi containing symbol a, then the derivation has to end as

(a'Yk+1ck+2,S2) ^ (a'bk+1ck+2,Yk+1Z).

Thus we have that

L(r) = {ak+1+'bkck+1 | s > 0, k > 1},

a language which is not context-free. Note that what increases the power of the
system (for the usual PC grammar systems we have L (P C 2 R E G) C L (C F) , see
[13]) was the possibility of a component to rewrite symbols which are considered
terminals in another one, as well as the restriction that a communicated string has
to be a string over the alphabet of the grammar which required it.

3 Generative Capacity
We first present some general properties for parallel communicating grammar sys-
tems of type s, which are true also in case of usual parallel communicating grammar
systems.

402 Valeria Mihalache

L e m m a 1 For any Y G {PC, CPC, NPC, NCPC) and for any class X of gram-
mars, we have

(i) L(Y1X,s) = L(X);
Lu(Y1X,s) = L(X);
1LT(Y1X,s)=HX);

(ii) L (Y n X , s) C L (Y n + 1 X, s),n > 1,
Lu(YnX,s) C Lu(Yn+1X,s),n> 1,
LT(YnX, s) C LT(Yn+1X, s), n> 1,

(Hi) L { C P C n X , s) C L { P C n X , s) ; L (N C P C n X , s) C L(NPCnX,s),n > 1;
Lu(CPCnX, s) C L u (P C n X , s); L u (N C P C n X , s) C L v { N P C n X , s),
n > 1;
L T { C P C n X , s) C L T (P C n X , s); L T (i V C P C n X , s) C L r (ATPC„X, s),
n > 1;

(iv) L{CPC*X,s) C L (P C t I , s) ; L (iVCPC,X ,s) C L (iVPC,X , s) ;
L c / i C P C ^ , «) C L [/ (P a X , s) ; L ^ J V C P C . ^ . s) C L y (J V P C , I , s) ;
L r (C 7 P a X , s) C L r (P C J , i) ; LT(NCPCtX, s) C LT(NPCtX,s).

Proof : Directly from definitions. •

Each usual PC grammar system can be considered a PC grammar system of
type s (we simply skip N,T when writing T =' (N , K , T , G \ . . ,Gn)), hence we
also have

L e m m a 2 For any Y € {PC, CPC, NPC, NCPC} and for any class X of gram-
mars,

(i) L(YnX) C L(YnX,s),n > 1;

(ii) L u (Y n X) C L u (Y n X , s) , n > 1;

(Hi) L T (Y n X) C L T { Y n X , s) , n > 1 ;

Just as in the case of usual PC grammar systems, we have relations between
the families of generated languages, when considering various modes of derivation.

L e m m a 3 (i) L u { Y n X , s) C L(YnX, s), for any class X of grammars allowing
chain rules (that is rules of the form A —» B) and for any Y G {CPC, PC,
NCPC, NPC}-,

(ii) L T { Y n X , s) C L(YnX, s), for any class X of grammars and for any Y G
{CPC, NCPC}.

Proof : The proofs are entirely the same as for usual PC grammar systems, [3].
•

We next survey the properties known so far about regular PC grammar systems
with separated alphabets. For the proofs we refer to [9].

PC Grammar Systems with Separated Alphabets 403

Propos i t ion 1 (i) The family 1J(PCZREG,S) contains one-letter non-regular
languages.

(ii) The families L(NCPC2REG, s), L(NPC2REG, s) contain one-letter non-
regular languages.

(Hi) The families LU(NCPC2REG, S),L,U(NPC2REG,S) contain non-semi-
linear languages.

(iv) The family LT(CPC2REG, s) contains non-semi-linear languages.

Corollary 1 L (C P C n R E G) C L (C P C n R E G , s) , strict inclusion, for any n > 2.

So just as in the case of cooperating distributed grammar systems, by consid-
ering distinct terminal sets for the grammar components of the system, also in the
case of PC grammar systems, the generative power is increased (at least in the
regular centralized returning case).

But even if centralized returning PC grammar systems with regular components
of type s are able to generate non-finite index matrix languages, we still can find an
upper-bound for the languages generated by them among the regulated rewriting
tools with context-free rules. More exactly, we have

T h e o r e m 1 (i) L (C P C „ R E G , s) C L(MATac).

(ii) Lu(CPC*REG,s) c L(MATac).

(in) L T (C P C . R E G , a) C L (M A T a c) .

One can observe that although the preceding theorem is for the regular PC
grammar systems, it is true as well for the right linear case, and the proof is
entirely the same.

As we shall prove in the following, for unsynchronized derivation we can actually
find a more specific relation. First, we have the theorem

T h e o r e m 2 L u (C P C 2 R E G , s) - L(REG)

Proo f : Consider the following PC grammar system of type s with regular
components

T = (K,GuG2),

where

Gi = ({S1,A,B},{a,b},{S1-+aQ2,A^aQ2,B ^^A-.a}^!),
G 2 = ({ S 2 , B } , { A } , { S 2 - ¿ B } , S 2) ,

and consider the derivation mode to be the unsynchronized one.

404 Valeria Mihalache

Then a terminal derivation has to proceed as follows:

(Si , Sa) (aQ2, AB) => (aAB, S2) (a 2 Q 2 X , AB) => (a2ABX, S 2)

where X G { 6 , 5 } , a e {6,S}*,|a| = k - 1 and /3 G {S2 > J4B}.
We then have

L(T) = {ak+1bk | k > 1},

which is not a regular language. •

As a corollary, we obtain that also in the unsynchronized derivation, centralized
returning PC grammar systems are more powerful when considering distinct sets
of terminal and non-terminal symbols then in the case when we do not.

Corollary 2 Lv(CPCnREG) C Lu(CPC„REG, s), strict inclusion, for any n >
2.

Proof: The inclusion is by Lemma 2, and the strictness of it follows from the
above theorem and from L u (C P C , R E G) = L (R E G) , which is known from [3]. •

Our intention in the following is to present other properties concerning PC
grammar systems of type s deriving in the unsynchronized mode. We need to
recall the following definition.

Definition 5 Let F = (N, K, T, G\,G2,..., Gn) be a usual parallel communicating
grammar system. We say' that T is with multiple queries if there is a component
of T with a production A aQiPQa,a, 0,-f G (N U I< U T)*,i G { l , . . . , n } .
Otherwise, we say that F is without multiple queries.

The class of such grammar systems is denoted by WYnX, for Y G {PC, CPC,
NPC, NCPC}, n > 1, X a class of grammars.

Theorem 3 For any Y G {CPC, PC, NCPC, NPC) and for any n > 1,

(i) Lu(YnREG,s) C Lu(WYnCF);

(ii) Lu(YnCF,s) = Lu(YnCF).

(itt) Lu(WYnCF,s) = Lu(WY„CF).

Proof: To prove point (i), take a PC grammar system of type s with regular
components

T = (K, Gi,G2, ..., Gn),

with Gi = (Ni,Ti,Pi,Si), for any t, 1 < i < n.
Denote n

l/ = U ^ U T i) .
¿=1

PC Grammar Systems with Separated Alphabets 405

For each symbol a (E V, consider anew symbol a', denote by V' their set and define
the substitution h. as

h(a) = {<*,<*'}, for a G Ti,
h(a) = { a ' } , f o r a G V - Tu

h{Qi) = {Q , } , for 1 < i < n.

Construct the PC grammar system

r ' = (V'!K!T1,(P[,S[),...>(P^S'n))!

where
P< = {A' -+ y \ A x € Pi,y e h(x)}, for any 1 < i < n.

Note that even if we have started from a PC grammar system T with regular
components, because this is of type s, the resulted system, T', is with context-
free components and not with regular. This happens because we can have in a
component Gi,i > 1 a production A —* BC, where B is a terminal symbol with
respect to G, but is not a terminal symbol with respect a grammar to which it will
communicate a string containing that B.

Moreover, note that if T is returning, centralized, non-returning or non-
centralized, then T' is of the same type.

Because in any production of any grammar at most one query symbol can
appear, we have that T' is without multiple queries.

One can see that ¿[/ (T) = Lu(T'), and thus point (i) follows.

For point (ii), we have Lu(YnCF) C L u (Y n C F , s) by Lemma 2. To prove the
reverse inclusion, we only need to observe that the same construction that we have
considered for the proof of point (i) transforms a context-free PC grammar system
of type s into a corresponding usual context-free PC grammar system.

Point (iii) is a consequence of the relation in point (ii), by the observation that
the construction we have considered does not introduce multiple queries. •

Corollary 3 Lu(WCPC»CF,s) = L (C F) .

Proo f : It is simply a consequence of the preceding theorem, point (iii), by
Theorem 1 of [8], which states that LV(WCPC,CF) = L (C F) . •

Now we can improve the relation obtained in Theorem 1, for the case of unsyn-
chronized derivation. That is, we have

T h e o r e m 4 L (R E G) C L v (C P C t R E G , s) C L (C F) .

Proo f : The first inclusion is from Lemma 1 and from Theorem 2. The second
inclusion is a consequence of the preceding theorem, point (i), by Theorem 1 of [8].

•

406 Valeria Mihalache

Note that once again parallel communicating grammar systems of type s are
more powerful, but still not "too powerful" (from the generative capacity point
of view) than usual PC grammar systems, in case of regular components, because
we have L u (C P C „ R E G) = L (R E G) . But in case of context-free components, for
unsynchronized derivation, systems of type s are only as powerful as usual systems
are.

It is known, [8], that matrix languages can be generated by usual returning
non-centralized PC grammar systems with context-free components. When sepa-
rated terminal and nonterminal alphabets are considered for the components of the
system, one can simulate matrix grammars with appearance checking.

T h e o r e m 5 L(MATac) C L (P C t C F , s).

Proo f : The proof bears resemblance with the corresponding one in [8]. Let

G = (N,T,S, M,F)

be a context-free matrix grammar with the appearance checking set F . It is known
([4]) that for each matrix grammar there is an equivalent matrix grammar, of the
same type, in the 2-normal form, that is with

N = {S}UN!UN2l TViniV2 = 0, S^NiUNi,

and each matrix of M has one of the following forms:

(0 (s ^ x) , Ae Nu x e N2

(ii) (A —* a, X ^ Y), AeNu ae(N1UT)+,X,Y eN2,
(Hi) (A^a,X^a), A G Nu a G (JVi U T) + , X G N2,a G T,
(iv) (S ^ i) , i e r .

Moreover, the productions of F are only of the form A. —• o;, with A. £ Ni^cx £
(NUT)\

Let P\(M) be the set of matrices of type (i), let P2(M) be the set of matrices
of types (ii), (iii) and let r be the cardinality of P2(M). A matrix of P2(M) will
be denoted in the following by

mk : (Ak — ak,Bh -»• Ck) , 1 < k < r.

Denote

N' = N U {S ' , W, V, Z, Lu L2, L3j U {5 , , S„i , S a 2 } U { 5 l t , S2k | k = 1 , . . . , n]

(S', W, V,Z,LI,L2,L3 are new symbols). We construct the PC grammar system

T = (K, G,, Gii, G2I, GI2, G22,..., Gir, G2r, G a i , Ga2)

PC Grammar Systems with Separated Alphabets 407

as follows:

P,, - { S . 11(5, — x) G M, x G T * } U
U{5 , —• S', S' -* Q2k I & = 1, • • •, r } U
U{S, - » AB | (S - AB) G PI(M)} U

Pik = {Sit
U{Afc -+ CTK | m t : (AK -* AK,BK C t) } U

U { X Z\X G Ni UA^2}U
U f V — Q i t } , for each k = 1 , 2 , . . . , r,

P2k =
U{B f c — C* | m* : (i4 t a f c l B t — Ck)} U

U { X Z | X G iVi U AT2}, for each Jfc = 1, 2 , . . . , r,
Pal = {Sai -Q2iQ22...Q2r}U{K- V),

Pa2 = {S02 —1" Li, L\ —+ L2, L2 —• L3, L3 —• LiQ2iQ22...Q2r}.

The terminal sets of the components grammars of T are defined as

T, = Tai = Ta2 = T2k = T, for any k — 1,2,... ,r,

while for any k — 1 , 2 , . . . , r,

'TUNTUNX- {AK\MK :(AK ^AK,BK^CK)},
_ I if this occurrence of

14 ~ the production AK —>• AK G F
T, otherwise.

As for the nonterminal sets of the components of T, they are defined as

N, = N'-T,,

Nu = N' — T\k, for any k

N2k = N' — T2k, for any k

Nai. = N'-Ta 1,

Na2 = N' — Ta2.

One can verify that L(T) = L(G), and therefore the theorem follows. •

As an immediate corollary of the above theorem, characterization of recursively
enumerable languages results when A-productions are allowed in the system.

Corollary 4 L (P C . C F x , s) = L (R E) , where the notation PC,CFX stands for
returning non-centralized PC grammar systems with A-rules.

408 Valeria Mihalache

The similarity between PC grammar systems with separated alphabets and
usual PC grammar systems let us think that any proof of a relation between two
classes of usual PC grammar systems can be adapted as to result in a relation
between the corresponding classes of PC systems of type s. More precisely, we
conjecture that if L (Y n C F) C L (Y ^ C F) for two classes Y,Y' of PC grammar
systems, m,n,> 1, then L (Y „ C F , s) C L (Y „ C F , s) .

In particular, by [6], [12],

L { N P C . C F , s) C L (P C . C F , s)

would result.

References
[1] A. Atanasiu, V. Mitrana, The Modular Grammars, Internal. J. Corny. Math.

30 (1989), 101-122

[2] E. Csuhaj-Varjú, J. Dassow, On Cooperating Distributed Grammar Systems,
J. Inf. Processing and Cybern. EIK, 26 (1990), 49-63

[3] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Páun, Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach
Science Publishers Ltd, London, 1994

[4] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989

[5] J. Dassow, Gh. Páun, G. Rozenberg, Grammar Systems, in G. Rozenberg,
A. Salomaa (eds.), The Handbook of Formal Languages, Springer-Verlag, to
appear

[6] S. Dumitrescu, Non-returning parallel communicating grammar systems can
be simulated by returning systems, Theoretical Computer Science, 165 (1996),
463-474.

[7] R. Meersman, G. Rozenberg, Cooperating Grammar Systems, in Proc.
MFCS'78 Symp. LNCS 64, Springer-Verlag, Berlin, 1978, 364-37-4

[8] V. Mihalache, Matrix Grammars versus Parallel Communicating Grammar
Systems, in Gh. Páun (ed.), Mathematical Aspects of Natural and Formal Lan-
guages, World Scientific, 1994, 293-318

[9] V. Mihalache, Terminal versus Non-terminal Symbols in Parallel Communi-
cating Grammar Systems, Revue Roumaine de Mathématiques Purés et Ap-
pliquées, to appear

[10] Gh. Paun, L. Sántean, Parallel Communicating Grammar Systems: the Reg-
ular Case, Ann. Univ. Buc., Ser. Matem.-Inform., 38 (1989), 55-63

PC Grammar Systems with Separated Alphabets 409

[11] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973

[12] Gy. Vaszil, On Simulating Non-Returning PC Grammar Systems with Return-
ing Systems, submitted for publication

[13] S. Vicolov, Non-centralized Parallel Grammar Systems, Stud. Cere. Mat., 44
(1992), 455-462

