On Two-Step Methods for Stochastic Differential Equations

Rózsa Horváth Bokor * ${ }^{\dagger}$

Abstract

The paper introduces a new two-step method. Its order of strong convergence is proved. In the approximation of solutions of some stochastic differential equations, this multistep method converges faster in mean $E\left|X-Y_{N}\right|$ than the One-step Milstein scheme with order 1.0 or Two-step Milstein scheme with order 1.0 .

Keywords: Stochastic differential equations, strong solutions, numerical schemes

1 Introduction

The problem considered in this article is that of approximating strong solutions of the following type of the Ito stochastic differential equation:

$$
\begin{equation*}
d X_{t}=a\left(t, X_{t}\right) d t+b\left(t, X_{t}\right) d W_{t}, \text { for } 0 \leq t \leq T, X_{t} \in \mathbf{R}^{d} \tag{1}
\end{equation*}
$$

where

$$
a=\left(a_{1} \ldots a_{d}\right)^{\tau}, b=\left(b_{1} \ldots b_{d}\right)^{\tau}, X_{0}=X\left(\in \mathbf{R}^{d}\right)
$$

The above system is driven by the one-dimensional Brownian motion. Details about this stochastic object and corresponding calculus can be found in Karatzas and Shreve [2].

We suppose that throughout this paper $E\left\|X_{0}\right\|^{2}<+\infty$ and X_{0} is independent of $\mathcal{F}_{t}=\sigma\left\{W_{s}: 0 \leq s \leq t\right\}$, the σ-algebra generated by the underlying process. Also, suppose that coefficients $a(t, x)$ and $b(t, x)$ satisfy conditions which guarantee the existence of the unique, strong solution of the stochastic differential equation.

The approximations considered here are evaluated at points of regular partition of the interval $[0, T]$; these have the form $(0, \Delta, 2 \Delta, \ldots, N \Delta)$, where N is a natural number and $\Delta=\frac{T}{N}$. We denote $n \Delta$ by τ_{n}, for $n=0,1, \ldots, N$.

[^0]Here we shall use the abbreviation Y_{n} to denote the value of the approximation at time $n \Delta$ and the following operators

$$
\begin{align*}
L^{0} & =\frac{\partial}{\partial t}+\sum_{k=1}^{d} a_{k} \frac{\partial}{\partial x_{k}}+\frac{1}{2} \sum_{k, l=1}^{d} b^{k} b^{l} \frac{\partial^{2}}{\partial x_{k} \partial x_{l}} \tag{2}\\
L^{1} & =\sum_{k=1}^{d} b^{k} \frac{\partial}{\partial x_{k}} \tag{3}
\end{align*}
$$

To classify different methods with respect to the rate of strong convergence as in [3] we say that a discrete time approximation Y^{Δ} converges with strong order $\gamma>0$ if there exist constants $\Delta_{0} \in(0,+\infty)$ and $K<+\infty$, not depending on Δ, such that we have a mean global error

$$
\operatorname{Eps}(T)=E\left|X_{T}-Y_{N}^{\Delta}\right| \leq K \Delta^{\gamma} \text { for all } \Delta \subset\left(0, \Delta_{0}\right)
$$

The widely used method of order 1.0 is the Milstein method, which has the form

$$
\begin{equation*}
Y_{n+1}^{M}=Y_{n}^{M}+a\left(\tau_{n}, Y_{n}^{M}\right) \Delta+b\left(\tau_{n}, Y_{n}^{M}\right) \Delta W_{n}+\frac{1}{2} L^{1} b\left(\tau_{n}, Y_{n}^{M}\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right) \tag{4}
\end{equation*}
$$

with $Y_{0}^{M}=X_{0}$. The two-step Milstein strong scheme, for which the k-th component, in the general multidimensional case $d=1,2, \ldots$ is given by

$$
\begin{align*}
Y_{n+1}^{k, T} & =\left(1-\gamma_{k}\right) Y_{n}^{k, T}+\gamma_{k} Y_{n-1}^{k, T}+a^{k}\left(\tau_{n}, Y_{n}^{T}\right) \Delta+V_{n}^{k} \tag{5}\\
& +\gamma_{k}\left[\left(\left(1-\alpha_{k}\right) a^{k}\left(\tau_{n}, Y_{n}^{T}\right)+\alpha_{k} a^{k}\left(\tau_{n-1}, Y_{n-1}^{T}\right)\right) \Delta+V_{n-1}^{k}\right]
\end{align*}
$$

with

$$
\begin{aligned}
V_{n}^{k} & =b^{k}\left(\tau_{n}, Y_{n}^{T}\right) \Delta W_{n}+\frac{1}{2} L^{1} b^{k}\left(\tau_{n}, Y_{n}^{T}\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right) \\
Y_{0}^{T} & =X_{0}, Y_{1}^{T}=Y_{1}^{M}
\end{aligned}
$$

where $\Delta W_{n}=W_{\tau_{n+1}}-W_{\tau_{n}}, n=0,1, \ldots, N-1, k=1, \ldots, d$, and $\alpha_{k}, \gamma_{k} \in[0,1]$.
In the general multidimensional case with $d=1,2, \ldots$ the k-th component of the new multistep scheme takes the form

$$
\begin{aligned}
Y_{n+1}^{k} & =\left(1-\gamma_{k}\right) Y_{n}^{k}+\gamma_{k} Y_{n-1}^{k}+a^{k}\left(\tau_{n}, Y_{n}\right) \Delta+b^{k}\left(\tau_{n}, Y_{n}\right) \Delta W_{n} \\
& +\frac{1}{2} L^{1} b^{k}\left(\tau_{n}, Y_{n}\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right) \\
& +\gamma_{k}\left[\left(\left(1-\alpha_{k}\right) a^{k}\left(\tau_{n}, Y_{n}\right)+\alpha_{k} a^{k}\left(\tau_{n-1}, Y_{n-1}\right)\right) \Delta\right. \\
& +\frac{1}{2}\left(b^{k}\left(\tau_{n}, Y_{n}\right)+b^{k}\left(\tau_{n-1}, Y_{n-1}\right)\right) \Delta W_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{2} L^{1} b^{k}\left(\tau_{n-1}, Y_{n-1}\right) \Delta\right] \\
Y_{0} & =X_{0}, Y_{1}=Y_{1}^{M}
\end{aligned}
$$

where $\Delta W_{n}=W_{\tau_{n+1}}-W_{\tau_{n}}, \Delta=\tau_{n+1}-\tau_{n}, n=0,1, \ldots, N-1, k=1, \ldots, d$ and $\alpha_{k}, \gamma_{k} \in[0,1]$.

During the last years several authors have proposed multistep methods for stochastic differential equations with respect to strong convergence criterious.

I refer here to the books of Kloeden and Platen [3], Boulean and Lépingle [1] and the paper of Lépingle and Ribémont [4].

2 The Main Results

Now we are able to state the corresponding convergence theorem for the multistep method (6):

Theorem 2.1 Consider the Itô equation (1). Let,

$$
\begin{array}{r}
\frac{\partial a}{\partial t}, \frac{\partial a}{\partial x_{i}}, \frac{\partial^{2} a}{\partial x_{i} \partial x_{j}}, \frac{\partial b}{\partial t}, \frac{\partial b}{\partial x_{i}}, \frac{\partial^{2} b}{\partial t^{2}}, \frac{\partial^{2} b}{\partial t \partial x_{i}}, \\
\frac{\partial^{2} b}{\partial x_{i} \partial t}, \frac{\partial^{2} b}{\partial x_{i} \partial x_{j}}, \frac{\partial^{3} b}{\partial x_{i} \partial x_{j} \partial x_{k}} \in C_{b}\left([0, T] \times \mathbf{R}^{d}, \mathbf{R}^{d}\right),
\end{array}
$$

be given for all $1 \leq i, j, k \leq d$, where $C_{b}\left([0, T] \times \mathbf{R}^{d}, \mathbf{R}^{d}\right)$ denotes the set of continuous and bounded functions from $[0, T] \times \mathbf{R}^{d}$ to \mathbf{R}^{d}, and functions $L^{0} a, L^{0} b, L^{1} a, L^{0} L^{1} b, L^{1} L^{1} b$ fulfill the linear growth condition

$$
\|f(t, x)\| \leq K_{1}(1+\|x\|)
$$

for every $t \in[0, T], x \in \mathbf{R}^{d}$, where K_{1} is a positive constant. Under the assumptions the multistep method converges with strong order $\gamma=1.0$, that is for all $n=$ $0,1, \ldots, N$ and step size $\Delta=\frac{T}{N}, N=2,3 \ldots$

$$
E\left(\left\|X_{\tau_{n}}-Y_{n}\right\|\right) \leq K_{2}\left(1+E\left\|X_{0}\right\|\right) \Delta^{1.0},
$$

where K_{2} does not depend on Δ.
Remarks 2.2 (1) In computation, the boundedness assumption is no restriction since any number generated by the computer is bounded by the capacity of the computer.
(2) $\|\cdot\|$ is a norm in \mathbf{R}^{d}.
(3) We would prove the statement of the theorem for the scheme (6), where $\alpha_{k}=$ 0.0 . For $\alpha_{k} \in(0,1]$ we prove the statement of the theorem on the same way. For $\alpha_{k}=0.0$ the scheme (5) equals (4) if $Y_{0}^{T}=Y_{0}^{M}$ and $Y_{1}^{T}=Y_{1}^{M}$.

To prove Theorem (2.1), we recall the following lemmas:
Lemma 2.3 For all natural number $N=1,2, \ldots$ and for all $k=0,1, \ldots, N$ are valid the next inequalities

$$
\begin{aligned}
& E\left(\left\|Y_{k}^{M}\right\|^{2}\right) \leq K_{3}\left(1+E\left\|X_{0}\right\|^{2}\right) \\
& E\left(\left\|Y_{k}^{T}\right\|^{2}\right) \leq K_{3}\left(1+E\left\|X_{0}\right\|^{2}\right)
\end{aligned}
$$

Lemma 2.4 Under the assumptions of Theorem 2.1 the Milstein approximation Y_{n}^{M} converges with strong order 1.0 that is

$$
E\left\|X_{T}-Y_{N}^{M}\right\|^{2} \leq K_{5} \Delta^{2.0}\left(1+E\left\|X_{0}\right\|^{2}\right)+K_{6} E\left\|X_{0}-Y_{0}^{M}\right\|^{2}
$$

where the constants K_{5}, K_{6} do not depend on Δ.

Proof

Since the first-order partial derivatives of a and b are bounded, there exists a $K_{7}<+\infty$ such that for all $x, y \in \mathbf{R}^{d}$, (see details in Newton [5])

$$
\begin{aligned}
\|a(t, x)-a(t, y)\| & \leq K_{7}\|x-y\| \\
\|b(t, x)-b(t, y)\| & \leq K_{7}\|x-y\| \\
\left\|L^{1} b(t, x)-L^{1} b(t, y)\right\| & \leq K_{7}\|x-y\| \\
\|a(t, x)\|+\|b(t, x)\|+\left\|L^{1} b(t, x)\right\| & \leq K_{7}(1+\|x\|)
\end{aligned}
$$

We introduce the Milstein approximation (4) in the form

$$
\begin{aligned}
Y_{n+1}^{k, M} & =\left(1-\gamma_{k}\right) Y_{n}^{k, M}+a^{k}\left(\tau_{n}, Y_{n}^{M}\right) \Delta+b^{k}\left(\tau_{n}, Y_{n}^{M}\right) \Delta W_{n} \\
& +\frac{1}{2} L^{1} b^{k}\left(\tau_{n}, Y_{n}\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right)+\gamma_{k} Y_{n}^{k, M} \\
& =\left(1-\gamma_{k}\right) Y_{n}^{k, M}+a^{k}\left(\tau_{n}, Y_{n}^{M}\right) \Delta+b^{k}\left(\tau_{n}, Y_{n}^{M}\right) \Delta W_{n} \\
& +\frac{1}{2} L^{1} b^{k}\left(\tau_{n}, Y_{n}^{M}\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right)+\gamma_{k}\left(Y_{n-1}^{k, M}+a^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right) \Delta\right. \\
& \left.+b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right) \Delta W_{n-1}+\frac{1}{2} L^{1} b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right)\left(\left(\Delta W_{n-1}\right)^{2}-\Delta\right)\right)
\end{aligned}
$$

Taylor's expansion is used to give the term $b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right)$ around $\left(\tau_{n}, Y_{n}^{M}\right)$ and

$$
\begin{aligned}
b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right) & =b^{k}\left(\tau_{n}, Y_{n}^{M}\right)+\frac{\partial}{\partial t} b^{k}\left(\tau_{n}, Y_{n}^{M}\right)\left(\tau_{n-1}-\tau_{n}\right) \\
& +\sum_{i=1}^{d} \frac{\partial b^{k}}{\partial x_{i}}\left(\tau_{n}, Y_{n}^{M}\right)\left(Y_{n-1}^{i, M}-Y_{n}^{i, M}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \frac{\partial^{2} b^{k}}{\partial t^{2}}\left(\tau_{n}^{*}, Y_{n}^{*, M}\right)\left(\tau_{n-1}-\tau_{n}\right)^{2} \\
& +\sum_{i=1}^{d} \frac{\partial^{2} b^{k}}{\partial t \partial x_{i}}\left(\tau_{n}^{*}, Y_{n}^{*, M}\right)\left(\tau_{n-1}-\tau_{n}\right)\left(Y_{n-1}^{i, M}-Y_{n}^{i, M}\right) \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2} b^{k}}{\partial x_{i} \partial x_{j}}\left(\tau_{n}^{*}, Y_{n}^{*, M}\right)\left(Y_{n-1}^{i, M}-Y_{n}^{i, M}\right)\left(Y_{n-1}^{j, M}-Y_{n}^{j, M}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial b^{k}}{\partial x_{i}}\left(\tau_{n}, Y_{n}^{M}\right) & =\frac{\partial b^{k}}{\partial x_{i}}\left(\tau_{n-1}, Y_{n-1}^{M}\right)+\frac{\partial^{2} b^{k}}{\partial t \partial x_{i}}\left(\tau_{n-1}^{*, *}, Y_{n-1}^{*, *, M}\right)\left(\tau_{n}-\tau_{n-1}\right) \\
& +\sum_{j=1}^{d} \frac{\partial^{2} b^{k}}{\partial x_{j} \partial x_{i}}\left(\tau_{n-1}^{*, *}, Y_{n-1}^{*, *, M}\right)\left(Y_{n-1}^{j, M}-Y_{n}^{j, M}\right)
\end{aligned}
$$

Also; used the fact that,

$$
\begin{aligned}
Y_{n-1}^{j, M}-Y_{n}^{j, M} & =-a^{j}\left(\tau_{n-1}, Y_{n-1}^{M}\right) \Delta-b^{j}\left(\tau_{n-1}, Y_{n-1}^{M}\right) \Delta W_{n-1} \\
& -\frac{1}{2} L^{1} b^{j}\left(\tau_{n-1}, Y_{n-1}^{M}\right)\left(\left(\Delta W_{n-1}\right)^{2}-\Delta\right)
\end{aligned}
$$

When these are substituted into the expression $Y_{n+1}^{k, M}$ and assumptions of the theorem are used we get

$$
\begin{aligned}
Y_{n+1}^{k} & -Y_{n+1}^{k, M}=\left(1-\gamma_{k}\right)\left(Y_{n}^{k}-Y_{n}^{k, M}\right)+\left(a^{k}\left(\tau_{n}, Y_{n}\right)-a^{k}\left(\tau_{n}, Y_{n}^{M}\right)\right) \Delta \\
& +\left(b^{k}\left(\tau_{n}, Y_{n}\right)-b^{k}\left(\tau_{n}, Y_{n}^{M}\right)\right) \Delta W_{n} \\
& +\frac{1}{2}\left(L^{1} b^{k}\left(\tau_{n}, Y_{i n}\right)-L^{1} b^{k}\left(\tau_{n}, Y_{n}^{M}\right)\right)\left(\left(\Delta W_{n}\right)^{2}-\Delta\right) \\
& +\gamma_{k}\left(Y_{n-1}^{k}-Y_{n-1}^{k, M}+\left(a^{k}\left(\tau_{n-1}, Y_{n-1}\right)-a^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right)\right) \Delta\right. \\
& +\frac{1}{2}\left[b^{k}\left(\tau_{n}, Y_{n}\right)-b^{k}\left(\tau_{n}, Y_{n}^{M}\right)+b^{k}\left(\tau_{n-1}, Y_{n-1}\right)-b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right)\right] \Delta W_{n-1} \\
& \left.-\frac{1}{2}\left[L^{1} b^{k}\left(\tau_{n-1}, Y_{n-1}\right)-L^{1} b^{k}\left(\tau_{n-1}, Y_{n-1}^{M}\right)\right] \Delta\right) \\
& +f_{1}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\Delta \cdot \Delta W_{n-1}\right) \\
& +f_{2}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\left(\Delta^{2} \cdot \Delta W_{n-1}\right)\right. \\
& +f_{3}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\Delta \cdot\left(\Delta W_{n-1}\right)^{2}\right) \\
& +f_{4}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\Delta W_{n-1}\right)^{3} \\
& +f_{5}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\Delta \cdot\left(\Delta W_{n-1)}^{3}\right)\right. \\
& +f_{6}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\left(\Delta W_{n-1}\right)^{5}
\end{aligned}
$$

where $\left\|f_{i}\left(\tau_{n-1}, \tau_{n}, Y_{n-1}^{M}, Y_{n}^{M}\right)\right\|^{2} \leq C_{i}\left(1+\left\|Y_{n-1}^{M}\right\|^{2}\right), i=1,2,3,4,5,6$.
Squaring both sides of the equation, taking expectation and from Lemma (2.3) we get

$$
\begin{aligned}
E\left(\left\|Y_{n+1}^{k}-Y_{n+1}^{k, M}\right\|^{2}\right) & \leq E\left(\left\|Y_{n}^{k}-Y_{n}^{k, M}\right\|^{2}\right)\left(K_{8}+K_{9} \Delta+K_{10} \Delta^{2}\right) \\
& +E\left(\left\|Y_{n-1}^{k}-Y_{n-1}^{k, M}\right\|^{2}\right)\left(K_{11}+K_{12} \Delta+K_{13} \Delta^{2}\right)+K_{14} \Delta^{3}
\end{aligned}
$$

where $K_{8}, K_{9}, K_{10}, K_{11}, K_{12}, K_{13}$ and K_{14} do not depend on Δ.
Using for the starting routine Milstein approximation i.e. $Y_{0}^{k}=Y_{0}^{-k, M}$ and $Y_{1}^{k}=Y_{1}^{k, M}$ we get that for all $n=0,1, \ldots, N$

$$
E\left(\left\|Y_{n}^{k}-Y_{n}^{k, M}\right\|^{2}\right) \leq K_{15} \Delta^{2},
$$

where K_{15} does not depend on Δ.
From Lemma 2.4

$$
E\left(\left\|X_{\tau_{n}}-Y_{n}^{M}\right\|^{2}\right) \leq K_{16}\left(1+E\left\|X_{0}\right\|^{2}\right) \Delta^{2}
$$

where K_{16} does not depend on Δ (see in [3]), we apply these results to prove finally the strong order $\gamma=1.0$ of the multistep method, as is claimed in Theorem 1.

3 Some Experiments

Let us consider the Milstein approximation (4), two-step order 1.0 strong scheme (5) and the approximation set out above (6). The three approximations set, out, above were each tested on the following examples.

Example 3.1

$$
\begin{align*}
d X_{t} & =1.5 X_{t} d t+\dot{X_{t}} d W_{t} \tag{7}\\
X_{0} & =1.0
\end{align*}
$$

where (W_{t}) is a Wiener process.
The solution of (7) is $X_{t}=X_{0} \exp \left(t+W_{t}\right)$

Example 3.2

$$
\begin{align*}
d X_{t} & =\left(\frac{\alpha X_{t}}{1+t}+X_{0}(1+t)^{\alpha}\right) d t+X_{0}(1+t)^{\alpha} d W_{t} \tag{8}\\
X_{0} & =1.0 \text { and } \alpha=2.0
\end{align*}
$$

where $\left(W_{t}\right)$ is a Wiener process.
The solution of (8) is $X_{t}=(1+t)^{2}\left(W_{t}+t+1.0\right)$

In each case the mean-square error $E\left\|X_{1}-Y_{1}\right\|^{2}$ at the final time $(T=1)$ is estimated in the following way. A set of 20 blocks, each consisting of 100 outcomes $(1 \leq i \leq 20,1 \leq j \leq 100)$, were simulated and for each block the estimator

$$
\varepsilon_{i}=\frac{1}{100} \sum_{j=1}^{100}\left\|X_{1}\left(\omega_{i, j}\right)-Y_{N}\left(\omega_{i, j}\right)\right\|^{2}
$$

was found. Next the means and variances of these estimators were themselves estimated in the usual way:

$$
\varepsilon=\frac{1}{20} \sum_{i=1}^{20} \varepsilon_{i}
$$

and

$$
\sigma^{2}=\frac{1}{19} \sum_{i=1}^{20}\left(\varepsilon-\varepsilon_{i}\right)^{2}
$$

According to the central limit theorem, the ε_{i} should be nearly Gaussian and so approximate 90 percent confidence limits for $E\left\|X_{1}-Y_{N}\right\|^{2}$ can be found from the Gaussian distribution; these were calculated according to the formula $\varepsilon \pm 1.73 \sqrt{\frac{\sigma^{2}}{20}}$.

The results of the simulations for Examples 3.1 and 3.2 are shown in Table 1 and 2. These results are gotten for $\alpha=0, \gamma=1.0$ in Example 3.1 and for $\alpha=0, \gamma=1.0$ and $\alpha=0.5, \gamma=1.0$ in Example 3.2. There is no sense to take. γ near zero, because then the new term can be neglected, so the new scheme behaves as Milstein 1.0. The meaning of the headers in the tables is:
Δ - time step size of the strong approximation;
ε - absolute errors for different time step sizes;
L - half of the confidence interval lengths.
For example, we can see from the tables that in Example 3.2 for $\Delta=2^{-8}$ and $\alpha=0.0$ and $\gamma=1.0$ the absolute error by Milstein method (4) is $3.42858 \cdot 10^{-2}$, by Two-step Milstein method (5) is $9.45832 \cdot 10^{-3}$, while by the new scheme (6) is $6.81161 \cdot 10^{-3}$. Also, the length of the confidence interval by the new scheme is smaller than by Milstein 1.0 and Two-step Milstein methods. This statement is also true for the Example 3.1.

Table 1: Example 3.1 Milstein method (4).

Δ	ε	L
$1.00000 \mathrm{E}+00$	$2.27665 \mathrm{E}+00$	$1.47186 \mathrm{E}-01$
$5.00000 \mathrm{E}-01$	$1.97078 \mathrm{E}+00$	$2.40568 \mathrm{E}-01$
$2.50000 \mathrm{E}-01$	$1.20429 \mathrm{E}+00$	$8.45154 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$7.37239 \mathrm{E}-01$	$5.64921 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$3.82413 \mathrm{E}-01$	$3.99189 \mathrm{E}-02$
$3.12500 \mathrm{E}-02$	$2.39074 \mathrm{E}-01$	$6.31194 \mathrm{E}-02$
$1.56250 \mathrm{E}-02$	$1.10807 \mathrm{E}-01$	$1.27486 \mathrm{E}-02$
$7.81250 \mathrm{E}-03$	$5.60566 \mathrm{E}-02$	$8.09157 \mathrm{E}-03$
$3.90625 \mathrm{E}-03$	$2.53057 \mathrm{E}-02$	$3.36756 \mathrm{E}-03$

Multistep method (6) for $\alpha=0$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$2.51146 \mathrm{E}+00$	$1.98164 \mathrm{E}-01$
$5.00000 \mathrm{E}-01$	$1.41485 \mathrm{E}+00$	$9.57135 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$6.39612 \mathrm{E}-01$	$5.46793 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$3.21211 \mathrm{E}-01$	$2.94124 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$1.50961 \mathrm{E}-01$	$8.22891 \mathrm{E}-03$
$3.12500 \mathrm{E}-02$	$7.51688 \mathrm{E}-02$	$5.73330 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$3.92063 \mathrm{E}-02$	$2.09849 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$2.00488 \mathrm{E}-02$	$1.25050 \mathrm{E}-03$
$3.90625 \mathrm{E}-03$	$9.94833 \mathrm{E}-03$	$6.94911 \mathrm{E}-04$

Two-step Milstein (5) for $\alpha=0$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$2.37813 \mathrm{E}+00$	$1.87704 \mathrm{E}-01$
$5.00000 \mathrm{E}-01$	$1.45746 \mathrm{E}+00$	$1.12863 \mathrm{E}-01$
$2.50000 \mathrm{E}-01$	$8.02364 \mathrm{E}-01$	$9.38468 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$4.91936 \mathrm{E}-01$	$6.26155 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$2.36993 \mathrm{E}-01$	$2.86351 \mathrm{E}-02$
$3.12500 \mathrm{E}-02$	$1.22735 \mathrm{E}-01$	$6.91430 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$6.22639 \mathrm{E}-02$	$5.80727 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$3.31988 \mathrm{E}-02$	$2.88916 \mathrm{E}-03$
$3.90625 \mathrm{E}-03$	$1.65349 \mathrm{E}-02$	$1.28400 \mathrm{E}-03$

Table 2: Example 3.2
Milstein method (4).

Δ	ε	L
$1.00000 \mathrm{E}+00$	$4.21558 \mathrm{E}+00$	$9.211294 \mathrm{E}-02$
$5.00000 \mathrm{E}-01$	$2.90298 \mathrm{E}+00$	$7.181054 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$1.77082 \mathrm{E}+00$	$4.158990 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$9.78134 \mathrm{E}-01$	$2.936154 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$5.27383 \mathrm{E}-01$	$1.338104 \mathrm{E}-02$
$3.12500 \mathrm{E}-02$	$2.75086 \mathrm{E}-01$	$7.950747 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$1.36424 \mathrm{E}-01$	$3.334465 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$6.97031 \mathrm{E}-02$	$1.644745 \mathrm{E}-03$
$3.90625 \mathrm{E}-03$	$3.42858 \mathrm{E}-02$	$7.971471 \mathrm{E}-04$

Multistep method (6) for $\alpha=0$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$4.27766 \mathrm{E}+00$	$1.03425 \mathrm{E}-01$
$5.00000 \mathrm{E}-01$	$1.70013 \mathrm{E}+00$	$3.85968 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$6.21525 \mathrm{E}-01$	$1.72348 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$2.60004 \mathrm{E}-01$	$8.05579 \mathrm{E}-03$
$6.25000 \mathrm{E}-02$	$1.16169 \mathrm{E}-01$	$3.57810 \mathrm{E}-03$
$3.12500 \mathrm{E}-02$	$5.50517 \mathrm{E}-02$	$1.51257 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$2.71983 \mathrm{E}-02$	$9.70674 \mathrm{E}-04$
$7.81250 \mathrm{E}-03$	$1.33966 \mathrm{E}-02$	$4.02296 \mathrm{E}-04$
$3.90625 \mathrm{E}-03$	$6.81160 \mathrm{E}-03$	$2.22766 \mathrm{E}-04$

Multistep method (6) for $\alpha=0.5$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$4.17855 \mathrm{E}+00$	$1.05099 \mathrm{E}-01$
$5.00000 \mathrm{E}-01$	$2.22505 \mathrm{E}+00$	$4.56814 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$1.15922 \mathrm{E}+00$	$3.09267 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$5.91574 \mathrm{E}-01$	$1.29769 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$2.90397 \mathrm{E}-01$	$5.80337 \mathrm{E}-03$
$3.12500 \mathrm{E}-02$	$1.43653 \mathrm{E}-01$	$3.21847 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$7.27217 \mathrm{E}-02$	$2.00281 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$3.50626 \mathrm{E}-02$	$8.46181 \mathrm{E}-04$
$3.90625 \mathrm{E}-03$	$1.77133 \mathrm{E}-02$	$3.59233 \mathrm{E}-04$

Two-step Milstein (5) for $\alpha=0$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$4.24832 \mathrm{E}+00$	$9.85367 \mathrm{E}-02$
$5.00000 \mathrm{E}-01$	$1.77406 \mathrm{E}+00$	$5.03204 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$7.62093 \mathrm{E}-01$	$1.71932 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$3.37591 \mathrm{E}-01$	$1.07679 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$1.60081 \mathrm{E}-01$	$5.27565 \mathrm{E}-03$
$3.12500 \mathrm{E}-02$	$7.77709 \mathrm{E}-02$	$2.43576 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$3.73556 \mathrm{E}-02$	$1.02419 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$1.96293 \mathrm{E}-02$	$5.93383 \mathrm{E}-04$
$3.90625 \mathrm{E}-03$	$9.45832 \mathrm{E}-03$	$2.41391 \mathrm{E}-04$

Two-step Milstein (5) for $\alpha=0.5$ and $\gamma=1.0$.

Δ	ε	L
$1.00000 \mathrm{E}+00$	$4.23623 \mathrm{E}+00$	$8.01164 \mathrm{E}-02$
$5.00000 \mathrm{E}-01$	$2.28984 \mathrm{E}+00$	$4.36308 \mathrm{E}-02$
$2.50000 \mathrm{E}-01$	$1.21665 \mathrm{E}+00$	$3.63160 \mathrm{E}-02$
$1.25000 \mathrm{E}-01$	$6.34940 \mathrm{E}-01$	$1.90075 \mathrm{E}-02$
$6.25000 \mathrm{E}-02$	$3.13706 \mathrm{E}-01$	$8.61972 \mathrm{E}-03$
$3.12500 \mathrm{E}-02$	$1.60810 \mathrm{E}-01$	$4.54545 \mathrm{E}-03$
$1.56250 \mathrm{E}-02$	$8.02790 \mathrm{E}-02$	$2.21567 \mathrm{E}-03$
$7.81250 \mathrm{E}-03$	$4.09332 \mathrm{E}-02$	$1.03573 \mathrm{E}-03$
$3.90625 \mathrm{E}-03$	$2.04743 \mathrm{E}-02$	$4.97450 \mathrm{E}-04$

References

[1] Boulean, N. and Lépingle, D. Numerical Method for Stochastic Processes, John Wiley \& Sons, 1994.
[2] Karatzas, I. and Shreve, S. E. Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988.
[3] Kloden, P. E. and Platen, E. Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992.
[4] Lépingle, D. and Ribémont, B. Un schéma multiplas d'approximation de l'equation de Langein, Stochastic Processes and their Applications 37 (1991), 61-69, North Holland
[5] Newton, N. J. Asymptotically efficient Runge-Kutta methods for a class of Itô and Straonocich equations, SIAM J. Appl. Math. 51 (1991), 542-567
[6] Rümelin, W. Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal. 19 (1982), 604-613
[7] Talay, D. Résolution trajectorielle et analyse numérique des équations différentielles stochastiques, Stochastics 9 (1983), 275-306

Received March, 1997

[^0]: *Department of Mathematics University of Zagreb, Bijemicka 30, 10000 Zagreb, Croatia, email: bokor@math.hr
 ${ }^{\dagger}$ Work supported by the Central Research Found of the Hungarian Academy of Sciences (Grant No. T014548)

