
Acta Cybernetica 12 (1996) 397-409.

Test Tube Systems or How to Bake a DNA Cake

Rudolf FREUND * Franziska FREUND f

Abstract
We introduce various general models for test tube systems which not only

are a theoretical basis for the different test tube systems used for practical
applications (confer to [l], [2], [3], [12]), but also cover different theoretical
models to be found in literature, e.g. the test tube systems based on the
splicing operation introduced in [4] as well as test tube systems based on the
operations of cutting and recombination introduced in [9]. In test tube sys-
tems specific operations are applied to the objects in their components (test
tubes) in a distributed and parallel manner; the results of these computations
are redistributed according to specific input and/or output filters. We inves-
tigate relations between the different models of test tube systems introduced
in this paper and show how the results presented in [4] and [9] fit into our
general framework. Moreover, we investigate the computational power of test
tube systems with context-free productions and regular filters.

1 Introduction
Test tube systems were introduced as biological computer systems based on DNA
molecules ([1], [2], [3], [12]), and the practical solution of various problems (e.g.
even of NP complete problems like the Hamiltonian path problem in [1]) with such
systems was described. The theoretical features of test tube systems based on the
splicing operation were investigated in [4]; in [9] test tube systems based on the
operations of cutting and recombination were explored; in both cases, these test
tube systems were shown to have the computational power of Turing machines.

Most of the test tube systems to be found in literature have the following com-
mon features: in the components (test tubes) of the systems specific operations
are applied to the objects in the tubes in a distributed and parallel manner; the
results of these computations are redistributed according to specific output and/or
input filters which only allow specific parts of the contents of a tube to pass over
to other test tubes. As it was shown in the theoretical papers mentioned above
([4], [9]), even very restricted kinds of such filters testing for the existence respec-
tively non-existence of specific symbols respectively markings allow for reaching the

'Institut für Computersprachen, Technische Universität Wien Resselgasse 3, A-1040 Wien,
Austria. Email: radiologic.tuwien.ac.at

'Gymnasium der Schulbrüder, Strebersdorf, Anton Böck-Gasse 37, A-1215 Wien, Austria.
Email: freund@strebersdorf.ac.at

445

mailto:freund@strebersdorf.ac.at

446 Rudolf Freund, Franziska Freund

computational power of Turing machines. The computational universality of these
specific variants of test tube systems was proved in these papers, too.

In [5] and [6] a general framework for describing networks of language identifying
devices (networks of language processors) was introduced and investigated. In
this paper we shall restrict ourselves to introduce various general models for test
tube systems. We investigate relations between these models of test tube systems
and also consider their computational power with respect to the complexity of the
output/input relations and the filters we use. Moreover, we show how the results
presented in [4] and [9] fit into the general framework presented in this paper.

In the second section we start with defining the notions from formal language
theory needed in this paper; we introduce the formal definitions for the general
models of test tube systems to be investigated in this paper as well as the notions
of test tube systems based on the splicing operation ([4]) and the test tube systems
based on the operations of cutting and recombination ([9]); moreover, we give some
examples illustrating the notions of test tube systems and we show how the test tube
systems based on the splicing operation ([4]) and the test tube systems based on the
operations of cutting and recombination ([9]) can be interpreted in the framework
introduced in this paper. In the third section we investigate some characteristic
features of the different general models of test tube systems and also elaborate some
specific results for test tube systems which use context-free productions in the test
tubes and regular filters for redistribution. A short summary of the results obtained
in this paper and an overview of future research topics conclude the paper.

2 Definitions and Examples
In this section we define some notions from formal language theory and recall
the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and of cut-
ting/recombination schemes (CR schemes; confer to [8]). Moreover, we introduce
the general definitions of test tube systems and give some explanatory examples.

2.1 Formal language theory prerequisites
In this subsection we only define some notions from formal language theory that
we shall need in this paper. For general formal language theory prerequisites we
refer to [16].

The free monoid generated by the alphabet V is denoted by V*, its elements
are called strings or words over V\ A is the empty string, V+ = V* \ {A} .

A grammar scheme 7 is a triple (V}v, VT,P) , where V/v is a (finite) alphabet of
non-terminal symbols; VT is a (finite) alphabet of terminal symbols with V¿v fl VT =
0; P is a (finite) set of productions of the form (a , /?) , where a € (VKr U V T) + and
/? G (Vjy U VT)* . 'For two words x,y £ (V/v U VT)+ , the derivation relation h 7 is
defined if and only if x = uav and y = u¡3v for some production (a,/?) £ P and two
strings u,v £ (V/v U VT)* ; we then also write x h7 y. The reflexive and transitive
closure of the relation h7 is denoted by h* .

Test Tube Systems or How to Bake a DNA Cake 447

A grammar G is a quadruple (V/v, Vr,P,S), where 7 = (V/v, Vr,P) is a gram-
mar scheme and 5 G V/v; in a more general way, we can also take S G (V}v U VT)+ •
The A-free language generated by G is L (G) = {u; G VP | Sh* u>}.

The grammar G, G — (VN,VT,P,S), as well as the corresponding grammar
scheme (VN,VT,P) is called context-free, if every production in P is of the form
(A, w), where A G Vjv and w G (Vjv U Vr)* ; G is called regular, if every production
in P is of the form (A, w), where A G Vjv and w G Vf Vjv U V,j .

The family of (A-free) languages over VT generated by arbitrary, context-free,
and regular grammars is denoted by ENUM (V r) , CF(VR), and REG(VT),
respectively, and the family of finite (A-free) languages over VT is denoted by
FIN(VR)- The corresponding families of languages over arbitrary terminal al-
phabets are denoted by ENUM, CF, REG, and FIN, respectively. By REG+ we
denote the family of regular languages of the form W+ for some finite set W.

A grammar scheme YU (VT) with 7U (VT) = (V/v, VT, P) is called universal (for
VT) if for every L G ENUM (Vr) there exists a word AL such that the grammar
GL with GL = (Vyv, VT, P,AL) generates L. One of the important results of formal
language theory is that for every VT such a universal grammar ~F(J (VR) exists.

2.2 Splicing schemes and cutting/recombination schemes
We now recall the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and
of cutting/recombination schemes (CR-schemes; confer to [8]).

As the empty word has no meaningful representation in nature, A is not con-
sidered to be an object we have to deal with; as for grammars above, also in the
following only mechanisms for generating A-free languages will be considered (all
the definitions we shall give have been adapted in a suitable manner).

Definition 1. A splicing scheme (H-scheme) is a pair a, a = (V, R), where V is
an alphabet and R C V*#V*$V*#V*; # , $ are special symbols not in V. R is
the set of splicing rules. For x, y,z,w G V+ and r = tii#U2$W3#U4 in R we define
(a:, y) hr (z, w) if and only if x = «i«1^2X2, y = J/1M3U43/2, and 2 = x\u\u4y2, w =
y1u3u2x2 , for some x1,x2,yi,y2 G V*.

For any language L C V+, we write

<r(L) = {z G V+ | (x,y) hr (z,w) or (x, y) \-r (w,z), for some x,y E L,r € R],

and we define a* (L) — (Jt>o <T* .where
cr° (L) = L, <7*.+1 (L) = a* (L) U a (a1 (L)) f o r i > 0 .

An extended H-system (or extended splicing system) is a quadruple 7 , 7 =
(V,VT,A,R), where VR C V is the set of terminal symbols and A is the set
of axioms. The language generated by the extended H-system 7 is defined by
L(Y)=A*(A)NV+.

Definition 2. A cutting/recombination scheme (or a CR-scheme) is a quadruple
a = (V,M,C,R), where V is a finite alphabet; M is a finite set of markings; V
and M are disjoint sets; C is a set of cutting rules of the form u # / $ m # v , where

448 Rudolf Freund, Franziska Freund

u G V* U MV*, v e V* U V*M, and m,l G M, and # , $ are special symbols not in
V U M\ R C M x M is the recombination relation representing the recombination
rules. Cutting and recombination rules are applied to objects from 0 (V, M) , where
we define

O {V, M) = V+ U MV* U T M U MVM.

For x, y, z G 0 {V, M) and a cutting rule c = u # / $ m # v we define x he (y, z) if
and only if for some a G V* U MV* and ¡3 E V* U V*M we have x = auv/3 and
y = aul, z = mvj3. For x,y,z G 0 (V, M) and a recombination rule r = (/, m) from
R we define (x, y) h r z if and only if for some a G V* U MV* and /? E V* U V*M
we have x = al, y = m/3, and z = a/3. For a CR-scheme a = (V, M, C, i i) and any
language L C O (V, M) we write

a (L) = {y | x t-c (y, z) or x hc (2, y) for some x € L, c E C] U
{2 | (x, y) hr 2 for some x,y & L, r G -ft} ;

<7* (L) and <r' (L) for t > 0 are defined in a similar way as for splicing schemes.
An extended CR-system is a sextuple 7, 7 = (V, M,VT,A, C, R), where VT C V

is the set of terminal symbols, A is the set of axioms, and (V, M, C, R) is the
underlying CR-scheme. The language generated by the extended CR-system 7 is
defined by L (7) = <7* (A) NKT+. •

Thus <T(L) contains all objects obtained by applying one cutting or one recombi-
nation rule to objects from L\ A*(L) is the smallest subset of 0 (V, M) that contains
L and is closed under the cutting and recombination rules of cr. L (7) is the set of
all terminal words that can be obtained from the axioms by an arbitrary number
of cuttings and recombinations.

There is a close relationship between CR-schemes and splicing schemes (H-
schemes): For instance, applying the splicing rule ui#W2$t/3#ti4 to two strings
X1U1U2X2 and y\U3U^y2 yields the two strings X\u\u^y2 and yiU3U2X2 which cor-
responds to cutting the strings X1U1U2X2 and y\uzu^y2 into the strings xiiti [m]+ ,
[m]~ u2x2 and y\u$ [m]+ , [m]~ u$y2 by using the cutting rules Ui# [m]+ $ [m]~ #t«2
and ti3# [m]+ $ [m]~ #1x4 and recombining them immediately by applying the re-
combination rule , [m] - j in a crosswise way.

In [13] it was shown that H-systems with a finite set of axioms and a finite set
of splicing rules characterize REG, whereas with a regular set of splicing rules we
obtain ENUM. In [7] it was proved that by adding specific control mechanisms
like multisets or context conditions (permitting respectively forbidden contexts) to
extended H-systems with a finite number of axioms and a finite number of splicing
rules again the computational power of Turing machines or arbitrary grammars can
be obtained. Similar results for CR-systems were proved in [8].

2.3 Test tube systems
In this section we introduce several general models of test tube systems (confer to
[2], [3], [4], [12] for practical implementations). The idea of test tube systems is to

Test Tube Systems or How to Bake a DNA Cake 449

describe computational devices where the computations in each test tube are based
on specific operations and where any computation is done in a distributed way. As
a communication step the resulting contents of the test tubes then is redistributed
according to specific constraints, i.e. the contents of each test tube is distributed to
all test tubes according to specific output and input filters again, whereas the rest
remains in the test tube. These ideas have already be formalized-for the splicing
operation in [4] and for the operations of cutting and recombination in [9].

Definition 3. A test tube system with output and input filters (a TTSOI for short)
<r is a sextuple (B , n, A, p, O, I) , where

1. B is a s6t of objects;

2. n, n > 1, is the number of test tubes in <r;

3. A = (A\, . . . ,An) , where Aj is a set of axioms, which are elements from B,

4. p is a sequence (pi,...,pn) of sets of test tube operations, where pi contains
specific operations for the test tube Tj, 1 < i < n;

5. O = (Oi, ...,On), where O, C B is the output filter for the test tube Ti,

6. I = (7 i , . . . , I n) , where 7,- Ç B is the input filter for the test tube Ti, 1 < i < n.

In order to indicate the number n of test tubes, we also call <r a TTSOI„.
The computations in the system a run as follows: At the beginning of the

computation the axioms are distributed over the n test tubes according to A, i.e.
test tube Ti starts with Ai. Now let Li be the contents of test tube Ti at the
beginning of a derivation step. Then in each test tube the rules of Ti operate on
Li, i.e. we obtain pi (Li) . The next substep is the redistribution of the p? (L,) over
all test tubes according to the corresponding output and input filters. From p* (£ ,)
only the part (p* (L,) fl 0 ,) n / j that passes the output filter Oi as well as the input
filter Ij is distributed to the test tube Tj, 1 < j < n, whereas the rest

remains in Ti. The final result of the computations in a consists of all objects from
B that can be extracted from the final test tube T\ via the ouput filter Oi.

More formally, an instantaneous description (ID for short) of the system tr is
an n-tuple (Li, ...,Ln) with L, C B , 1 < i < n, where L, describes the contents of
test tube Ti at the beginning of a derivation step. The initial ID is (Ai , . . . , An),
i.e. at time t — 0 the test tubes Tj contain the axioms Ai. Let (L\ (<), ...,Ln (t))

1 < i < n;

1 < i < n;

450 Rudolf Freund, Franziska Freund

denote the ID at time t; then one derivation step with the system cr yields the ID
(Li (i + 1) , . . . , Ln (t + 1)), where

[Pi (Li (<)) \ (Ui<i<n ({Pi (Li (0) n o.-) n / ,))) .
We also write (Lx (t),.... L„ (t)) \-c (Lx (t + 1) , . . . , Ln (t + 1)). The language gen-
erated by the system a, L (a), then is defined by L (<r) = Ui^o (^i (0 n • More-
over, we say that a is of type (Fi, F2 , F3, F 4) , if Ai G Fi, pi G F?, Oi G F3 , and
Ii G F4 for all i with 1 < i < n. ' •

Definit ion 4. A test tube system with input filters (a TTSI for short) cr of type
(Fi,F2, F4) is a quintuple (B , n, A,p, I), where (B , n, A, p, (B , . . . , B) , I) is the cor-
responding TTSOI of type (Fi, F2, {B} ,F4). A test tube system with output filters
(a TTSO for short) a of type (F1.F2.F3) is a quintuple (B , n , A , p , 0) , where
(B,n,A,p,0,(B,...,B)) is the corresponding TTSOI of type (Fu F2, F3,{B}). In
order to indicate the number n of test tubes, we also call a a TTSIn and a TTSO n ,
respectively. n

We should like to mention that in general the TTSOI (B, n, A,p, (B, ...,B), I)
corresponding with a TTSI (B , n, A, p, I) of type (Fi, F2 , F4) need not be a TTSOI
of type (Fi, F2, F4 , F 4) , because B need not be an element of F4 .

Remark 1. The reader should observe that we are not dealing with multisets in
this paper; hence we assume that every object in any test tube is available in an
unbounded number. Moreover, in the phase of redistribution every object x from
the test tube Ti that passes the output filter Oi is distributed (in an unbounded
number) to each test tube Tj the input filter of which allows x to pass. In some sense
this corresponds to an intermediate step which in practice is called amplification,
e.g. in test tubes working with DNA strands (and the operation of splicing) copies
can be made by applying the polymerase chain reaction (see [3]). Moreover, it
would be a more practical assumption that instead of pi (L,) any arbitrary (finite)
subset of p* (Li) could evolve in the test tube Ti during a computation period.
Then only this subset would be distributed to all test tubes according to the input
filters. In fact, in most cases this would still allow us to generate all desired objects,
although it would never be clear, when these objets would evolve. In a practical
implementation the number and the size of objects that can be generated also
depends on the amount of original material of axioms we take at the beginning.
Moreover, if parts of (the subset of) pJ (Li) are to be redistributed over different
test tubes it is only necessary to assume that any allowed distribution of the whole
material will possibly happen; in practical implementations of test tube systems the
intermediate amplification (see [2], [3], [12]) of the material may already guarantee
that enough material is distributed to all the possible test tubes. •

A minimal requirement on the feasability of the input filters / , and the output
filters Oj is their recursiveness, i.e. we demand that it is decidable whether an
object from B can pass a filter or not.

Test Tube Systems or How to Bake a DNA Cake 451

The following example shows how under these constraints every recursive lan-
guage can be generated by a large class of TTSOi:
Example 1. Let L C V+ be an arbitrary recursive language and let be the
TTSOi cL = (B, 1, (A) , (p), (L)) such that p* (A) D L. Then we obtain (A) h„ t

(p* (A) n L) = (L) and therefore L (a) = (A D L) U (p* (A) DL) = L.
Hence, for any family of languages F3 with F3 C REC, a language L C F3

can be generated by a TTSOi of type (F\, F2, F3) if F\ contains a set A such that
p* (A) D L for some p € F2. •

Definition 5. A CR-TTSOI a is a TTSOI (O (V, M), n, A, p, O, I), where p =
(pi,...,pn), pi = Ci U Ri, 1 < i < n, and a¡ = (V, M,C¡, Ri) is a CR-scheme.
In order to emphasize that a is a CR-TTSOI, we shall also write (CÍ,RÍ) for pi
instead of QURi. An H-TTSOI <7 is a TTSOI (V+, n, A, p, O, I), where <r¿ = (V, p•),
1 < i < n, is an H-scheme. A G-TTSOI a is a TTSOI (W (VN,VT), n, A, p, O, I),
where VN and VT are disjoint alphabets, W (VN , Vt) denotes (Vjv U Vr)+ , and

= (VN,VT,PÍ) , 1 < i < n, is a grammar scheme; if every grammar scheme c¿,
1 < i < n, is context-free (regular), then also a is called context-free (regular). •

Remark 2. The notation W (VN ,VT) in a G-TTSOI a, a -
(W (Vjv, Vt) , n, A, p, O, I), allows us to distinguish the non-terminal symbols in
VN and the terminal symbols in VT\ <t is considered to work "correctly" only if
I (cr) C VT+. In a similar manner for a CR-TTSOI a, a = (O (V, M), n, A, p, 0,1),
we demand L (cr) C V+. •

We now exhibit an example of a regular G-TTSO7 of type (FIN, FIN, REG+)
which generates a non-context-free language:

Example 2. Let <r = (W (V^r, VT) , 7, A, p, O) be the G-TTSO7 with
VN = {X,Y},VT = {atb},
A = (0, {XX} , {XX} , {XX} , {XX} ,0 ,0) ,
P = (PI,P2,P3,P4,P5,P6,PT) , o = (0 i , 0 2 , O3, O4, O5, 06 ,07) .
P l = 0, P 2 = { (X , a) , (Y, a)} , p3 = {(X, b), (Y, b)} ,
P4 = {(X, aY) } , p5 = {(X, 6Y)} , P 6 = {(Y, a X) } , p7 = {(Y, W) } ,
Oi = 0 2 = O3 = {a, 6}+ , 0 4 = 0 5 = {a, 6, Y } + , 0 6 = Or = {a, 6, X}+ .
The generation of the words ww in this G-TTSO briefly can be described in the

following way:
From arbitrary words of the forms uXuX, u G {a, 6}* , and vYvY, v £ {a, 6 } + ,

respectively, by the productions in p2 we obtain uaua and vava, respectively,
whereas by the productions in p3 we obtain ubub and vbvb, respectively, i.e. we ob-
tain terminal words from {a, 6}+ , which then can be extracted from as terminal
results of the computations in cr. By the corresponding productions in £>4, ps, p$,
pi, the length of the current strings is prolongued by one more symbol in a syn-
chronized way, because only the strings of the forms uaYuaY, ubYubY, vaXvaX,
and vbXvbX, respectively, can pass the corresponding output filters 0¿ of the test
tubes Ti, 4 < i < 7. These observations show that L (a) = < ww \ w £ {a, 6 } + . •

452 Rudolf Freund, Franziska Freund

For CR-TTSOPthe following types of filters are suitable:
Definit ion 6i A subset of 0(V,M) is called a simple (V, M)2-filter if it equals

1. V+ or

2. { m } V* for some m 6 M or

3. V* {m} for some m G M or

4. { m } V* { n } for some m,n £ M.

A simple (y, M)2-filter is called a simple (V, M)1-ftlter, if it is not of the form
{ m } V* {n } . Any finite union of simple (V, M){-filters, i £ { 1 , 2 } , is called a
(V, M)i-filter; the families-of (V, M),-filters and simple (V, M)t-filters for arbitrary
V, M are denoted- by CRFi and CRSFi, respectively. •

The proof of the following result is obvious from the definitions and therefore
omitted:
L e m m a 1. The union and the intersection of two (V, M){-filters again is a (V., M)r

filter, i 6 {1, 2}. Moreover, O (V, M) is a (V, M)2-filter, but not a (V, M) r f i l ter .

The distribution of the contents of a test tube over all test tubes of the system
not only gives rise to theoretical problems (for obtaining filters- of a complexity as
low as possible) but also to practical problems ("waste" of the material that is put
into test tubes where on one hand it-cannot be processed or used any more and on
the other hand it nonetheless has to remain forever). Hence, a more natural and
realistic scenario is to assume that the contents of-the test tubes is only distributed
to selected test tubes that are prescribed from the beginning. In fact, most of the
test tube systems to be found in literature work in such a manner, i.e. programs
how to redistribute the contents of test tubes are described (see [1], [3], [12]).

A formalization of these ideas discussed above leads to the following definition:
Definit ion 7. A test tube system with prescribed output/input relations (a TTSPOI
for short) cr is a quintuple (B, n, A,p, D), where

1. B is a set of objects;

2. n, n > 1, is the number of test tubes in cr;

3. A = (A\,..., An) is a sequence of sets of axioms, where A, C B, 1 < i < n;

4. p is a sequence (p\, ...,pn) of sets of test tube operations, where pi contains
specific operations for the test tube T;, 1 < i < n;

5. D is a (finite) set of prescribed output/input relations between the test tubes
in o of the form (i, F,j) , where l < i < n , l < j < n and F is a (recursive)
subset of B; F is called a filter between the test tubes TJ and I } .

Test Tube Systems or How to Bake a DNA Cake 453

In order to indicate the number of test tubes, we also say that a is a TTSPOIn .
The computations in the system a run as follows: At the beginning of the

computation the axioms are distributed over the n test tubes according to A, i.e.
test tube Ti starts with A,-. Now let Li be the contents of test tube Ti at the
beginning of a derivation step. Then in each test tube the rules of p,- operate on
Li, i.e. we obtain p* (Li) . The next substep is the redistribution of the p* (Li) over
all test tubes according to the corresponding output/input relations from D, i.e. if
(h F j) £ D then the test tube Tj from p; (L,) gets p* (Li) fl F, whereas the rest of
p*i (Li) that cannot be distributed to other test tubes remains in Ti. The final result
of the computations in cr consists of all objects from B that can be extracted from
the final test tube Ti (hence usually we shall assume F = 0 for all (1, F,j) £ D).

More formally, an instantaneous description (ID for short) of the system a is
an ra-tuple (Li, ...,Ln) with L; C B, 1 < i < n, where Li describes the contents of
test tube Ti at the beginning of a derivation step. The initial ID is (A\,..., An),
i.e. at time t = 0 test tubes Ti contain the axioms A,-. Let (L\ (t),..., Ln (t))
denote the ID at time f; then one derivation step with the system cr yields the ID
(Li (t + 1) , . . . , Ln (t + 1)), where

Li (t + 1) = ((J (Pi ^ W) n F)) U I (^ (t)) \ (J (p* (Li (i)) n F)

We also write (L\ (t) , . . . , Ln (t)) (Li (t + 1),..., Ln (t + 1)). The language gen-
erated by the system cr, L (cr) , is defined by L (cr) — (Jt^o L\ (t) . Moreover, we say
that cr is of type (F\,F2, F3) , if A,- £ Fx, pi £ F2 for all i with 1 < i < n, and
F £ F3 for all F with (i, F,j) £ D for some i,j with 1 < i < n, 1 < j < n. •

Definition 8. A CR-TTSPOI a is a TTSPOI (O (V, M), n, A, p, D), where p =
(pi , . . . ,p„) , pi = (Ci,Ri), 1 < i < n, and (T,- = (V,M,Ci,Ri) is a CR-scheme.
An H-TTSPOI a is a TTSPOI (V+, n, A,p, D) where <n = (V,Pi), 1 < i < n,
is an H-scheme. A G-TTSPOI cr is a TTSPOI (W(VN, VT), n, A, p, D), where
f i = (VN, VT,pi), 1 < i < n, is a grammar scheme; if every grammar scheme cr,-,
1 < i < n, is context-free (regular), then also a is called context-free (regular). •

Remark 3. As already stated in Remark 2 for CR-TTSOI and G-TTSOI, respec-
tively, also for a CR-TTSPOI a, a = (0 (V, M), n, A, p, D), we demand L (a) C V+
and for a G-TTSPOI a, a = (W (VN,VT) ,n,A,p,D), we demand L(<r) C V / .

The following results were established in [9]:
Propos i t ion 1. For every L £ ENUM we can construct a CR-TTSI of type
(FIN,FIN,CRFi) which generates L.
Propos i t ion 2. For every L £ ENUM we can construct a CR-TTSPOI4 of type
(FIN, FIN, CRF2) which generates L.

For the CR TTSI in Proposition 1 it is an open question whether the number
of test tubes needed for generating arbitrary recursively enumerable languages can
be bounded or not.

454 Rudolf Freund, Franziska Freund

The following result was proved in [4]:
Propos i t ion 3. For every L € ENUM (VT) we can construct an H-TTSl8+card(vT)
of type (FIN, FIN, REG+) which generates L.

3 Results
In the first part of this section we elaborate some general relations between the
different models of test tube systems we introduced in the previous section; these
results even hold true for arbitrary objects and for arbitrary operations used in the
test tubes. In the second part of this section we shall prove some specific results
for test tube systems working on strings, e.g. we shall show how every recursively
enumerable string language can be generated by test tube systems using context-
free productions and a very restricted form of regular filters only.

3.1 General results for test tube systems

In this subsection we show some general results for the different models of test
tube systems introduced in the previous section; these results neither depend on
the operations used in the test tubes nor on the objects we consider. Moreover, we
give some applications of these general results for CR test tube systems.

For every TTSOI we can easily construct an equivalent TTSPOI generating the
same language:
L e m m a 2. Let a = (B,n,A,p,0,l) be a TTSOIn of type (F1,F2,F3,FA)
and let F0 be a set containing L(cr). Then the TTSPOI n + i a' =
(5 , n + 1 , (0 , p u . . . , p „) , (0 , A i , . . . , A n) , D) with

D={(i+l,OinIj,j+l) | 1 < i,j < n } u { (2 , F 0 n O ! , l) }

generates the same language as a, i.e. L (a1) = L (a). Let F\ and F2 contain
the empty set and denote n (F3, FA) = {X n Y \ X € F3 A Y € F 4 } ; then <r' is
a TTSPOI„+i of type (F1,F2,F5) for every family F5 with F5 D { F 0 n O i } U

' n (F3, F4).

Proof. The components (test tubes) T}'+1, 1 < i < n, in a' work in the same way as
the corresponding test tubes Ti in o, because by definition they contain the same
rules, i.e. = pi. We also start with the desired axioms Aj in each test tube
T'j+x, 1 < j < n. The output/input relations (i+ 1, Oi fl Ij,j + 1) , 1 < i < n,
1 ^ j < n, guarantee that the test tubes Tj'+1 in a' are distributed in the same
way as the test tubes T) in a after each computation step. The test tube T[is only
needed to extract the final objects in cr' in a similar way as by extracting these
strings from Ti in cr. In sum we obtain

(Alt..., An) K (Li («),...,£„(*))
(L\ (< + 1),..., Ln (t + 1))

Test Tube Systems or How to Bake a DNA Cake 455

if and only if

(01^1, . . . , A n) h ; , (L 0 (<) , L 1 (i) , . . , i „ W)
(Lo (0 U (Lx (t) n (F0 n Ot)) ,Ll(t+l),...,L„(t+ 1))

which immediately yields

L (•) = Ur=o Lo (0 = 0 U U^o (¿i (0 n (F0 0 0:)) =
(U ~ o Li (t) n 0 0 n F 0 = L (o-) n F 0 = L (<r).

•

Corol lary 1. For every L G ENUM (VT) we can construct a CR-TTSPOI of type
(FIN, FIN, CRFi) which generates L.
Proof. From Proposition 1 we know that for L we can construct a CR-TTSOI
<r = (0(V,M),n,p,(0(V,M),...,0(V,M)),I) of
type (FIN,FIN, {0(V,M)},CRFx) with L(a) = L. Now take F0 = V+ (ob-
serve that V+ G CRFx)] obviously, for any F G CRFX we have F n O (V, M) = F
and therefore {F0 D O J U (n ({O (V, M)} , CRFi)) C CRFu hence, we can apply
Lemma 2. •

Because of Lemma 1, the following result, for instance, holds true for CR-
TTSPOI of type (FI,F2,CRFi), i G {1,2} :
Lemma 3. Let a = (B,n,A,p,D) be a TTSPOI„ of type (F i , F 2 , F 3) . If the
family of filters F3 contains the empty set and is closed under union, then we can
construct an equivalent TTSPOI„ <r' = (B, n,A,p, £>') of the same type (Fi, F2, F3)
such that for any two test tubes there is exactly one output/input relation (by a
filter from F3), and moreover, the derivation relations b a and hCT< are identical.
Proof. The result is obvious by defining

D'= U U n

Observe that Fij is empty if in D no output/input relation between Ti and Tj
exists. •

Remark 4. If we want to use the filters Fij t i , . . . , F i j ^ only instead of the union
filter Um=i between the test tubes Ti and Tj, but still do not want to have
more than one connection between two test tubes, we have to add k additional test
tubes T i , j , i , - ,T i J i k , which with (time) delay one contain the same strings as Ti,
and then from T1 J] m by the filter F; J i m distribute this filtered part of TJ to Tj,
i-e. Pi,j,m = 0> and instead of the output/input relations (i, F>iJim,

j), 1 < m < k,
we have the relations (i, Fijim,(i,j, m)) and ((i,j, m) , Fijim,j) for all m with 1 <
m < k. •

456 Rudolf Freund, Franziska Freund

As an immediate consequence of these considerations, (V , M)i-filters, i G { 1 , 2 } ,
which by definition are finite unions of simple (V, M) i-filters, in the same way can
be split up into their components. Hence, Corollary 1 now can be sharpened to
the following result which shows that in CR-TTSPOI we only need simple (V, M) t -
filters in order to obtain full generative power:
Corol lary 2. For every L € ENUM we can construct a CR-TTSPOI of type
(FIN, FIN, CRSFi), i G {1 ,2 } , which generates L.

Under specific constraints, a TTSPOI„ can even be simulated by a TTSOI„ :
L e m m a 4. Let cr = (B, n, A, p, D) be a TTSPOI„ of type (FUF2, F3) such that

1. the family of filters F3 contains the empty set and is closed under union;

•2. for any two test tubes Ti and 7* with 1 < i < n, 1 < k < n, there is exactly
one output/input relation (i ,Fik ,k) with F^t G F3\

3. for all (i, Fij,j) and (i, F,^, k) in D with j ^ k we have F , j fl F,-^ = 0;

4. for all k with 1 < k < n we have F\tk = 0;

then we can construct an equivalent TTSOI« o' = (B , n , A , p , 0 , I) of the type
(Fi, F2 , F3, F3) such that L (<r') = L (a).
Proof. The desired result is obvious by defining Oi = U i < j < n ^ ' j and I{ =
Ui<j<n Fi.i for 2 < i < n as well as Oi = h = Ui<j<„ Fj,i- ~ ~ D

3.2 Some specific results for test tube systems
In this subsection we shall show how any recursively enumerable language can be
generated by test tube systems with context-free productions and regular filters:

T h e o r e m 1. For every L G ENUM(VT) we can construct a context-free G-
TTSPOI3 of type (FIN, FIN, REG) which generates L.
Proof. Without loss of generality we may assume that L is given by a grammar G in
Geffert normal form (see [10]), i.e. G = ({5 , A, B, C} , VT, Pc} U {ABC —• A} , S) ,
where Pc/ contains only context-free productions of the form (5, w). Now we define

= (W (VI,,VT), 3,(0, {S}, 0), (<D,p2,p3),D),
Vn = {S,A,B,C,A',B',C'},
V = {S,A,B,C}UVT,
p2 = PcJl){A-+A',B^B',C^C'},
P3 = {A' -+ A, B' —• A, C ' A} ,
D = {(2,V+,l),(2,V{A'B'C'}V*,3),(3,V+,l)t(3,V+\V+,2)}u

{ (1 , 0 , 1) , (1 , 0 , 2) , (1 , 0 , 3) , (2 , 0 , 2) , (3 , 0 , 3) } .

Whenever an application of the only non-context-free rule ABC —* A has to be
simulated in a, we have to apply the productions A —• A', B —• B', C —+ C' in T2 in

Test Tube Systems or How to Bake a DNA Cake 457

such a manner that the resulting word can pass the filter V* {A'B'C'} V*, which
checks the context condition; the final execution of the simulation is carried out by
the productions A' —• A ,B' —• A ,C' —1• A in T3. Only terminal words are passed
from T2 and T3 to T\. Hence we conclude L (<r) = L. •

As the construction elaborated in the preceding proof fulfills the necessary as-
sumptions, we immediately can apply Lemma 4, which shows that we can construct
a context-free G-TTSOI3 of type (FIN, FIN, REG) which generates L; yet we can
even get more, i.e. we only need a context-free G-TTSI3 or a G-TTSO3 of type
(FIN, FIN, REG) for generating L :

Corollary 3. For every L E ENUM (Vr) we can construct a context-free G-TTSI3
which generates L as well as a context-free G-TTSO3 of type (FIN, FIN, REG)
which generates L.
Proof. In a similar way as in the proof of Theorem 1 we define the context-free
G-TTSI3

= (W (Vif, VT), 3, (0, { 5 } , 0) , (0, P 2 , p3), I)

and the context-free G -TTS0 3

= (W (V^, VT), 3, (0, { 5 } , 0) , (0, P2, p3), 0)

where V', p2, p3 are defined as in the proof of Theorem 1 as well as

/1 = V^, /2 = F+ , J3 = V* {A'B'C'} V*, and
Oi = VC+, 02 = VjT U V* {A'B'C'} V',03=V+.

It is easy to verify that L (aj) = L ((To) = L (a) — L. •

The results in Theorem 1 and Corollary 3 are optimal in the sense that a
context-free G-TTSPOI2 of type (FIN, FIN, REG) can only generate context-free
languages:

Theorem 2. For every context-free G-TTSPOI2 a of type (FIN, FIN, REG),
L(a) E CF.
Proof. Let <r = (W (VN, VT), 2, (Ax, A2) ,(pi,p2), D) be a context-free G-TTSPOI
of type (FIN, FIN, REG), i.e. pi and p2 contain only context-free productions,
and the filters in D are regular. The elements of the first test tube must be terminal
words, hence no context-free productions can be applied any more to these words,
neither in the first test tube nor, after distribution according to an output/input
relation (1, 7̂ 1,2, 2) , in the second test tube, hence we can assume p\ = 0 as well
as D = {(2, F2,i,l), (2, F 2 , 2 ,2) , (1 ,0 ,1) , (1 ,0 ,2) } , where F2,1 and F7,2 are regular
languages. F2,1 only has the task to extract terminal strings from the contents of
the second test tube, i.e. the relation (2, ir2| 1,1) only works as a final intersection
with the regular set F2^. During the first derivation step, in T2 from A2 we obtain

458 Rudolf Freund, Franziska Freund

p2 (A2) . As p2 (A2) PI F2¡2 C p2 (A2) and p2 (p2 (A 2)) = p2 (A 2) , in further deriva-
tion steps no additional strings can evolve in T2. Hence, as the family of context-free
languages is closed under union as well as under intersection with regular sets, we
obtain p2 (A2) £ CF, L (<r) = p\ (A 2) n F2A, and therefore L (a) £ CF. •

Remark 5. In a similar way as above it is easy to show that for ev-
ery regular G-TTSPOI2 a of type (FIN, FIN, REG), L (a) £ REG. Obvi-
ously, for any context-free G-TTSPOIi <r of type (FIN, FIN, REG) with a =
(W(VN, Vr), (A i) , (/?i), {(1, F\t\, 1)}) we have L(a) = A\, because the words in
Ai must not contain non-terminal symbols; hence, only finite languages can be
generated. On the other hand, the language generated by a regular respectively by
a context-free G-TTSOi with a - (W (VN,VT), (A i) , (Pl), (f\)) is p\ (v^) D Fx,
i.e. as REG (Vr) and CF (Vr) are closed under union as well as under intersection
with regular sets, such G-TTSOj exactly characterize REG(VT) and CF(VR),
respectively. •

Remark 6. The existence of a universal grammar scheme 7u (Vr) for Vr
and the results shown above also imply the existence of a universal context-
free G-TTSI3 cv(VT) for VT, av (VT) = (W (V¿, VT), 3, (0 ,0,0) , (0, p2, p3), I),
where p2 and p3 contain context-free productions and the filters in I are regu-
lar, such that for every L £ ENUM(VT) the context-free G-TTSI3 <?L , =
(W (Vh, Vr) ,3, (0, { A l } , 0), (0, p2,p3) ,1), generates L, where Al denotes the ini-
tial word used for 7U (VT) to obtain a grammar generating L. •

4 Summary and Future Research
In this paper we introduced various general models of test tube systems. We in-
vestigated several general relations between different kinds of these models and
also showed some specific results, e.g. how to generate any arbitrary recursively
enumerable language by a test tube system with context-free productions and a
restricted type of regular filters.

Special practical variants have already been described in literature for solv-
ing very specific problems in the area of DNA computing and the construction of
molecular computers based on test tubes has been considered by using different op-
erations on the test tubes (e.g. see [1], [2], [3], [12]). In [4], test tube systems based
on the splicing operation were shown to allow the construction of universal mecha-
nisms; a similar result was shown for test tube systems based on the operations of
cutting and recombination in [9]. Various other types of test tube systems based
on context-free productions can also be shown to be computationally universal as
we have exhibited in the previous section.

The general results proved in the first part of the preceding section also hold
true for test tube systems working on other objects than strings, e.g. for circular
strings, graphs, and arrays. Hence, there is a wide field of interesting problems to
be considered in the future.

Test Tube Systems or How to Bake a DNA Cake 459

Acknowledgements
We gratefully appreciate fruitful discussions with Erzsébet Csuhaj-Varjú and Ghe-
orghe Páun on some of the topics considered in this paper.

References
[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Sci-

ence, 226 (Nov. 1994), 1021 - 1024.
[2] L. M. Adleman, On constructing a molecular computer, manuscript, January 1995.
[3] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, On the computational Power of DNA,

to appear.
[4] E. Csuhaj-Varj ú, Kari, and Gh. Páun, Test tube distributed systems based on

splicing, Computers and Artificial Intelligence, Vol. 15 (2) (1996), 211-232
[5] E. Csuhaj-Varj ú and A. Salomaa, Networks of parallel language processors, submit-

ted.
[6] E. Csuhaj-Varjú, Networks of language processors. A survey. In: Lenguajes Naturales

Y Lenguajes Formales XII, C. Martin-Vide, ed., PPU, Barcelona, 1996, pp. 169-1.89.
[7] R. Freund, L. Kari, and Gh. Páun, DNA computing based on splicing: The existence

of universal computers, Techn. Report 185-2/FR-2/95, TU Wien, 1995.
[8] R. Freund and F. Wachtler, Universal systems with operations related to splicing,

Computers and Artificial Intelligence, Vol. 15 (4) (1996), 273-294.
[9] R. Freund, E. Csuhaj-Varj ú, and F. Wachtler, Test tube systems with cut-

ting/recombination operations, Proceedings PSB'97, 1997.
[10] V. Geffert, Context-free-like forms for the phrase-structure grammars, Proceedings

MFCS'88, Lecture Notes in Computer Science, Vol. 324, Springer-Verlag, Berlin
(1988), 309 - 317.

[11] T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 - 759.

[12] R. J. Lipton, Speeding up computations via molecular biology, manuscript, December
1994.

[13] Gh. Páun, Regular extended H systems are computationally universal, J . of Au-
tomata, Languages and Combinatorics, Vol. 1, Nr. 1 (1996), 27 - 37.

[14] P. W. K. Rothemund, A DNA and restriction enzyme implementation of Turing
machines, manuscript, 1995.

[15] R. Siromoney, K. G. Subramanian, and V. R. Dare, Circular DNA and splicing sys-
tems, Lecture Notes in Computer Science, Vol. 654, Springer-Verlag, Berlin (1992),
260 - 273.

[16] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

