
Acta Cybernetica 13 (1997) 63-76.

Bounded Space On-Line Variable-Sized Bin Packing*

Rainer E. Burkard* Guochuan Zhang*

Abstract

In this paper we consider the fc-bounded space on-line bin packing prob-
lem. Some efficient approximation algorithms are described and analyzed.
Selecting either the smallest or the largest available bin size to start a new
bin as items arrive turns out to yield a worst-case performance bound of 2.
By packing large items into appropriate bins, an efficient approximation al-
gorithm is derived from fc-bounded space on-line bin packing algorithms and
its worst-case performance bounds is 1.7 for k > 3.

Keywords : On-line, bin packing, approximation algorithm.

1. Introduction
In the one-dimensional classical bin packing problem, a list L of items, i.e. numbers
ai (i = 1, • • •, n) in the range (0,1], are to be packed into bins, each of which has a
capacity 1, and the goal is to minimize the number of bins used. Since the problem
of finding an optimal packing is NP-hard, research has focused on finding near-
optimal approximation algorithms. The classical bin packing problem and many of
its variations are of fundamental importance, reflected in the impressive amount of
research reported [1].

A bin packing algorithm is on-line if it packs items aj solely on the basis of
the sizes of the items a-j. 1 < j < i (i.e. the preceding items) and without any
information on subsequent items.

For a list L of items and an on-line algorithm A, let s{A,L) and s(OPT,L)
denote the total size of bins used by algorithm A and an optimal off-line algorithm,
respectively. Then the worst-case performance bound of A is defined as

= lim sup{s{A,L)/s(OPT,L)\s{OPT,L) > k} k—>oo £

In classical bin packing s(A, L) is just the number of bins used by algorithm A and
s(OPT, L) is the number of bins used by an optimal algorithm.

"This work was supported by Spezialforschungsbereich F 003 "Optimierung und Kontrolle!',
Projektbereich Diskrete Optimierung.

tTU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria

63

64 Rainer E. Burkard, Guochuan Zhang

In this paper, we pay our attention to the following two restrictions of on-line
bin packing (For a rather complete survey on the worst case behaviour of on-line
bin packing algorithms, see Galambos and Woeginger [7]).
Bounded space algorithms

We say, a bin becomes active (open), when it gets its first item. Once it is
declared closed, it can never be active again. A bin packing algorithm uses k-
bounded space if for each item a;, the choice for the bin to pack it is restricted to
a set of k or fewer active (open) bins.

Lee and Lee [10] proved that for every bounded space on-line bin packing algo-
oo

rithm A, > /loo = £ l/fi~l-69103, where
i=i

¿1 = 1, ¿¿+1 = ti(ti - 1), for i > 1.

Galambos and Woeginger [6] even proved that the bound /ioo could not be beaten
by repacking.

Essentially, the following six types of bounded space on-line bin packing ap-
proximation algorithms have been studied.
(i) The first fit first close algorithm NkF (k > 2) is a simple extension of the Next

Fit algorithm (Johnson [8]). Csirik and Imreh [3] constructed lists of items for
which NkF is a factor 17/10 -I- 3/(lOfc - 10) away from the optimum. Mao
[11] proved that this indeed is the worst that can happen. Hence S ^ k F =
17/10 + 3/ (10*:- 10) holds.

(ii) Mao [12] showed for the best fit first close algorithm ABFk [k > 2) with bounded
space k the performance bound SA'BFk = 17/10 + 3/(10*:).

(iii) The best fit best close algorithm BBFk (k > 2) was introduced by Csirik and
Johnson [4]. They showed in a very sophisticated proof that "best is better
than first", since independently of the value of k, always SBBFh = 17/10 holds.

(iv) Zhang [15] showed that for the first fit best close algorithm AFBk (k > 2) which
was also introduced by Csirik and Johnson [4], S^pg^ . = 17 /10+3 / (10* : - 10)
holds.

(v) The HARMONIC algorithm HARMk by Lee and Lee [10]. They showed that
as k tends to infinity, S^ARMk tends to the number hcc.

(vi) The SIMPLIFIED HARMONIC algorithm SHk by Woeginger [14], works
similar to the HARMONIC algorithm but uses another (more complicated)
partition of the interval (0,1]. Moreover, SrgHk < SjfARMk for each k >2.

Variable-sized on-line bin packing
Only few results are known concerning the more general problem in which bins

need not be of a single given size [2,5,9,13,16]. The variable-sized bin packing
problem is a variant of the classical bin packing, in which bin capacities may vary.
We are given a list L of items, and several different types B1,..., Bl of bins with
sizes 1 = «(B1) > s(B2) > ••• > s(Bl) > 0. There is an inexhaustible supply of
bins of each size. The goal is to pack the given items into the bins so that the sum
of the sizes of the bins used is minimum. Observe that for the case that all bins

Bounded Space On-Line Variable-Sized Bin Packing 65

are of size one, this is just the classical one dimensional bin packing problem. This
model is considerably more realistic than that of the classical problem.

In the on-line version of variable-sized bin packing, we cannot preview and
rearrange the items of L before packing is started, but must instead accept and
immediately pack each item as it arrives.

Friesen and Langston [5] gave three approximation algorithms with worst-case
performance bounds of 2, 3/2, and 4/3. Only the first of these algorithms is on-line.
Essentially, it is a simple modification of Next Fit and also has the same worst-case
performance bound 2 as Next Fit. An off-line fully polynomial time approximation
scheme has been devised by Murgolo [13] using a linear programming formulation
of the problem. Kinnersley and Langston [9] presented fast on-line algorithms FFf
for the variable-sized bin packing. They devised a scheme based on a user specific
factor / > | and proved that their strategy guarantees a worst-case performance
bound not exceeding 1.5 + / / 2 > 1.75. By choosing / = 1/2, FFH, the best
among FFf algorithms, is obtained. Zhang [16] proved that the tight bound of
FFH is 1.7, the same bound as the First Fit algorithm in the classical bin packing.
Csirik [2] derived an algorithm with worst-case performance bound of < 1.7 from
the Harmonic Fit algorithm. To our knowledge, Csirik's algorithm is still the best
up to now, for a short discussion see Section 4.

In this paper, we consider algorithms for on-line variable-sized bin packing prob-
lem with the added constraint that the algorithms can assign items only to one of
k bins at a time. Two simple algorithms with bounds 2 are presented in Section
2. Section 3 analyses an algorithm with worst-case performance bound of 1.7 (for
k > 3), which derived from bounded space on-line bin packing.

2. Some Simple Algorithms
When we design an algorithm for /c-bounded space on-line variable-sized bin pack-
ing, we must answer the following questions.

• How to select the bin size when a new bin is required?
• Which bin among the k active bins is chosen for packing a;?
• Which bin among the k active bins is closed when a new bin has to be created

for di ?
For /c-bounded space on-line bin packing, Csirik and Johnson [4] presented two

packing rules and two closing rules. They are listed as follows.
P-FF Pack the current item a* into the lowest indexed active bin that has

enough space for it. Otherwise, open a new bin and place a, in it.
P-BF Pack the current item ai into the fullest active bin that has enough space

for it. Otherwise open a new bin and place aj in it.
C-FF Close the lowest indexed active bin.
C-BF Close the fullest active bin (with ties broken in favor of the lowest indexed

bin).
We use c(B) to denote the sum of the items in B. Given a list of L =

(a i , . . . ,an), let B\, ..., Bm denote the list of bins ordered in a /c-bounded space

66 Rainer E. Burkard, Guochuan Zhang

on-line variable-sized algorithm. Let ALfc(always largest) denote the algorithm
which always uses only bins of size 1, i.e. bins of largest size, packs items using the
P-FF or the P-BF rule, and closes bins using the C-FF or the C-BF rule.
Theorem 2.1. s(ALk, L) < 2s(OPT, L) + l,k>l, for any list L.

Proof. For 1 < i < m — 1, due to our packing rule c(Bi) + c(Bi+1) > 1. So,
m

s(ALk,L) =(m-l) + l<2^c(Bi) + l
¿=1

= 2 £ Oi + 1 < 2s(OPT, £,) + 1. •
t=i

Any list consisting of items of size f + £ and bins of size 1 and | + e for some
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight
for ALk.

While the worst-case behavior of Best Fit is superior to that of First Fit for the
fc-bounded space on-line bin packing problem, this is not the case for ALk where
always the largest possible bins in variable-sizéd bin packing algorithm are used.

• Now we consider the algorithm ASA;(always smallest) which uses smallest pos-
sible bins, packs items using the P-FF or the P-BF rule, and closes bins using the
C-FF or the'C-B'F rule,

Theorem 2.2. s{ASk, L) < 2s(OPT, L) + 1, A: > 1, for any list L.

Proof. For 1 < i < 771 — 1, c(Bi) 4- c (5 i + i) > s(Bi). Therefore, we have
m m

s(ASk,L) = £ s(Bi) < 2 J2 c(Bi) - c(Bx) - c(Bm) + s(Bm)
1=1 !=1

< 2 £ oj + 1 < 2s {OPT, L) + 1. •
i=1

Any list consisting of items of size | and bins of size 1 and 1 — e for some
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight
for ASk.

3. Algorithms Derived from ^-Bounded Space On-
Line Bin Packing
We start from the open, the packing and the closing rule.

Suppose that â is a large item (with size greater than 1 /2). If it can be contained
in a bin with size less than 1, it is called, a B-item, else it is called an L-item. The
smallest bin which can contain a large item cii is called an aj-home-bin. Obviously,
if ai is an L-item, then the size of the ai-home-bin is 1.

Open rule: Suppose that the current item to be packed is a,. If â is a B-item,
then open an aj-home-bin and pack a* into it. Otherwise, start a new bin of size 1
for Oj.

Bounded Space On-Line Variable-Sized Bin Packing 67

Packing rules:P-FF and P-BF.

Closing rules:
C-VF: Close one active bin with size less than 1 if such a bin exists, otherwise

use C-FF.
C-VB: Close one active bin with size less than 1 if such a bin exists, otherwise

use C-BF.

Since we only have one open rule, we always use it to start a new bin. For any
combination of a packing rule with a closing rule, we have four algorithms. The
combination of P-FF with C-VF yields VFFk and the combination of P-BF with
C-VB yields VBBk. Let VBFk denote the (P-BF, C-VF) combination and VFBk

denote the (P-FF, C-VB) combination. In the following, we only analyze VBBk

algorithm. For the others, some remarks are given in the next section.

Theorem 3.1. For any list L, we have

Svbb, = 1-7, for k > 3.
Obviously, if we only have one type of bins, VBBk is just BBFk. From [4], we

have > 1.7, for k > 3.
We prove that the lower bound is tight with the help of the weighting function

defined as follows. . .
We can divide all items in list L into 5 parts.

A1 = {A <E L | 0 < a < 1 / 6 } , A2 = {A € L | 1 / 6 < a < 1 / 3 } ,

A3 = {a e L | 1/3 < a < 1/2 } , A4 = {a 6 L | a is a B-item } ,

A5 = {a € L | a is an L-item }.

An item is called an ylj-item if it belongs to A{, i = 1,2,3,4,5. Ai-items and
A$-items are large items.

Let us define a weighting function as follows.

(6/5)a, if a £ Ax,
(9/5)a — 1/10, if a£A2,

= { (6 / 5) o + 1 / 1 0 l if a e A 3 ,
max{1.7a, s (5) } , if a e A4,
(6/5)a + 4/10, if a G As,

where B is the a-home-bin. W(B), the weight of the bin B, is defined to be the
sum of the weight of all items in bin B, i.e., W(B) = ^2a.eB W(at). And W(L),
the weight of the list L, is defined to be the sum of the weight of all items in L,

n
i.e., W(L) — J2 W(°t)- We are going to show that

i= 1

s{VBBk,L) - 4/5 < W(L) < 1.7s(OPT, L).

Lemma 3.1. For any list L, we have

68 Rainer E. Burkard, Guochuan Zhang

W(L) < 1.7s{OPT,L).

Proof. Similar as in [16].

Lemma 3.2. For any list L, we have

W(L) > s(VBBk,L) - 4/5, for к > 3.

Proof. It is obvious that at any time the size of at most one current active bin is
not greater than when we use VBBk. Note that except the last к bins, all of
the bins used in a V В Bk packing are declared closed one by one. These bins are
more than 1/2 full when they declared closed. In our analysis we first investigate
the closed bins, thereafter we turn our attention to the last к bins.

Claim 3.1. If a bin contains one Л5-item or two Аз-items, then its weight is not
less than 1. If Bi is used in a VВBk packing and s(Bi) < 1, then W(Bi) > s(Bi).

Proof. It is trivial. •
We shall analyze the packing as one active bin is to be closed. This active bin

is called the currently closed bin. The case that the currently closed bin is not
the lowest indexed active bin (the first active bin) will be considered in Claim 3.2.
Further cases are treated in Claims 3.3 and 3.4.

Claim 3.2. If the currently closed bin Bi is not the first active bin for a VBBk

packing, then W(Bi) > s(Bi).

Proof. Without loss of generality, let the current active bins be B\,..., Bi,..., Bk,
i Ф 1. By Claim 3.1 and inspection, we can assume that s(Bi) — 1 and Bi contains
two items at least, and no As-item, one Аз-item at most. From the algorithm, Bt is
the fullest bin at this time. If c(B\) > 5/6, it is easy to see that c(Bi) > c(B\) and
W(Bi) > 1. In the following, we only consider the case Вi < 5/6. If Вг contains
one B-item, Bi must contain another item a which can not be placed into BL, i.e.,
a > 1/6. Therefore we have W(B{) > 1.7(1/2) + (6 /5) (l /6) > 1. If Bi contains
no B-item, we can also assume that c(B\) > 2/3, otherwise Bi will belong to the
special cases in Claim 3.1.

We only need to consider the two bottommost items of Bi, a and /3.
Case 1 . Q É A2, P 6 A3,

W(Bi) >
>

Case 2. a € A2, /3 G A2,

W(Bi) > ^c(Bi) + |(1 - c(Bi)) • 2 - 1 • 2 > 1. •

In the following, we assume that the currently closed bin is the first active bin
as it is declared closed.

^c(Bi) + ^a>^c(Bi) + ^(l - c (B !))

6 / п ч 3 3 / r* \ 3 2 3 c(B1) + - - - c (B 1) > - . - + - = 1.

Bounded Space On-Line Variable-Sized Bin Packing 69

Claim 3.3. For a VBBk packing, the currently closed bin Bi is just the first active
bin and the next active bin is Bi+1. If s(Bi) = s(Bi+1) = 1 and c{Bi) > c(Bi+i) >

then we have, when Bi+1 contains no B-item,

(6/5)c(Bi) + W(Bi+1) > 1 + (6/5)c(B i + 1) (1)

and when Bl+i contains one B-item,

(6/5)c(Bi) + W(Bi+1)>2. (2)

Proof. When Bi+1 contains one B-item, Bi+i must also contain at least one small
item, say (3, which has been accepted before the B-item. This follows from the fact
that only bins with size < 1 can accept B-items as first items, but s(Bi+1) = 1.
Clearly, c(Bi)+(3 > 1, otherwise /3 should be placed in bin Bi. Moreover, w(Bi+1) >
|/3 + 1.7 • The last two inequalities imply

\c{Bi) + W(Bi+0 > 6/5 4- 1.7(1/2) > 2. 5

When Bi+i contains no B-item, we can assume that | < c(Bi) < | and Bi+i

contains no Л5-item and one Лз-item at most. Otherwise (1) is clear. Thus,
Case I! | > c{Bi) > |
In this case, every item in J5j+i must be greater than
If Bi+ i contains one A3-item,

= |c(B0 + \c{Bi+1) + |

6 \ 3 2 3
> 5 С № + 1) + - - З + 5

= 1 +®c (B i + 1) .

If Bi+1 contains no A3-item then it is easy to see that Bj+i contains two
items at least. Therefore

^c(Bi) + W{Bi+0 > ^с(Д) + ^ + 1) + ^(1-с(В0)-2-^-2

6 ч 6 1

= 5 С (Д + 1) + 5 - 5

= l + |c(Bi+i).

Case 2. | > с(В{) > \
In this case, every item in Bi+i is greater than i.e., belongs to A3 or Л5.

Therefore, Bl+\ must contain one A.r,-item or two Лз-items. From Claim 3.1,
W(Bi+1) > 1 but this is the easy case mentioned above. So, Claim 3.3 holds. •

70 Rainer E. Burkard, Guochuan Zhang

Claim 3.4. For a VBBk packing (k > 3), the currently closed bin Bi is just
the first active bin and the next active bin is Bi+1. Assume that s{Bi) = 1 and
c(Bi) < Assume, moreover, that the sum of items in B{+1 is currently <
but when the VBBk packing is finished, c(Bi+i) > 1/2. Suppose that Bj with
s(Bj) = 1 is the active bin next to Bl+\, when Bl+i accepts a new item 7 after Bi
has been closed.

(i) If Bj is closed before Bi+\, then

|c(Bi) + W{Bi+1) + W{Bj) >2 + | c (B i + 1) . (3)

(ii) If Bi+1 is closed before Bj, then

|c(B0 + W(Bi+1) + W(Bj) > 2 + ^c(Bj). (4)

Proof. If Bi+1 contains at least two items when Bi is closed, then it is easy to
prove that §c(-Bf) + W(Bi+1) > 1 + |c(B i+1) and (3) or (4) hold. Hence we only
have to consider the case that Bi+i contains just one item a, when Bi is closed.
We suppose that the bottommost item of Bj is /3. Then a is greater than | (if not,
a can be placed into B t) and /3 > 1 — a > Afterwards, an item 7 is placed into
Bi+\ and c(Bj) + 7 > 1.

(i) Bj is closed before Bl+\.
• If | < a < then, c{Bj) > / 3 > l - a > § , c(Bj) > §.

\c{Bi) + W{Bj) + W{Bi+1) 0

> ^(c{Bi)+c{Bj))+2- + \c(Bi+l)

6 4 2 6 / D N
> 5 ' 3 + 5 + 5 C (B i + l)

= 2 + ^ c (B i + 1) .

• If | < a < | and | < c(Bj) < |, then, 7 > | and 7 + c(Bj) > 1.
When | < 7 <

^c(Bi)+W(Bj) + W(Bi+1)

6 , „ * 2 6 , _ . 3
-c(Bi) + -c(Bj) + - + -c(Bi+1) + --

6 1 3 2 2 3 6
> 5 - 2 + 5 ' 3 + 5 + 5 + 5 C (B i + l)

Bounded Space On-Line Variable-Sized Bin Packing 71

When \ < 7,

^c{Bi) + W{Bj) + W(Bi+1)

6 , . 2 . 2
-c(Bi) + -c(Bj) + - + -c(Bi+1) + —

6 1 6 2 2 1 6
> 5 ' 2 + 5 ' 3 + 5 + 5 + 5 C (B I + L)

= 2+^c(Bi+1).

• If I < a < \ and \ < c(Bj) < §, then, 7 > §, c(Bi+1) > a + 7 > § and
c(Bj) > c(Bi+1). But this is impossible.

• If | < c(Bj), then

^c(Bi) + W(Bj) + W(Bi+1)
5

6 1 6 5 2 6 .

> 5 2 + 5 - 6 + 5 + 5 C (B i + l) g
= 2 + -c(Bi+1).

5

(ii) Bi+1 is closed before Bj.
It is clear that c(Bi+\) > c(Bj) when Bi+1 is closed. If c(Uj+i) < | at this

time, then (3 < c(Bj) < |. This implies that a > | and 7 > i.e., c(Bi+i) > |.
This is a contradiction. Therefore, we have c(Bi+1) > |.

• If i < a < i , then

6

5'
6 6 , 3 1 2 6

: c{Bi) + W{Bi+1) + W{Bj)

> -c(Bi) + -c(Bi+1) + - 5 a - - + - + -c(B3)

6 2 3 3 1 1 2 6 . .

> 5 - 3 + 5 + 5 - 2 - ï ô + 5 + 5 C (^

= 2 + ^c(Bj).

72 Rainer E. Burkard, Guochuan Zhang

i If i < a < | and | < 7 < §, then § < c(B,).

| c (B i) + + W (f l i)
0
6 6 2 6 3

> -c(Bi) + -c(Bj) + - + -c(Bi+1) + -7

> l \ + IciB,) + 1 + 1(1- c{Bj)) + \c{Bi)
3 3 2 3 2 6 , „ .

> 5 + 5 3 + 5 + 5 + 5 c №)

= 2 + j j c (B J -) .

If | < a < | and | < 7, then

6
_c(Bi) + W(Bi+1) + W{Bj)
5

6 1 6 2 2 1 6

If \ < a < \ and 7 < §, then c(Bi+1) > c(Bj) > 5
6 '

IdBj + WiBi+^ + WiBj) 5

> ^(Bi) + ^c(Bi+1) + | +

6 1 6 5 2 6 ,
> 5 ' 2 + 5 - 6 + 5 + 5 c (^

2 + ^ c (B j) . 5

Thus Claim 3.4 holds. •

Note 3.1. If the hypothesis in Claim 3.4 does not hold, i.e., when the VBBk

packing ends, Bj+i JS not greater than | yet, then Bj+i belongs to the last k bins.

Now, we consider the last k bins. Without loss of generality, suppose Si =
{B\,..., Bm} is the set of those closed bins (of size one) which are mentioned
in Claim 3.3 and Claim 3.4. And suppose that Bi is closed before B{+1, i =
1, . . . ,m — 1. We also denote by S2 = {Bm+i, ..., Bm+t}, t < k those bins among
the last k bins, whose weights are less than their sizes when the packing ends.

Bounded Space On-Line Variable-Sized Bin Packing 73

Note 3.2. If the size of the first one of the last k bins is less than 1, then all of
the closed bins have their sizes less than 1, i.e., Si = 0, by the closing rule of our
algorithm.

To see this, if there are some closed bins with size 1, let Bp denote the last
closed bin of size 1. After Bp is closed, the first active bin may not be a bin with
size less than 1 by our algorithm. It is a contradiction.

Claim 3.5. Each bin B used in VBBk packing but not in Si U S2 has a weight
W(B) not less than s(B).

Proof. Follows immediately from Claim 3.1 and Claim 3.2.

Claim 3.6. If the case in Note 3.1 happens, then

' m+1
£ W(Bi) > m + (6 /5)c (B m + i) , if Bm+1 contains no B-item,
¿=i
m + l
£ W(Bi) > m + 1, if Brn+i contains one B-item.

. ¿=i

Proof. Claim 3.6 follows directly from Claim 3.3 and Claim 3.4. •
Similarly, we get

Claim 3.7. If the case in Note 3.1 does not happen, then

m + l

£ W(Bi) > m - 1 + (6/5)c(Bm) + W(Bm+1) for a VBBk packing.
¿=i

In the following, we consider S2.

Claim 3.8. When Bm+i contains one B-item,

W(Bm+2) + • • • + W(Bm+t) >t- 1 - 4/5.

Proof. We will consider two cases.
Case 1. c(Bm+2), ..., c(Bm+t) > 1/2.
(i) If both Bm+i+1 and Bm+i+2 contain one B-item each, 1 < i < t — 2, then

W{Bm+i+i) + W{Bm+i+2) > 2.

(ii) If Bm+i+i contains no B-item and Bm+j+i contains a B-item (3, 1 < i <
j < t - 2 then

(6 /5) c (B m + i + i) + W(Bm+j+i) > 2.

(iii) If Bm+i+i and Bm+j+1 contain no B-item, 1 < i < j < i — 2 then

(6 /5)c (B m + i + 1) + W(Bm+j+1) > 1 + (6 /5)c (B m + j + 1) .

74 Rainer E. Burkard, Guochuan Zhang

(i), (ii) and (iii) can be proved in the similar way as in the proof of Claim 3.3.
Therefore,

W(Bm+2) + ••• + W(Bm+t) + | =

Case 2. There exists a bin c(Bm+j) < 1/2, 2 < j < t. In this case, all bins
following Bm+j contain one L-item, i.e., have their weights greater than 1. Thus it
is easy to show that

W(Bm+2) + • • • + W(Bm+t) > (t - 1) - 4/5. •

Similarly, it can be shown

Claim 3.9. When c(Bm+i) > 1/2 contains no B-item,

(6 /5)c (£ m + 1) + W(Bm+2) + • • • + W(Bm+t) > t - 4/5. •

Claim 3.10. Ifc(Bm+i) < 1/2, when the packing ends, then

m+t

£ W(Bi) + (6/5)c(Bm) >t + 1 - 4/5.
i=m+1

Proof. If c(Bm+1) < 1/2, when the packing ends, then Bj contains one A^-item
for j = то + 2 , . . . , m + t. Therefore,

m+t
W(Bi) + (6/5)c(Bm) >t- 1 + (6 /5) (с (Б т) + c(Bm+i)) > t - 4/5. •

¿=771-}-1

By Claims 3.5 to 3.10, we get W(L) > s{VBBk,L) - 4 / 5 . This completes the proof
of Lemma 3.1. •

Combining Lemma 3.1 with Lemma 3.2, we have SY'BBK < 1.7, for К > 3.
Therefore, we conclude that

^vBBt ~ к > 3.

Thus Theorem 3.1 is proven. •

4. Conclusions and Remarks
This paper deals with an on-line variable-sized bin packing problem which uses
bounded space. Up to now, the best bound of the known on-line variable-sized bin
packing algorithms [2] is a bit smaller than 1.7. In fact, the algorithm so-called
VHm in [2] which is derived from Harmonic Fit is a bounded space algorithm. Let
M > 1 be a positive integer and let M3 = \M • s(B'J)~\ (j = 1 ,2 , . . . , l) . Then the
algorithm uses fc-bounded space where

к = Mi + M2 + • • • + Mi - I + 1.

Bounded Space On-Line Variable-Sized Bin Packing 75

When Mi < 5, the worst-case performance bound of VHm is greater than 1.7. If
and only if Mi > 7, VHm can do better than V BBk where k > 61 + 1. To see
VBBk is efficient, we observe that it only needs k > 3 to reach the bound 1.7 which
does not depend on the number I of bin sizes.

We can also analyse the other three algorithms VFBk, VFFk and VBFk with
the similar technique. For example, with a modified weighting function

C max{1.7a, s{B)} + 3/{10k - 10), if a G A4,
f » = (6/5)a + 4/10 + 3/(10fc — 10), if a e As,

[W(a), otherwise

where W(a) is defined in Section 3, we can prove that Sy'FBk = 1.7 + , for
k > 2. It is clear that all the three algorithms can not beat algorithm VBBk.

Acknowledgement

The authors wish to thank the anonymous referee for his helpful comments on
an earlier Version of this paper.

References
[1] E.G. Coffman, Jr, M.R. Garey and D.S. Johnson, Approximation Algorithms

for Bin Packing: An Updated Survey. In Analysis and Design of Algorithms
• in Combinatorial Optimization, Ausiello and Lucertini (eds), Springer, New

York, 49-106 (1984).

[2] J. Csirik, An On-Line Algorithm for Variable-Sized Bin Packing. Acta Infor-
mática 26, 697-709 (1989).

[3] J. Csirik and B. Imreh, On the Worst-Case Performance of the NkF Bin
Packing Heuristic. Acta Cybernetica 9, 89-105 (1989).

[4] J. Csirik and D.S. Johnson, Bounded Space On-Line Bin Packing: Best is
Better than First. The Proceedings of 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms, 309-319 (1991).

[5] D.K. Friesen and M.A. Langston, Variable Sized Bin Packing. SI AM J. Corn-
put. 15, 222-229 (1986).

[6] G. Galambos and G.J. Woeginger, Repacking Helps in Bounded Space On-Line
Bin Packing, Computing 49, 329-338 (1993).

[7] G. Galambos and G.J. Woeginger, On-Line Bin Packing - A Restricted Survey.
Zeitschrift für Operations Research 42, 25-45 (1995).

[8] D.S. Johnson, Fast Algorithms for Bin Packing. J. Comput. System Sci. 8,
272-314 (1974).

76 Rainer E. Burkard, Guochuan Zhang

[9] N.G. Kinnersley and M.A. Langston, Online Variable-Sized Bin Packing. Dis-
crete Applied Mathematics 22, 143-148 (1988/89).

[10] C.C. Lee and D.T. Lee, A Simple On-Line Bin Packing Algorithm, J. Assoc.
Comput. Mach. 32, 562-572 (1985).

[11] W. Mao, Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing.
SIAM J. on Computing, 22, 46-56 (1993).

[12] W. Mao, Best-k-Fit Bin Packing. Computing 50, 265-270 (1993).

[13] F.D. Murgolo, An Efficient Approximation Scheme for Variable-Sized Bin
Packing. SIAM. J. Comput. 16, 149-161 (1987).

[14] G.J. Woeginger, Improved Space for Bounded Space On-Line Bin Packing
Algorithms, SIAM J. Discr. Math. 6, 575-581 (1993).

[15] G.C. Zhang, Tight Worst-Case Performance Bound For AFBk Bin Packing.
Technical Report No. 015 in Inst, of Appl. Math., Academia Sinica (1994). To
appear in Acta Mathematicae Applicatae Sinica.

[16] G.C. Zhang, Worst-Case Analysis of the FFH Algorithm for On-Line Variable-
Sized Bin Packing. Computing 56, 165-172 (1996).

Received March, 1996

