
Acta Cybernetica 12 (1996) 397-409.

On Regular Characterizations of Languages by
Grammar Systems*

Lucian ILIE t A r t o S A L O M A A *

Abstract

We show that grammar systems with communication by command and
with extremely simple rewriting rules are able to generate all recursively enu-
merable languages. The result settles several open problems in the area of
grammar systems.

1 Introduction
The purpose of this paper is to investigate the power of cooperation in rewriting
systems. This is done using the abstract model of a grammar system, [3]. We
show that grammar systems with the most simple components, all rewriting rules
being letter-to-letter, possess the power of generating all recursively enumerable
languages. This result and its corollaries settle several open problems in the area
of grammar systems. We now describe the contents of the paper in non-technical
terms.

A parallel communicating grammar system, as introduced in [12], consists of sev-
eral grammars which work synchronously, each of them rewriting its own sentential
form, the communication being made by request: when a component introduces a
query symbol (from a special set) for another component, then the latter one sends
its current sentential form to the former which rewrites it in place of the query
symbol. The language generated by -the system is the set of terminal strings gen-
erated (using communication or not) by a distinguished component called master.
(For results and references see [3].)

Another kind of parallel communicating grammar systems, with communication
by command, is introduced in [4] with suggestions from the WAVE paradigm for
data flow in highly parallel machines ([5], [6], [14]), Boltzmann machine ([7]), the
Connection Machine ([8], [15]), and other well-known parallel machines.

'Research supported by the Academy of Finland, Project 1X281
'Turku Centre for Computer Science, FIN-20520 Turku, Finland
'Academy of Finland and Mathematics Department, University of Turku, FIN-20014 Turku,

Finland

411

412 Lucían Ilie, Arto Salomaa

The communication by command means that when the current sentential form
derived in a component coresponds to another component, i.e., belongs to the
regular language associated to the respective component or fits the pattern (in the
sense of [1], [11]) associated to that component, then the sentential form is sent
to the other component. The language generated by the system is also the set of
terminal strings generated by a component designed as master. Here we investigate
only the case when each component has associated a regular language.

In [4] it is proved that any context-sensitive language can be generated by a
grammar system with communication by command with context-free components
while in [10] it is shown that the grammar systems with context-sensitive com-
ponents and the same type of communication can generate only context-sensitive
languages. The characterization of the family of context-sensitive languages as the
family of languages generated by grammar systems with context-free components
and communication by command follows. We shall strengthen this result by show-
ing that the family of context-sensitive languages is exactly the family of languages
generated by the grammar systems with regular components and communication
by command.

We consider also the case when the splitting is allowed in communication, that
is, if the current sentential form of a component is a concatenation of strings each
belonging to the regular language associated to another component, then the com-
munication can still be performed: each factor of the sentential form can be sent
to the respective component, with the restriction that only one factor can be sent
to one component.

As already mentioned in [4], this type of communication is natural: following
the logic flow paradigm proposed in [6] as a basic architecture for parallel symbolic
processing, we deed with a symbolic process which develops in a virtually complete
graph having processors which are able to handle data, in its nodes. The process
starts by injecting data in a node and each node having data can perform a local
processing; under well defined conditions, the local data are spread to other nodes
by replication or by splitting.

In this case we prove a characterization of recursively enumerable languages
by grammar systems with (non-erasing) regular rules. In fact, the rules have a
particularly simple form: a letter (nonterminal) always goes to a letter (terminal
or nonterminal).

2 Grammar systems

We shall denote by V* the set of all finite strings over the alphabet V, the empty
string is denoted by A, and V+ = V* — {A}. The set of regular, context-free, context-
sensitive, and recursively enumerable languages will be denoted by REG, CF, CS,
and RE, respectively. For further elements of formal language theory we refer to
[9] and [13].

A parallel communicating grammar system with communication by command o f

On RegulcLr Characterizations of Languages by Grammar Systems 413

degree n > 1 is a construct of the form

T = (N, T, (Si,P\,Ri),..., (Sn,Pn, Rn))>

where N is the nonterminal alphabet, T is the terminal alphabet, and (Si, Pi, Ri),
1 < t < n, are the components of the system: Si is the axiom, P; is the (finite) set
of rules, (note that we do not allow A-rules, that is rules in which the right-hand
member is empty), and Ri £ REG is the selector language for the component i.

Such a system works as follows:
- start from the initial configuration (Si, S2, • • •, Sn),
- at each step, the configuration of the system will be described by an n-tuple

(x1,x2,...,xn) e ((j v u t) *) " ,
- the configuration of the system can be modified either by rewriting steps or

by communication steps,
- rewriting steps are performed componentwise and the derivation must be

maximal in each component (that is the component can not rewrite its sentential
form any longer),

- communication steps are performed as follows:
(i) communication without splitting: when (after maximal derivations) some com-
ponents Si1,Si2,... ,Sik, 1 < ¿1 < »2 < • • • < n < n, have derived the strings
tf»i, u>2 , . . . , Wk £ Ri, for some 1 < i < n, i 0 {»1,»2, • • •) »*} (a component may not
communicate with itself) and these are all the components, at that moment, able to
communicate their sentential forms to the component i, then the string w\w2 • • • u>k
will replace the sentential form of the component i becoming the current senten-
tial form of this component; the components which send their sentential forms will
restart from the initial symbol,
(ii) communication with splitting: similar to the one without splitting, the difference
being that if the sentential form of a component is a catenation of strings each of
them belonging to the regular set associated to another component, then each factor
of the current string can be sent to the respective component with the following
restrictions:

1. only one string can be sent to one component,
2. a component cannot send a factor of its current sentential form to itself

(also not the entire string),
3. the catenation of the factors of the current string which are sent must be

the entire string (nothing is lost).
- if, after a sequence of rewriting/communication steps, the string on the first

position in the current configuration is a terminal one, then it belongs to the gen-
erated language (so the master is always the first component).

Formally , a rewriting step is

(x i , . . . , x „) =i> (y i , . . . , i / n) iff Xi = > * y, in Pi and
there is no 2,- £ (N U T)* with y, => 2,- in Pi.

In order to define a communication step without splitting, let us denote

S(r. - f A' if Xi^Rj ori = j ,
K X " J) ~ \ x i , ifxi £Rj andt^ j,

414 Lucían Ilie, Arto Salomaa

for 1 < i,j < n,

A (i) = 6(xi,i)6(x2,i) • • • 6(x„,i),

6(i) = 6(xi,l)6(xi,2)...6(xi,n),

for 1 < i < n.
A communication step without splitting is:

(A(i) , i f A (i) # A ,
(x i , . . . , x „) h (yi,...,yn) i f fyj = < xi, if A(t') = A and 6(i) = X,

{ Sit if A(») = A and S(i) # A.

Because the splitting will not be used very much, we define it rather informally.
A communication step with splitting is

(xltx2,...,xn) I " S (y i) J / 2 i • • •) î / n)

if and only if there is a set 0 ^ M Ç { 1 , 2 , . . . , n } (M is the set of indices of those
components which send their sentential forms) such that

(i) for any i £ M there is a permutation of n elements ir» £ Sn and a
decomposition x, = i,,» j(i)Xi i* i(2) • • :CiiTi(n) such that xt i, = A and, for any
1 < k < n, k ï irt~1(t")» *i,*i(k) G Rri(k) or xiiViW = X

(ii) for any i G { 1 , 2 , . . . , n } — M and any 1 < j < n, j = A,
(iii) for any 1 < j < n, if A ̂ Rj, then

x\,jx2,j •••xn,j, ^x\,jx2,j ^ A
if (there is no i £ M with Xij £ Rj) and j ^ M,

Sj, if (there is no i £ M with x,-j £ Rj) and j £ M.

If A G Rj, then, nondeterministically, the component j can receive A or can work
as in the case when X £ Rj.

Note that the communication without splitting is a particular case of the com-
munication with splitting and also that the empty string can be sent.

The generated language is

Le(T) = { w € T * I (Slt...,Sn)=> («i0, • • •, X™) h e (yW ..., =>

(.«,..., xL2)) hc (y?\ . . . , „ £ »)) = = » . . . = > (, « . . . , x<*>),
for some it > 1 such that w = x ^ } ,

where, for c = X, we identify £a(T) with £(T) and h* with h and, for c = 5 , we
have ¿ 5 (r) and I-5.

We denote by CCPCnX the family of languages L(r) , generated by grammar
systems of degree at most n, n > 1, with components of type X £ {REG, CF, C S } ,
working with communication without splitting, and by SCCPCnX the family of
languages L s (r) , generated by grammar systems of degree at most n ,n > 1, with
components of type X , working with communication with splitting. When the num-
ber of components is arbitrary, we write CCPCoqX and, respectively, SCCPCNX.

On RegulcLr Characterizations of Languages by Grammar Systems 415

3 The characterization results
We begin with the following simple observation. Because in the case when the
system has only two components no communication by splitting can be done, we
have

Lemma 1 For any family X, CCPC2X = SCCPC2X.

Our first theorem shows that, in the case of communication with splitting, any
recursively enumerable language can be generated using a system with four regular
components. Because the languages associated to the components are regular too,
we can say that this is a fully regular characterization of recursively enumerable
languages. (Note that we do not allow A-rules and also not the rewriting of the.
terminal symbols. The sets of nonterminals and terminals are defined at the level
of the system.)

Actually, three regular components suffice, as seen in Theorem 2 below. From
the point of view of exposition, it is convenient to consider first the weaker version.
A further reduction to two components is not possible because of Lemma 1 and a
result in [4] which shows that in the case of communication without splitting, using
two components, only regular languges can be produced.

Theorem 1 SCCPC^REG = RE.

Proof. Let L be a recursively enumerable language over the alphabet T. Then,
by a slight modification of Theorem 9.9 in [13], there is a context-sensitive language
L\ and two symbols a\,a2 &.T, such that:

(i) L\ consists of words of the form wa2a",n > 0, w G L, and
(ii) for every w G L, there is a n > 0 such that wa2a" G L\.
The main idea of our proof is: we construct a system (with four regular com-

ponents) which generates in one component (which is not the master) any string
tua2a" G L\ and then, by splitting, the string w is communicated to the master
and the garbage a2a" is communicated to another component. (In fact this is the
only moment when the splitting is used, the entire derivation, excepting this, being
as in a usual grammar system with communication by command.)

So let G = (N, TU {ai , <12}, S, P) be a context-sensitive grammar generating
L\. Suppose that G is in Kuroda normal form, that is, all productions in G are of
the form AB —• CD, A —• BC, and A —• a where A, B, C, D are nonterminals
and a is a terminal symbol. By introducing, whenever needed, productions of the
form A —• B, A, B nonterminals, we may suppose that if a production of the form
AB —• CD appears in P, then A ^ B.

For a reason that will be seen later, we introduce also the production S —•
S. We label all productions in P by natural numbers r, 1 < r < card(P). (We
construct a bijection between P and the set { 1 , 2 , . . . , card(P)}, each production
being uniquely identified by its associated number.)

Let S i ,S2 ,S3 ,X, and Y be symbols not in A ^ U T U { a i , a 2 } and let us put

N' = {A' I A G N} U { X ' }

416 Lucían Ilie, Arto Salomaa

V = {Ar | A 6 N, r : AB —• CD E P or r : BA —• CD € P } U
U {Ar \AEN,r: A — • a € P) U
U{Xr \ r:A — > B C e P } U

U {Za,Wa\AEN}.

We consider the system

T = (A r u T V ' U i S i . S ^ S ^ X . y j u V . T U i a x , ^ } ,
(S'i,Pi,RÎ), (S'2,P2, R2), (S3, P3, R3), (S4, P4, R4))

where S4 = S and

Pi = 0,
R! = T* U { y } ,

P2 = { S ^ X . S ^ Y } ,
R2 = a2a\,

P3 = {A'—>A I A E i V U { X } } U

U{A- — > a \ r \ A — » a e P j U
U{Ar —• B\r : A —> B E P}U
U{Ar —» C, Br —• D I r : AB — > C D £ P] U
U{Xr —• B,Ar —• C I r : A —• BC E P) U
U { Z a ^ A , W a ^ X \ A e N } ,

R3 = {axAra2 I a i , a 2 € (W U TU {ai,a2})*, r : A—»a£P}U
U{ai^ r a 2 I ai,a2 E (N'uTl) { a i , a2})*, r : A —> B E P) U
U{a\ArBTa2 I a i ,a 2 G (N' UT U {ai, a2})*, r : AB —• CD E P] U
U{aiXri4ra2 | ax , a2 E (N' U T U {c^, a2})*, r : A —> BC E P} U
U { a i Z A W A a 2 I ai ,a:2 E (N'UTU {a i , a2 })* , A £ N},

P4 = {A—>A! \AE Nl){X}}U
U{yl —> Ar\r:A —* a E P 01 r : A —»fiePjU
1){X ^ X r , A ^ A r |r : A^BCEP}U
U { y l — — B r I r : AB—*CDeP) U
U{X —• Za,A —• WA I A E N),

R4 = (N U { X } U 71 U {ai, o 2})+ -

(Note that A ^ R4, hence the fourth component cannot be restarted by receiving
A in a communication with splitting.)

On RegulcLr Characterizations of Languages by Grammar Systems 417

Let us prove that the construction is correct, that is Z-s(T) = L. We shall do
this by showing inclusion in both directions.

Claim 1. If wa2a" £ L\, then the system T can reach a configuration which has
in the third position the string wa2a".

Remark. If Claim 1 holds, then L C Ls(T). Indeed, for any w £ L, there is
an n > 0 such that wa2a" £ L\. But, by Claim 1, T can reach a configuration
with wa2a" as the current sentential form of the third component. In this case,
as w £ T* C Ri and a2a" £ R2, by splitting, w is communicated to the first
component and a2a" to the second one. Consequently, w is a terminal string and
it is the current sentential form of the master, hence w £ Ls(T).

Proof of Claim 1. Let wa2a" be a string in L\. It follows that there is a
derivation in G generating it. We show that if a and /? are two sentential forms of
G such that a = > G P, then, having a as the current sentential form of the third
component of T, we can obtain also /3 as the sentential form of the third component
of T.

Because the case when a = S requires some additional explanations, we shall
investigate it separately. (In fact, in the first case it will be shown that the deriva-
tion in T can simulate any beginning of a derivation in G, that is, we can obtain
any ¡3 with S =>G 0 as the sentential form of the third component of I\)

Case 1 a = S. Depending on the form of ¡3, we have three cases:
(i) /? = a £ T U {01,02} and r : 5 — • a £ P. (As an observation, because

L\ C La2a\, a cannot be aj.) We simulate this in T by

(Si, SJ, S3, S) = > r (Si, y, S3, Sr) (Y, S'2,Sr,S) = * r (Y, Y, a, S r) .

(ii) ¡3 = A £ N and r : S — • A. In T we have

(Si,S'2,S'3,S) =>r (Si, y , S3 , S r) Hr (Y, S'2,Sr, S) = > r (Y, Y, A, S r) .

(iii) 0 = AB, A,B £ N and r : S — • AB. Supposing that p : S — • S G P, we
perform in T

(Si, S2, S3, S) (Si, Y, S3 , S p) h r (Y, S'2,SP,S) =>r (Y, X , S, Sp) h r

h r (Y,S'2,SP,XS) =>r (Y,Y,S,XrST) hr (Y , S 2 , X r S r , S) (Y,Y,AB,SP).

In words, we have added the rule S —• S to P in order to be able to perform
this type of rule (S — • AB) with S on the left-hand side. If the rule S — • S is
not provided, then we are forced to apply in the fourth component another rule
instead of S — • Sp (p : S — • S) and, as at this moment we did not yet get an
X in the sentential form of the fourth component, after sending the current string
of the last component to the third one, only rules of the form S — • a, a £ T or
S — • A, A £ N, can be applied. Consequently, we would not be able to apply a
rule of the form S — • AB, A,B £ N, in this case.

Case 2 a £ (N U T U {ai , a 2 }) + - {S } . Depending on the form of the applied
production, we have four cases here.

418 Lucían Die, Arto Salomaa

(i) a = a i A A 2 , A £ N , 0 = a iaa 2 , a € T U { a i , a 2 } , r : A — • a £ P . We
simulate this in T as follows. If the current sentential form of a component is not
important at some moment, we shall replace it by —.

(-,Y,aiAa2,-) h r (Y,S'2,-,a^a,) =>r (Y,Y,-,ct\Ara'2) h r

h r (Y, S'2,a\Ara'2, -) (Y, Y, aiaa2, -)

(where for a £ (N U { X } U T U {a ! ,a 2 })* we have denoted by a' the string h(a)
where h : (N U { X } U T U {aia 2 })* — • (JV'UTU {aia 2 })* is the homomorphism
defined by h(A) = A', for any A £ N U { X } , h(a) = a, for any a £ T U {a i , a 2 }) .

(ii) a = a i A a 2 , 0 = a i B a 2 , A , B £ N,r : A —• B £ P. This is handled as
Case 2 (i).

(iii) a = a\ABa2,f3 = axCDa2,A,B,C,D £ N,r : AB —• CD £ P- This
rule is simulated in T by

(- , Y, aiABa2, -) hr (Y, S'2, - , aiABa2) =*r (Y, Y, - , a'^Br^) h r

hr (Y, S'2,a[ArBra'2, -) = » r (Y, Y, aiCDa2, -).

(iv) a = axAa2,(3 = <* iBCa 2 ,A ,B ,C € N,r : A —> BC £ P. Because
the string generated by P2 (X or Y) is communicated by the second component
(to the fourth component or to the first one, respectively) at each communication
step, the derivation in the second component is restarted after each communication
performed in the system. Therefore, after each communication step, the second
component is able to produce a new X, if needed. (It can also produce a Y if
an X is not needed.) As a / S, there exists a sentential form 7 of G such that
7 « and we can suppose that (*) when the current sentential form of the third
component of T is a, then the current string in the second component is X . (We
can suppose, for instance, that the second component has introduced an X when
7 was obtained in the third one. It is essential here that a ^ 5 ; we have seen in
Case 1 (iii) how the alternative a = S is handled.)

We may also suppose that the string a contains only nonterminal symbols.
(We may obviously suppose that, in a derivation in G, 'we can apply first only
productions of the form A —• B or A —• BC or AB —• CD, A, B,C,D 6 N,
and, after that, only productions of the form A —• a, A £ N,a £ T U { a i , a 2 } .)
Consequently, we can put a j = AXA2 ... Ak, A\,A2,..., At £N,k>0(k = 0
implies ai = A) and we can write (using (*))

(- , X, a, -) = (- , X, AXA2 ... AKAA2,-) h r (- , S'2,XAXA2 ... AKAA2) =»R

= > r (- , Y , - , WALA'2 .. .A'KAW2) h r (Y , S'2,ZALWALA'2 ... A'KA'A'2, -) =>R

= > r (Y , Y, AIXA2 .. .AKAA2, -) h r (Y , S2,—,AIXA2 ... AKAA2)

= > r (Y, Y, A i . ..Au.iXAUa,, -) h r (Y,S'2,-,A1.. .Ak^XAkAa2)
= > r (Y,Y,-,A[. . ¿ i . A ' a ' 3 , -) = > r

= > r (Y , Y , AI. ..AK.IATXAA,, -) h r (Y , S ' 2 , -,AL .. AK^AKXAA2)
= > r (Y , Y, - , A\... A'KXRARA'2) h r (Y , S'2,A\... A'KXRARA'2, -) =>R

= » r (Y, Y, AIA2 • • • AKBCA2,-) = (Y , Y , 0, -) .

(1)

On RegulcLr Characterizations of Languages by Grammar Systems 419

Thus Claim 1 is proved.

Claim 2. If w E T* was communicated to the msister component in T (by the
third one - this is the only possibility), then, at the moment of communication, the
current sentential form of the third component was wa2a" £ L\ and , by splitting,
w was communicated to the master and a2a" to the second component.

Remark. Obviously, Claim 2 implies Ls(T) C L.

Proof of Claim 2. Observe that the only possible communications among the
components of T are represented by the following graph. (An arrow from » to j is
present if and only if it is possible that the component i communicates, at some
moment, its sentential form to the component j ; some arrows are labeled by the
regular sets which control the communication.)

We make the following further observations:
1. The second component can communicate to the first one only the string Y

which is not terminal. (This communication takes place in order to restart the
second component, making it able to produce an X at any moment.)

2. The second component can communicate to the fourth one only the string

3. The communication from the third component to the first and the second
ones can be done only in the same time by splitting and only when the sentential
form of the third component is of the form wa2a.y, n > 0, w being communicated to
the master and a 2a" to the second component. (Note that the string communicated
to the first component can be empty.)

4. Always, after a maximal derivation in the third component, its current
sentential form can be communicated to the fourth component.

5. Due to the form of R3, if the current sentential form of the fourth component
is communicated to the third one (and only to the third one) then a production
in P will be correctly applied at the next step in the third component. Indeed,
everything should be clear in what concerns the productions of the form A —• a
or A —• B,A,B £ N,a ET U {ai , a 2 } . A discussion is needed only for the other
two types of productions.

(i) For r : AB —• CD E P; A, B,C,D £ N. In order to apply this production,
in the fourth component one performs A —• Ar and B —• Br (providing, of

1

X.

420 Lucían Ilie, Arto Salomaa

course, that these productions can be applied). After that, the current sentential
form is communicated to the third component if and only if the occurrences of Ar

and Br appear consecutively and in this order (i.e., ArBr). In the third component,
using the rules AT —• C and Br —• D, the string CD is obtained. Because we
have supposed that A £ B, there is no danger to apply the production AB —• DC
instead of AB —• CD.

(ii) For r : A —• BC G P,A,B,C€ N. As it was already seen, for applying
a production of this type an occurrence of an X in needed. Without it, the fourth
component applies A —• Ar but the current sentential form cannot be communi-
cated to the third component because an occurrence of the string ATXr is asked
by R3.

Because an occurrence of the symbol X can be communicated by the second
component to the fourth one at each communication step (we can apply in P2

only S2 —• X) there is only the danger that too many X ' s are contained in the
sentential form communicated between the last two components. But if the number
of X ' s communicated by the second component to the last one is strictly greater
than the number of productions of the form A —• BC applied, then the string can
be never communicated to the master (no string in R\ contains X). Hence nothing
will be produced in this case.

From the observations above, it should be clear that no parasitic string can be
obtained in T. Consequently, Claim 2 is proved so we have Ls(T) = L.

•
As said before, the number of the components can be reduced to three.

Theorem 2 SCCPC3REG = RE.
Proof. We use the same notations as in Theorem 1 with the only difference

that we consider here one new nonterminal symbol, Z , which is added to the set of
nonterminals of the system T (with three components)

r = (Nl>N'U{S[, S'2, X,Y, Z}L>V,Tu{ai,a2}, (ff^PuRi), (S'2, P2, R2), (S3, ft, R3))

where S3 = S and, supposing that p : S -—• S G P,

Pl = { y —• X, Y —• Z},
Ri = T* U { y } ,

Pi = {Sp —• Y } U
U { A ' —• A I A E N U { X } } U
U {Ar —* a\r : A —kiGP}U
U { A r — > B \ r : A — • B G P] U
U{ i4 r — C, Br —• D I r : AB —• CD 6 P) U
U { X r — - B, Ar —> C I r : A —• BC G P) U
U{ZA —> A, —» X \A £ N},

On RegulcLr Characterizations of Languages by Grammar Systems 421

R2 = {aiArQ2 | <*i,<*2 G (N'UT\J { a i , a 2 }) * , r : A—• a € P) U
U { « i ^ r a 2 | a b a 2 £ (N' U T U {a i , a 2 }) * , r : A — • В £ P} U
U{aiArBra2 | ai ,ct2 G (N' U T U { a b a 2 })* , r : AB — • CD £ P} U
U { a i X r A r a 2 | a b a 2 G (N' U T U { a b a2 })* , r : A — • ВС € P) U
U{ai ZAWAa2 \aua2£(N'uTU {аиа2})*,А £ N},

P3 = U { A —• A' | A £ N U { X } } U

и { Л —у A T \ r - . A — * а £ Р ox г : А — • .В € .Р} U
U { X — • ХТ,А —• Аг | г : А —у ВС £ Р} U

и { Л — > А Т , В — > В г \ г : А В — • CD £ Р } U
U{X ^Za,A^Wa\A£N},

R3 = (Л Г и { Х " } и Г и { а ь а 2 }) + Ua2aJ.

The system is working similarly to the one in the proof of Theorem 1. The only
differences are the following two:

1. Any string wa2a" £ L\ is produced here in the second component (instead of
the third) and, by splitting, w is sent to the master and а2а" to the third component
(instead of the fourth one). But, because the communication by splitting from the
second component to the other two is made only in the case when the sentential
form of the second component is of the form wa2a", w being necessarily sent to the
master and а2а" to the last component, this step is correctly performed.

2. The way in which the occurrences of X are handled in order to help us to use
the productions of the form A — • ВС, А, В, С £ N, is slightly different. However,
if the number of X's is too big, then no string will be produced (see observation 5
(ii) in the proof of Claim 2 above). We have only to show that indeed we can get
sufficiently many X ' s to be able to apply a rule of the form A — • В С anytime it
is needed. Supposing that the derivation in G is axAa2 =>G a\BCa2, we have
two cases:

(i) a i = а 2 = А,Л = S,r : S —у ВС £ P\B,C £ N. We have in Г (with
p:S ^SEP)

(S[,S'2,S) =>r (S[, S'2,SP) hr (S[,SP,S) =>r (Si , Y, Sp) b r

hr (У,S p ,S) = > г (X, S, Sp) K r (Si, S p , X S) = > r (S i , S , X r S r) h r (2)
hr (Si, X r S r , S) = > r (Si, ВС,S p) .

(ii) ariAa2 ф S,r : A —• ВС £ P,A,B,C £ N. Let us prove first that we can
have an X as the current sentential form of the first component anytime needed.

Any simulation in Г of a derivation in one step, say A =>G P, consists of one
or several iterations of the following sequence of steps: being the current sentential
form of the second component, a is sent to the third one, is rewritten there, is sent
back to the second component, and again rewritten. Because p : S —• S £ P,
we have Sp — • S £ P2 and S — • Sp 6 Рз- Thus, we can suppose that when

422 Lucían Ule, Arto Salomaa

the main string (that is the string which is at the beginning a and, rewritten and
communicated between the last two components, will be ¡3) is communicated from
component 2 to the component 3 (or from 3 to 2), then the string Sp is commu-
nicated from the component 3 to the component 2 (or from 2 to 3, respectively).
That can be also seen in (2).

Because we can perform in T

(- , - , Sp) br (- , Sp, -) =>r (- , Y, -) h r (Y, - , S) = * t (X, - , Sp),

using the observations above, it should be clear that we can get an X as the current
sentential form of the first component whenever we need one. (It is also seen that
the role of the production S —• S introduced in P is much more important here.)

Going back to our case, we can suppose (as in the proof of Claim 1, Case 2 (iv))
that when the current sentential form of the second component is a x A a 2 , then the
current string in the first component is X . We can also suppose (also as in the
proof of Claim 1, Case 2 (iv)) that « i = A\A2 .. .At £ N*. The derivation goes
now similarly to (1).

Consequently, the system constructed here generates the same language as the
one in the proof of Theorem 1. It follows that Ls(T) = L and the proof is over.

o
We notice that in the system T in Theorem 2, the splitting communication is

used only at the end when the string tu £ L is sent to the master and it will be
the output of the system and the garbage a2a" is sent to the third component. In
fact, the splitting communication is done in order to allow a workspace as big as
needed.

If the splitting communication is not allowed, we can still obtain (using only
regular rules) any context-sensitive language. The following result is a strength-
ening of Theorem 1 in [4] or of Corollary 3.4 in [10] (which establish that
CCPCooCF = CS.) It solves also the problem, open so far, of the hierarchy
('CCPCnREG)n>0.

Theorem 3 CCPC3REG = CS.

Proof. The construction is very similar to the one in Theorem 2. The difference
is that the second component there is the master one here because we do not need
any communication after obtaining the terminal string in the given language.

Let L be a context-sensitive language and let G = (N, T, S, P) be a context-
sensitive grammar generating L. We have seen in the proof of Theorem 1 that any
production of G can be supposed to be of one of the following forms: AB —• CD
with A^B, A —• BC, A —• B, or A —• a for some A,B,C,D £ N,a£ T.

Let S2, S3, X, and Y be symbols not in N UT and

N' = {A I A£ JVjufY'},

V = {Ar\AeN,r:AB —*CD £ P or r : BA —• CD £ P}U
\j{Ar \ A £ N ,r \ A — > a £ P}U
U{Xr I r : A —* BC £ P}U
U {Za,Wa\A£N}.

On RegulcLr Characterizations of Languages by Grammar Systems 423

The system is here:

r = (N U N' U S3,X, Y} U V, T, (Si, Pu fix), (S'2,P2, R2), (S'3, P3, R3))

where 5i = 5 and

Pi = {Sp — • Y } U
— A | A £ i i U { X } } U

U{Ar —> a\r \ A — > a £ P } U
U{ylr —> B\r: A —• B G P} U
U{Ar —• C, Br —>D\r:AB —• CD G P} U
U{Xr — B, Ar —* C | R : A — BC G P} U
U{Za —• A, WA —• X \Ae N},

Ri = {aiAra2\a1,a2€(N'uTy,r:A—• a G P} U
U{aiAra2 \alta2e(N'uTy,r:A —• B G P} U
U{ai^ r f l r a 2 | « i , «2 G (N'UTy,r : AB —• CD G P} U
U{«iX ryl ra2 | a i ,a 2 G (N'uT)*,r : A —• BC G P} U
U{aiZAWAai\al,ai€(N'uT)*,AeN}t

P2 = {A—* A' \Ae JVU{.Y}}U

U{A —y Ar\r\ A —• a G P or r : .A —• P £ P} U
U{A"—> XT, A—y AT |r :A—• BC G P} U
U{yl —• Ar, B —• Br I r : AB —• CD G P} U

—• Za,A —• Wa\A£ N),
fi2 = (J V U { I } U T) + .

P3 = {Y^X,Y-+Z},

Rs = {Y},

The proof for L(T) = L is very similar to the proof of Theorem 1 and therefore
omitted.

•
It is proved in [4] that CCPC2REG = REG hence, using Lemma 1, we obtain

that the results in Theorem 2 and Theorem 3 are optimal. Using also the results
CCPCooCS = CS from [10] and CS C CCPC2CF from [4], we can draw the
following diagram which shows the generative power of all types of systems with
communication by command investigated so far by comparing them with the fam-
ilies in Chomsky hierarchy. (The place of the families SCCPCnX, CCPC„X not
mentioned in the diagram is obvious.)

424 Lucían IJíe, Arto Salomaa

SCCPC3REG
SCCPC3CF
SCCPC3CS

R E

SCCPC2CF
SCCPC2CS }- - •{

CCPC3REG = • • • = CCPCooREG
CCPC2CF =••• = CCPCooCF
CCPCxCS = ••• = CCPC00CS

SCCPCiCF = C F = CCPCiCF

SCCPC2REG= R E G =CCPC2REG

References
[1] D. Angluin, Finding patterns common to a set of strings, J. Comput. Syst. Sci.,

21(1980), 46 - 62.

[2] K. Culik II, A purely homomorphic characterization of recursively enumerable sets,
Journal of the Association for Computing Machinery, 26(1979), 345-350.

[3] E. Csuhaj-Varjû, J. Dassow, J. Kelemen, Gh. P&un, "Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation", Gordon and Breach, London,

[4] E. Csuhaj-Varjú, J. Kelemen, Gh. Pàun, Grammar systems with WAVE-like com-
munication, Computers and AI, 15 (1996), 419-436.

[5] L. Errico, "WAVE: An Overview of the Model and the Language", CSRG, Dept.
Electronic and Electr. Eng., Univ. of Surrey, UK, 1993.

[6] L. Errico, C. Jesshope, Towards a new architecture for symbolic processing, tn "Arti-
ficial Intelligence and Information-Control Systems of Robots '94" (I. Plander, ed.),
World Sci. Publ., Singapore, 1994, 31 - 40.

[7] S. E. Fahlman, G. E. Hintón, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines, in "Proc. AAAI National Conf. on
AI", William Kaufman, Los Altos, 1983, 109 - 113.

1994.

On RegulcLr Characterizations of Languages by Grammar Systems 425

[8] W. D. Hillis, "The Connection Machine", MIT Press, Cambridge, 1985.

[9] J. E. Hopcroft, J. D. Ullman, "Introduction to automata theory, languages, and
computation", Addison-Wesley, Reading, Mass., 1979.

[10] L. Ilie, Collapsing hierarchies in parallel communicating grammar systems with com-
munication by command, Computers and AI, 15, 2-3(1996), 173 - 184.

[11] T. Jiang, E. Kinber, A Salomaa, K. Salomaa, S. Yu, Pattern languages with and
without erasing, Intern. J. Computer Math., 50(1994), 147 - 163.

[12] Gh. P&un, L. Santean, Parallel communicating grammar systems: the regular case,
Ann. Univ. due., Math.-Informatics Series, 38, 2(1989), 55 - 63.

[13] A. Salomaa, "Formed Languages", Academic Press, New York, 1973.

[14] P. S. Sapaty, "The WAVE Paradigm", Internal Report 17/92, Dept. Informatics,
Univ. of Karlsruhe, Germany, 1992.

[15] ***, "Connection Machine, Model CM-2. Tehnical Summary", Thinking Machines
T. R. HA 87 - 4, MIT, Cambridge, USA, 1987.

