
Acta Cybernetica 13 (1998) 277-304.

Limitations of Rule Triggering Systems for Integrity
Maintenance in the Context of Transition

Specifications

Klaus -Die t e r Schewe * B e r n h a r d T h a l h e i m t

A b s t r a c t
Integrity Maintenance is considered one of the major application fields

of rule triggering systems (RTSs). In the case of a given integrity constraint
being violated by a database transition these systems trigger repairing actions.
Then it is necessary to guarantee the termination of the RTS, its determinacy
and the consistency of final states. Transition specifications provide some kind
of dynamic semantics requiring certasin effects on database states to occur.
In the context of transition specifications integrity maintenance has to cope
with the additional problem of effect preservation.

Limitations of RTSs with respect to this extended problems are inves-
tigated. It will be shown tha t for any set of constraints there exist non-
repairable transitions, which depend on the closure of t he constraint set.
This implies t h a t integrity maintenance by RTSs is only possible, if the con-
straint implication problem is decidable. Even if unrepairable transitions are
excluded, this does not prevent t he RTS to produce undesired behaviour.

Analyzing the behaviour of RTSs leads to the definition of critical paths in
associated rule hypergraphs and the requirement of such paths being absent.
It will be shown tha t this requirement can be satisfied if the underlying set
of constraints is stratified, but this notion turns out to be too strong to be
also necessary. A sufficient and necessary condition for the absence of critical
paths is obtained, if sets of constraints are required to be locally stratified.

K e y w o r d s : active databases, integrity maintenance, transition specifi-
cations

1 Introduct ion
Active databases (ADBs) aim at extending relational (or object oriented) DBMS by
rule triggering systems (RTSs), i.e. by sets of rules which on a given event and in

'Technical University of Clausthal, Computer Science Institute, Erzstr. 1, 38678 Clausthal-
Zellerfeld, Germany, e-mail: schewe@informatik.tu-clausthal.de

f Cottbus Technical University, Computer Science Institute, Karl-Marx-Str. 17, 03044 Cottbus,
Germany, e-mail: thalheim@informatik.tu-cottbus.de

977

mailto:schewe@informatik.tu-clausthal.de
mailto:thalheim@informatik.tu-cottbus.de

278 Klaus-Dieter Schewe. Bernhard Thalheim

the case of a condition being satisfied trigger actions on the database (ECA-rules).
Events can be external events, time conditions or internal events resulting from
operations on the database. Conditions are usually given by boolean queries that
have to be evaluated against the database. The action part consists of a sequence
of basic operations to insert, delete or update tuples (or objects respectively) in the
database.

The current research on ADBs (see e.g. [4]) is dominated by implementational
aspects, whilst foundations of RTSs are seldom approached. The work in [2, 3, 5,
10, 11] and partly in [4] considers the problem to enforce database integrity by the
use of RTSs. The results concern the generation of repairing ECA-rules and partly
the analysis of the resulting RTS. This analysis concentrates on the termination
of the rule system, the independence of the final database state from the chosen
selection order of the rules (determinacy) and on consistency.

These properties are orthogonal to one another. Therefore, it is reasonable to
investigate the consistency requirement alone and to neglect for the moment the
other two requirements.

Besides the specification of static semantics by the use of integrity constraints
there is an increasing interest in integrating dynamic aspects [1]. In general, not
all transitions between consistent states - with respect to the given set of integrity
constraints - will be allowed, e.g. allowing transitions from any consistent state to
the empty database state are not very useful. As a consequence, given a specifica-
tion of transitions, the consistency requirement for RTSs occurs to be too weak. In
a sense to be made precise in the sequel the final state resulting from an execution
of the RTS should be "close" to its inconsistent starting state.

Note that this formulation already assumes that there is a final state and that
this state is unique, i.e. the termination and determinacy properties are already
tacitly assumed. This formulation could be weakened for non-determinate RTSs
requiring the "closeness" for one or all of the possible final states. It could also be
weakened for non-terminating RTSs requiring the "closeness" only, if a final state
exists. This underlines again the orthogonality of the three basic requirements for
integrity maintenance.

In the presence of transition specifications an inconsistent starting state for the
RTS always occurs as the result of a specified transition. Therefore, one reasonable
additional requirement is to preserve the effect of the transition at hand. In this case
not only the static semantics expressed by the integrity constraints is sacrificed, i.e.
only consistent states will be reached, but also the dynamic semantics expressed by
transitions. This means that the allowed state pairs will always imply the effects
of prespecified transitions.

There may be other equally reasonable requirements how to handle transition
specifications. E.g., we may want only to undo some or even all effects of a transition
or only preserve as many effects as possible depending on some measure on effects.

In this paper we analyze limitations of the rule triggering approach for integrity
maintenance under the additional requirement to preserve the effects of transitions.
For a given set of constraints in implicational normal form we first investigate the
existence of non-repairable transitions. These are determined by the closure of

Limitations of B,ule Triggering Systems for Integrity Maintenance 279

the constraint set. It turns out that the decidability of the constraint implication
problem is necessary for integrity maintenance by RTSs.

Next we analyze, how to obtain RTSs that definitely repair constraint viola-
tions by a (repairable) transition without invalidating its intended effect. Given an
RTS we first associate with it a rule hypergraph which corresponds to the possible
sequences of triggered rules. Next we define critical trigger paths in these hyper-
graphs that correspond to the propagation of conditions. Indeed it can be shown
that the existence of a single critical trigger path makes the RTS work incorrectly
for at least one transition.

Finally, we analyze constraint sets in order to detect, whether it is possible
to define an RTS of repairing actions such that the critical trigger paths in its
associated hypergraph can only invalidate unrepairable transitions. For this we first
introduce stratified constraint sets that satisfy this condition. Since the converse
is not true, we finally weaken the concept to locally stratified constraint sets which
gives a necessary and sufficient conditions for the RTS to work correctly.

2 Non-Repairable Transitions

In the following we consider the relational datamodel with integrity constraints
given by formulae in implicative normal form

1 = p i (x i) A . . . A p „ (f n) =Mi(?7i) V . . . Vgm(2/m) , (1)

with predicate symbols Pi ,qj , which correspond either to a relation of the schema or
are comparison predicates (=, <, <). Variables on the left hand side are assumed
to be universally quantified, those occurring only on the right hand side are assumed
to be existentially quantified (with all V-quantifiers preceding all 3-predicates).

Moreover, we assume that there is at least one relation symbol on the left hand
side of each such T. Moreover, I should contain at least two relation symbols. The
first restriction guarantees the empty database to be consistent, i.e. it satisfies all
constraints I , and the second one just states that there is no explicit constraint
which requires a relation p to be always empty. We may always write J in clausal
form.

For the EC A -rules we use the notation ON (event) IF (condition) DO
(action) with (event) corresponding to an internal event, i.e. an insert- or delete-
operation. (condition) is a formula to be evaluated against the actual database
state, written as a negation -<L for a constraint J in implicative normal form (1).
(action) is a sequence of basic insert- or delete-operations to be triggered, i.e. to
be executed if the event occurred and the condition is satisfied.

In this paper, the assumed execution model for ECA-rules relies on a deferred
modus, i.e. the system RTS of rules is started after finishing a transition. Further-
more, we do not assume any order of the rules. Instead of this, the execution model
relies on demonic non-determinism, i.e. if the events of several rules ... ,rn oc-

280 Klaus-Dieter Schewe. Bernhard Thalheim

cur and their conditions evaluate to true, any of these r¿ may be executed unless
it is undefined.

Given a single constraint 1 in implicative normal form (1) we already get mini-
mum requirements for repairing rules. If a relation symbol p occurs on the left hand
side (right hand side) of (1), then each insert- (delete-)operation on p may violate
(1), hence give rise to event-parts. The corresponding condition-part is simply ->1.
However, for the action-part there are still several alternatives.

We call a system of ECA-rules complete iff for all these cases of events and con-
ditions there exists at least one repairing rule, i.e. whenever the rule is selectable
in some database state, the execution of the action part will establish I as a post-
condition. However, we exclude those rules, which simply invalidate the event. For
transitions we simply consider sequences of insert- and delete-operations.

Let us first demonstrate the insufficiency of a naive RTS approach by a simple
example. In "real" applications the situation of Example 1 will not occur in such an
obvious way, but there are always implied and in general not detectable constraints
leading to analogous problems as shown in [7].

E x a m p l e 1 Take two unary relations p and q and the constraints T\ = p(x) =>
q(x) and Z2 = p(x) A q(x) =>• false. This implies p to be always empty, hence
insertions into p should be abolished. Then we obtain the following repairing rules:

fli : ON insertp(z) IF ->ZL DO insert,(z)
R2 : ON delete,(a:) IF-.Zi DO deletep(a;)
R3 : ON insertp(a;) IF -.Z2 DO delete, (a;)
i?4 : ON insert, (a;) IF -.Z2 DO dele ters)

If we try to execute a transition insertp(a) on a database state satisfying q(a), then
we successively trigger the rules R3 and i?2 with the effect of only deleting a in q.
This contradicts the original intention of the transition. •

In order to analyze the unintended behaviour in Example 1 consider a set E of
constraints in implicational normal form. Let E* denote the (semantic) closure,
i.e. E* = {Z I E (= Z}. Now let Z € E* be non-trivial, i.e. it does not hold in all
database states. Write Z in implicational normal form

Z = Pi(x\) A . . . A p n (x n) Qi(yi) V ... V qm(ym)

and let Pii, • • • , Pik and qj¡,... , Pj, denote the relation symbols on the left and
right hand sides of Z respectively. We may define a transition T by

delete,^(t/jJ;. . . ¡delete,^ (y j t);insertp¡ i (£ ¿ 1) ; . . . ; insertp¡(¡ [xik) .

If we start T with values for the Xi and ijj such that the additional conditions on
the left hand side of Z are satisfied, whilst the additional conditions on the right
hand side are not, T will always reach a database state satisfying - Z . This effect of

Limitations of B,ule Triggering Systems for Integrity Maintenance 281

T is intentional and hence the only reasonable approach to integrity maintenance
in this case is to disallow such transitions.

More formally, the effect of a transition T in a state a is given by the strongest
(with respect to =>•) formula EffCT(T) = ip such that j=CT wp(T)(tp) holds. Here
•wp{T)(t}}) denotes the weakest precondition of ip under the transition T, i.e. starting
T in initial state a will reach a final state r satisfying ip.

Since we only consider sequences of insertions and deletions, EfFtr(T) can al-
ways be written as a conjunction of literals, i.e. in negated implicational normal
form, with the positive literals corresponding to insertions and the negative ones to
deletions. In addition, we may considei the effect of a sequence T; RTS, where T
is a transition and RTS a system of rules. We say that RTS invalidates the effect
of T iff ^ E S C { T) A EfT^T1; RTS) holds for some state a.

Then it is justified to call a transition T repairable with respect to the constraint
set £ iff ->EfF<r(T) £ £* holds for at least one state a. Then a complete terminating
system RTS of EC A-rules always invalidates the effect of a non-repairable transition
T. Hence the problem is to detect (and exclude) non-repairable transitions. In
order to decide whether a given transition T is repairable or not, we must be able
to decide, whether - lEfT^T) is in the closure £*. Hence the implication problem
for constraints must be decidable.

Proposition 1 Let £ be a set of constraints. The problem to decide, whether a
transition T is repairable with respect to £ is equivalent to the constraint implica-
tion problem for £, i.e. the problem to decide, whether a given constraint I is a
member of £* or not. •

Proposition 1 defines the first limit on integrity maintenance by rule triggering
systems. In the following sections we shall concentrate on repairable transitions.

Note that our treatment ignores the termination problem. Non-terminating
transitions have to be excluded as well, but this problem is independent from the
repairability problem, since non-termination of RTSs occurs as an orthogonal prob-
lem.

3 Critical Paths
Let us ask, whether we can always find a complete set of repair rules for all re-
pairable transitions. For this we introduce the notions of associated hypergraphs
and critical trigger paths.

Definition 2 Let S = {pi,... ,pn} be a relational database schema and RTS =
{i?i , . . . ,Rm} a system of ECA-rules on S. Then the associated rule hypergraph
(V, E) is constructed as follows:

• V is the disjoint union of S and RTS. We then talk of ¿»-vertices and RTS-
vertices respectively.

282 Klaus-Dieter Schewe. Bernhard Thalheim

Figure 1: Associated Rule Hypergraph

• If R € RTS has event-part Ev on p 6 S and actions on pi,... ,pk, then we
have a hyperedge from p to {i?} labelled by + or - depending on Ev being
an insert or delete, and a hyperedge from {R} to {p i , . . . ,pk} analogously
labelled by k values + or - . •

Figure 1 shows the associated rule hypergraph of Example 1 in which case we have
a simple graph.

Definition 2 ignores the condition part of the rules. These come into play if
we consider critical trigger paths in associated hypergraphs. These are defined in
several steps starting from paths in the associated hypergraph which correspond to
possible sequences of ECA-rules with respect only to their event- and action-parts.
Secondly we attach formulae to the 5-vertices in the path in such a way that pre-
and postconditions of the involved rules are expressed. Then we talk of trigger
paths.

A maximal trigger path with contradicting initial and final condition will then
be called critical. Then imagine a transition with an effect implied by the initial
formula, i.e. that there is an initial state such that running the transition in this
state results in a state which satisfies the initial condition of the trigger path. If
we execute this transition followed by the rule triggering system along the critical
trigger path will then turn the effect of the transition into its opposite. This means
that the RTS invalidates the effect of at least one transition.

Definition 3 Let G = (V, E) be the rule hypergraph associated with a system
RTS of rules. A trigger path in G is a sequence VQ , e\, v[, e[,... , e'(. Vf of vertices
and hyperedges with the following conditions:

• Vi € S holds for all i = 0 , . . . , £,

• v[e RTS holds for alH = 1 , . . . , t,

• e, is a hyperedge from Vi-i to v\ and

• e\ is a hyperedge from v[to V't with Vi 6 Vi 'and the same label as et+\.

Limitations of B,ule Triggering Systems for Integrity Maintenance 283

p(x) A ~^q(x) p(x) A q{x) ~^p(x) A q(x)

vo ei v[e[vi e2 v2 e'2 v2

p(x) A q(x) p(x) A -iq(x) -ip(x) A -iq(x)

Figure 2: Critical Trigger Paths

We call P. the length of the trigger path.
In addition we associate with each vertex Vi £ S (1 = 0 , . . . ,<) a formula

in negated implication normal form such that |= ipi =>- cond(v'i+1) holds for the
condition part cond(v'i+1) of rule v'i+i € RTS and |= wp(Ai+1)(ipi+}) holds
for the action-part Ai+1 of rule v'i+1 (i = 0 , . . . ,£ — 1). Furthermore, there is no
ee+i € E from v^ to with the same label as e'(such that |= <pe cond(v'(+l)
holds.

Then a trigger path is critical iff |= A ipe) holds. Such a critical trigger
path is called admissible iff there is a consistent state a and a repairable transition
T such that EffV(T) O liolds. •

Critical trigger paths for the associated rule hypergraph in Figure 1 are sketched
in Figure 2. Note that in this case both critical trigger paths are not admissible.
If a critical trigger path is not admissible, then only a non-repairable transition
can be invalidated by running the rules in the trigger path. Since we exclude non-
repairable transitions, we only have to consider admissible trigger paths. After
these remarks we are able to prove our first result.

Proposition 4 Let RTS be a complete set of rules associated with a set E of
constraints and let G = (V, E) be the associated rule hypergraph. Then G contains
an admissible critical trigger path iff there exists a consistent database state a and
a repairable transition T such that executing T in a and consecutively running
RTS invalidates the effect of T without leaving the database unchanged.

Proof. Let us first assume that G contains an admissible critical trigger path. Let
</jo, • • • ; Ve denote the formulae associated with the <S-vertices in this trigger path.

Case 1. Assume that e\ is labelled by +. Then ip0 contains at least one positive
literal p(x). Let a be a consistent state and T a repairable transition such that
EffCT(T) is given by (fo• We may assume that ->p(:v) holds and that the final

284 Klaus-Dieter Schewe. Bernhard Thalheim

action in T in an insertion into p. If we start T in the initial state a, then the
resulting state satisfies ipo-

T followed by the RTS may then result in a state r satisfying ipe. Hence the
effect of T\RTS in a is given by tpt. Since (= ->(<£>o A ipi) holds by the definition
of critical trigger paths, this implies that RTS invalidates the effect of T. Further-
more, T is consistent with respect to all constraints in £, since RTS is complete
and there is no hyperedge e^+i from V[to some v'e+l £ RTS with the same label
as e't such that f= ipt => cond(v'(+1) holds.

It remains to show r ^ a. If this does not hold, we get \=a tpi and consequently
there exists some if) such that tpi & ->p{x)f\ij) and <po p{x)Aip hold. This implies
i > 1, because otherwise the rule v[would have the form ON insertp(i) IF ->T DO
deletep(af) , which we excluded.

If i > 1 holds, there is at least one other literal q(y) (or ~>q(y)) in ip0 such that
delete, (y) (or insert ,(y) respectively) occurs in the action-part of v[. Then we may
consider the admissible critical trigger path vi,e-2,... ,ve of length I — 1 instead.
Following the argumentation above, we may choose a and T in such a way that
\=a -iq(y) (or \=a q(y) respectively) holds. This implies r ^ a as required.

Case 2. If e\ is labelled by —, then ip0 contains a literal ^p(x). Thus, we have
to consider a transition T containing deletep(x) as its final action and a consistent
state a with |=CT p(x) and EfFff(T) <£> (po• Then we may apply the same arguments
as for case 1.

Conversely, assume that there is no admissible critical trigger path. Let T be a
repairable transition and a a database state which is consistent with respect to E.
Now start T in a and assume that the resulting state a' is not consistent. Then
consider a trigger path of finite length such that \=a' tp0 holds. The consecutive
execution of the rules in this trigger path will result in a state r satisfying ipi. Thus,
we have EfFff(T) <p0 and EffCT(T; RTS) tpt.

According to our assumption, the used trigger path cannot be critical, i.e. tpe A
ipo is satisfiable. Hence RTS does not invalidate the effect of T. •

4 Stratified Constraint Sets

According to the result in Proposition 4 we may ask for constraint sets that allow
to define complete RTSs which exclude admissible critical trigger paths in their
associated hypergraphs. Let us start with a simple example.

E x a m p l e 2 Take again two unary relations p and q and the constraints T\ =
p(x) => q{x) and 12 = q(x) =>• p(x) which implies p to be always equal to q. Then

Limitations of B,ule Triggering Systems for Integrity Maintenance 285

we obtain the following repairing rules:

Ri : ON insertp(a;) IF ->Zi DO insert, (z)

R2 : ON delete,(z) IF -.Zi DO deletep(x)
R3 : ON insert, (z) IF -.Z2 DO insertp(x)
R4 : ON deletep(x) IF ->I2 DO delete, (x)

In this case there are no admissible critical paths in the associated rule hypergraph.
We omit further details. •

Let us now investigate the reason for the absence of admissible critical trigger paths
in Example 2. This leads us to the notion of a stratified set of constraints.

The motivation behind this is as follows: In Example 2 insertions (deletions)
on a relation p only trigger insertions (deletions) on q and vice versa. This should
be sufficient for not invalidating a once established effect. The corresponding con-
straints can therefore be grouped together.

D e f i n i t i o n 5 Let E be a set of constraints in implicative normal form (1) on a
schema S. The E is called stratified iff we have a partition E = Ei U . . . U £ „ with
pairwise disjoint constraint sets E» called strata such that the following conditions
are satisfied:

(i) If L is a literal on the left hand side (right hand side) of some constraint
Z € Ei, then all constraints J 6 E containing a literal L' on the right hand
side (left hand side) such that L and L' are unifiable also lie in s t ra tum E,j.

(ii) All constraints Z, J containing unifiable literals L and L' either on the left
or the right hand side must lie in different strata E j and E j . •

Now we can prove in general that stratified constraint sets always give rise to RTSs
without admissible critical trigger paths in the associated rule hypergraph.

P r o p o s i t i o n 6 Let E be a stratified constraint set on a schema S. Then there
exists a complete RTS such that for any repairable transition T on S the RTS does
not invalidate the effect of T.

Proof. Given a constraint Z in implicative normal form (1), then each relation
symbol pi on the left hand side gives rise to rules

ON insertPi(xi) IF - Z DO insertqj(yj) ,
ON insertPi(xi) IF - Z DO deletePj(yj)

with relation symbols qj occurring on the right hand side and pj (j ^ i) on the left
hand side of 1. Similarly, each predicate symbol qj on the right hand side gives rise
to rules

ON deleteqj(yj) IF ->I DO insertQi(yj) (i ^ j) ,
ON delet.eqj{y)) IF ->Z DO deletePi(yj)

286 Klaus-Dieter Schewe. Bernhard Thalheim

This defines a complete set RTS of rules. Now assume there exists a critical
trigger path v0,ei,v'l!e'1,... ,e't,vt in the associated rule hypergraph. Each RTS-
vertex v[corresponds to a constraint I ; € E. Since e\ and e;+i are equally labelled
corresponding to the action- or event-part respectively, the construction of the rules
above implies Zj and 2j + i to lie in the same stratum (i = 0 , . . . , t — 1).

However, the condition |= ->(<po A (f t) implies that (po contains a literal L, its
negation, hence the construction of rules implies Zx and 11 to lie in different strata.
Hence, there are only critical trigger paths of length I = 1.

According to our construction of RTS this implies |= <p0 ->I to hold for some
1 e E. Thus, -icpo 6 E* holds. Due to the definition of admissible critical trigger
paths and the definition of repairable transitions, we conclude that the trigger
paths of length I = 1 cannot be admissible. Then the proposition follows from
Proposition 4. •

Finally, we may ask for cases, where stratified constraint sets occur. Recall from [6]
that a relational database schema S with constraint set E is in Entity-Relationship
normal form (ERNF) - and hence is equivalent to an ER-schema - iff

• all inclusion constraints in E are key-based and non-redundant,

• there is no cycle of inclusion constraints in E,

• each relation schema R. e S is in BCNF with respect to the functional depen-
dencies in E* and

• there are only inclusion and functional dependencies in £*.

If a relational database schema S with constraint set E is in ERNF, then it is easy
to see that E is stratified.

Corol lary 7 Let S be a database schema in ERNF with respect to the constraint
set E. Then E is stratified. •

Hence, following the design approach of Mannila and Raiha in [6] - if this is suf-
ficient for the application - leads to schemata without any problems concerning
consistency enforcement by RTSs.

E x a m p l e 3 Let us look at the following constraints

li : p(x, y) =i> q(x, z) and
J2 : q(x,z) Aq(y,z) => x = y

Then this set of constraints corresponds to the Entity-Relationship diagram [9] in
Figure 3. Obviously, the constraint set is stratified. •

Limitations of B,ule Triggering Systems for Integrity Maintenance 287

Figure 3: Entity-Relationship constraints

5 An Algorithm for Checking Stratification
Before we analyze the converse of Proposition 6 and present the weaker notion of
locally stratified constraint sets, let us first concentrate on an algorithm for checking
stratification and its complexity. For this we consider the set

BW = { T , ± } U (1 N - { 0 }) U { { i i , . . . , j „ } | n > l , j f c e] N - { 0 } }

In the algorithm we successively add labels from BW to constraints. A label i £ IN
for a constraint 1 is used to indicate that I must lie in the stratum £j . A label
{jii • • • ; in} indicates that I must not lie in E^ for k = 1 , . . . , n. _L represents no
information and T an inconsistent assignment of stratum numbers.

For a more convenient terminology we call an element of BW black, if it is in
(IN — {0}) U {T}, otherwise white. Furthermore, we use a commutative, associative
binary operation © on BW defined by

x © -L = ; ,
a;© T = T ,

i®j
{ V

if i = j
otherwise '

{il,-- - >jn} ©{&!,. • • j {ii,-- • > in} U , . . . , km} and

¿©O' l , . • • • ,3n} {,T if % = jk for some k 6
otherwise

Algorithm 8 ((Stratification Check))
Input: a set £ = {T\,... ,ln} of constraints

in clausal form Ti = L^i V . . . V Lj in i

Output: a boolean value b
Method:

VAR gather : ARRAY 1 . . . n OF BW ,

288 Klaus-Dieter Schewe. Bernhard Thalheim

mb, mb' : BW ;
BEGIN

FOR i = 1 TO n DO
gather(i) := ±

ENDFOR ;
b := true ;
mb := 1 ;
WHILE E ^ 0 DO

CHOOSE i0 € {1, . . . ,n} WITH lio € E AND gather(i0) is maximal ;

IF gather(io) is white
THEN gather(i0) := mb ;

mb := mb + 1
ENDIF ;
mb' := gather(io) ;
FOR j = 1 TO nio DO

FOR ALL l k e E DO 0

FOR t = 1 TO nik DO
IF Lj0 i J - and Lk,t are unifiable AND gather(i0) ^ T

THEN gather(k) := gather(k) © {gather(i0)}
ELS IF Li0j and ~ Lk<t are unifiable
THEN gather(k) := gather(k) © gather(i0)
ENDIF

ENDFOR
ENDFOR

ENDFOR
ENDDO ;
FOR i = 1 TO n DO

IF gather(i) = T
THEN b := false
ENDIF

ENDFOR ;
RETURN (6)

END •

We have to check that the algorithm is correct. Then we analyze its time complexity.
Before we do this let us first look at a simple example.

E x a m p l e 4 Consider the following constraints:

E : = E - { l i 0 } ;

h
I 2

T3

14
1 5

-ip(x) V ~>q(x) V r(x) V s[x)
->q(x) V r(x) V -1 t(x) ,
p(x) V -ir(x) ,

0

->s(x) V t(x) and
q(x) V ->t{x) .

Limitations of B,ule Triggering Systems for Integrity Maintenance 289

Table 1: Stratification Check

L I A ¿ 1 , 2 ¿1,3 L 1,4 £3,2 -̂ 3,1 ¿2,1 ¿2,2 L 2,3 £4,1 £ 4 , 2 £5,2 ^5,1 gather
1 1 1 1 1 1
3 1 1 1 1 1
2 {1} {1} 1 T T T T
4 1 T T T T
5 1 T T T T T

Ii I3 T-1 I4 I5 b = false

Then consider Table 1.
Each row corresponds to a constraint I j and lists the values added to gather (i)

during the excution of the algorithm. The chosen order of the constraints in the
algorithm is 11; I3, I2, T4, lb- Then b will become false and hence £ is not
stratifiable. •

Let us now address the correctness of Algorithm 8.

Proposition 9 Let £ be a set of constraints. Then £ is stratifiable iff Algorithm
8 applied to the input £ computes the output b = true.

Proof. Let us first assume that £ is stratified. Let £ = £1 U . . . U £„ be a
decomposition into strata and assume that the £ j are taken minimal with the
required properties. We use induction on n.

For n = 1 there are no unifiable literals L and L' in different constraints I , J e
£. Hence gather(i) will become 1 for alle i and we obtain b = true.

For n > 1 we may assume without loss of generality that some constraint in £1
will be chosen first. Then, due to our minimality assumption, we get gat her (i) = 1
for all Zi G £1, whereas gather(j) will be white for all I , $ £1. Thus, all constraints
in £1 will be chosen first.

Since gather(j) was white for l j ^ £x and gather(i) = 1 for 1i € £1 before
chosing the first constraint in £2 U . . . U £„, we may apply the induction hypothesis
to £2 U . . . U £„, which gives gather(j) ^ T for all l j ^ <ti. This implies b = true
as claimed in the proposition.

Conversely, assume that the algorithm produces the result b = true. Then we
must have gather(i) £ IN — {0}. Define = {Ij 6 £ | gather(i) = k}. Assume
that the partition £ = £1 U . . . U £„ does not satisfy the conditions for strata in
Definition 5. Then there are two possible cases:

(i) There are literals L and L' in constraints 1\ € E/t and I j 6 £ ; with k ^ £
such that L and ~ L' are unifiable. Suppose that I j is chosen first by the
algorithm. Then k will be added to gather(j), which gives gather(j) = T
contradicting our assumption.

290 Klaus-Dieter Schewe. Bernhard Thalheim

(ii) There are unifiable literals L and V in constraints Ii,lj G £fc. If Tx is
chosen first by the algorithm, {k} will be added to gather(j), which also
gives gat her (j) = T contradicting our assumption.

Thus £1 U . . . U £„ is a partition into strata, which completes the proof. •

P ropos i t i on 10 Let S be a set of constraints in clausal form, n = # £ , k the
maximal arity of predicate symbols occurring in constraints I G S and let i be

v the maximum number of literals in these constraints. Then the time complexity of
Algorithm 8 for checking, whether £ is stratified is in 0(k • i2 • n2).

Proof. The initialization and the final computation of b can both be done in 0(n)
steps.

In the inner FOR-loop the test for unifiability can be done in O(k) steps, since
there are no function symbols. All other operations have a complexity in 0(1) .
Hence the inner FOR-loop has a total complexity in O(k). This loop is executed
I' • I" times, where I' is the number of literals in the chosen constraint I¿0 and I"
is the total number of literals in the remaining constraints. If Zj0 is the ¿'th literal
chosen by the algorithm, this can be estimated by I2 • (n — i).

Since each I G £ will be chosen by the algorithm, the outer WHILE-loop will be
executed n times. This gives the total complexity in

n
0{n)+0{L2 -^2(n-i))-0{k) + 0(n) = 0(k • i2 • n2)

i-1

as claimed in the proposition. •

It is easy to see that n • I can be replaced by the total number u = ni
literals in £ with u < n- i. Thus, the time complexity of the stratification checking
algorithm 8 is in 0(k • u2).

From Proposition 6 we know that active mechanisms can be effectively applied,
if the constraint set is stratified. In particular, this holds for schemata in ERNF
[6], which are equivalent to Entity-Relationship schemata. From Proposition 10 we
know that a stratification check can be done efficiently.

6 Locally Stratified Constraint Sets
Unfortunately, the converse of Proposition 6 does not hold, as seen in the next
example. The reason for this is that in the proof of Proposition 6 we considered
all repairing rules for a given constraint, whereas the constraint set in Example 5
allows to select only a subset thus gaining the required result without loosing the
completeness of the RTS.

E x a m p l e 5 Take three unary relations p and q and the constraints I\ = p(x) A

r(x) => q(x), 1-2 = q(x) => p(x) and I 3 = p(x) => r{x). It is easy to see that this
constraint set is not stratified.

Limitations of B,ule Triggering Systems for Integrity Maintenance 291

p(x) A ~*q(x) A r(x) p{x) A ~^q{x) A -<r(x) -ip(rc) À —>q{x) A ->r(x)

vq ei v[e\ vi e2 v2 e2 v2

Figure 4: An Admissible Critical Trigger Path

However, we may consider the following system of ECA-rules:

i?! : ON insertp(x) IF -<LX DO insert, (x)
R2 : ON delete,(i) IF -X\ DO deletep(x)
R3 : ON insert r(x) IF ->Zi DO insert,(x)
R4 : ON delete, (a;) IF -<L\ DO deleter(x)
i?5 : ON insert,(x) IF -1Z2 DO insertp(x)
R6 : ON deletep(a;) IF -<12 DO delete,(x)
R7 : ON insertp(x) IF ->13 DO insertr(x)
Rs : ON deleter(x) IF ->Z3 DO deletep(x)

We dispense with showing that there are no admissible critical trigger paths in the
associated rule hypergraph.

Note that the construction in the proof of Proposition 6 would result in two
more rules corresponding to insertions:

R§ : ON insertp(x) IF -.Zj DO delete,.(x)
R10 • ON insertr(x) IF ->Zi DO deletep(x)

These give rise to admissible critical trigger paths. The one shown in Figure 4
allows to invalidate the effect of the repairable transition insertp(x). •

The constraint set in Example 5 is not stratified, but nevertheless the associated
RTS does not invalidate the effect of repairable transitions. This shows that a
constraint set need not be stratified to allow a reasonable rule behaviour. Indeed,
replacing Zi in the example by 1[= p{x) => q(x) gives an equivalent constraint
set, which is stratified. However, equivalence of constraint sets is undecidable in
general. Therefore, we introduce the weaker notion of being locally stratified. In
this case we shall construct RTSs which only contain a subset of the set of rules
constructed in the proof of Proposition 6.

Definition 11 Let S be a set of constraints in implicative normal form on a
schema <S.

292 Klaus-Dieter Schewe. Bernhard Thalheim

A labelled subsystem consists of a subset £ ' = { I £ £ | pl(X) is defined }
together with a set of clauses £ " = {PL(1) \ T £ £ ' } and a literal L (the label)
such that each constraint 1 € £ ' can be written as the disjunction pl{1) V J ' with
\=T =>L.

Here pl(I) is defined iff the negation ~Z/ does not occur in 2 (written as
a clause). Then PL(T) results from I by omission of the literal L if the result
contains at least two literals. Otherwise PL(T) is simply X. We call 1' the label
part and pi(I) the label-free part of the constraint J . If L is understood from the
context, we drop the subscript and write p instead of pi-

A labelled subsystem (£ ' , £ " , L) is called stratified iff the set £ " is stratified in
the sense of Definition 5 or locally stratified as defined below.

The constraint set £ is called locally stratified iff £ = £ i U.. .U£^ with stratified
labelled subsystems (£•, £" , Li) (i = 1 , . . . , n) such that for each constraint I £
and each literal L occurring in its label part with respect to S^ there exists another
j with 1 6 and L occurring in its label-free part of I with respect to £ j . •

E x a m p l e 6 For the constraint set £ in Example 5 we obtain the parti t ion into
S i = { I i , X 3 } a n d £!, = .{Z i , I 2 } .

For the first of these we have the label Li = ~^p(x) and the label-free parts
defined by plA^i) = <l(x) v -'r(x) a n d = i j -

For S-2 we get the label L2 = ->r(x) and the label-free parts pl2{Zi) = ~*p{x) V
q(x) a n d P l 2 №) =

This shows that the constraint set in Example 5 is indeed locally stratified. •

Note that each stratified constraint set S is also locally stratified. In this case we
define depth(E) = 0. If £ is locally stratified by a partition S = S i U . . . U T,'n, we
define depth(S) = maxf= 1depi/ i (S") 4-1. We call depth(E) the depth of the locally
stratified constraint set £ .

Finally, we can strengthen Proposition 6 now dealing with locally stratified
constraint sets. This condition turns out to be sufficient and also necessary for the
absence of admissible critical trigger paths.

T h e o r e m 12 Let £ be a constraint set on a schema S. Then £ is locally stratified
iff there exists a complete RTS such that for any repairable transition T the RTS
does not invalidate the effect of T.

Proof. First assume that £ is locally stratified. Let the labelled subsystems'in the
partition be (£ - , S " ,L i) for i = 1 , . . . ,n. We shall use induction on the depth of
5 . For depth(T,) = 0 we are done by Proposition 6.

Let us now consider the case depth(H) = 1. As in the proof of Proposition 6 we
construct an RTS for £ . Since each £ " is stratified in the sense of Definition 5, we
first construct a rule system RTS• with respect to £ " as in the proof of Proposition
6. The condition parts in these rules have the form ->pLf(X) for 1 £ £•. Then let
RTSi result from RTS[by changing all conditio» parts replacing ~^pLi(T) by ->Z.
Finally, take RTS = lX=i RTSi.

Limitations of B,ule Triggering Systems for Integrity Maintenance 293

Due to the last property in the definition of locally stratified constraint sets in
Definition 11 we conclude that RTS is complete.

Now consider a critical trigger path vo,ei,v'i,e'i,vi,... ,e't,ve in the rule hy-
pergraph associated with RTS. Without loss of generality assume v\ 6 RTSi.
According to Proposition 4 we have to show that this trigger path is not admissi-
ble.

We use induction on the length I of this critical trigger path. For I — 1 we may
use the same argument as in the proof of Proposition 4. Therefore, assume £ > 1
and take a state a with |=a E and a transition T with f= EffCT(T) & ¡p0. Then we
have to show that T is not repairable.

Assume that T is repairable. Then there exists a state r with |= r E such that
- iEffT(T) ^ E*. We shall derive a contradiction from this.

For this regard the critical trigger path vx, e2, v2, e'2, v2,... , e'e, V(of length £ — 1.
By induction it is not admissible. If A\ is the action in the rule v[, we get |=
E f f a (T ; Ai) (pi and T; Ai cannot be repairable. In particular, this implies
->Eff r (T; A\) G E*.

Since Ai is a simple insertion or deletion, we get |= ->EffT(T) <p A L and
[= ->EfFr(T; Ai) ipA ~L for some literal L and its negation From this we
conclude ip G E* and G E*.

Then there must exist a resolution refutation for L from input E. Any literal
L' (except L) in this refutation must be selected at least once for building the
resolvent. Therefore, due to our construction of PLi{T) we may cancel all clauses
1 G E containing the literal ~ L i and simultaneously the literal Li in all clauses.
Thus, there must also exist a resolution refutation for L from input E".

On the other hand, each clause in E" contains at least two literals. Therefore,
any resolvent will also contain at least two literals unless we have some Zi e E"
with literals Li and L2 and another 12 6 £'/ with literals L[and ~Z/2 such that
Li, L[(and L2, L'2 respectively) are unifiable.

This property, however, means that E" is not stratified contradicting our as-
sumptions. Hence T cannot be repairable and we are done.

Next let depth(E) > 1. We proceed analogously. By induction, since E" is
(locally) stratified, there exists a rule system RTS[for E" with the required prop-
erty. The condition parts in these rules have the form -^¿¡(Z) for Z € E^. Then
let RTSi result from RTS[by changing all condition parts from -ipj^ (Z) to -<L.
Finally, take RTS = (JIU RTSi-

Again due to the last property in the definition of locally stratified constraint
sets (cf. Definition 11) RTS must be complete.

Now consider a critical trigger path vo, e\, v[, e[, vi,... ,e'e, ve in the rule hyper-
graph associated with RTS. According to Proposition 4 we have to show that this
trigger path is not admissible. Without loss of generality assume v[G RTSi • Then
take a maximal k such that v[,... , v'k G RTSi holds. Then for i = 0 , . . . , k we may
write (pi as a conjunction tyiAj with |= ipi => ~<pLi (Zj) for some Zj G E'x. Hence, if
we replace v • by the corresponding rule in RTS[, we obtain a critical trigger path
for RTS'i.

294 Klaus-Dieter Schewe. Bernhard Thalheim

Now take a state a with E and a transition T with |= E f f ^ T) <£> ip0. We
have to show that T is not repairable. Assume the contrary. Then there exists a
state r with (=T E and ->EfFT g £*.

Assume (=CT ->Li. Since (=ff E holds and each constraint 1 G E'j can be written
as a disjunction 2 ' V PL1 (2) with |= 2' L\, we conclude (=CT £" .

Since , ex, w'j, ei, wi, . . . ,E'K,VK is a critical trigger path for RTS{ and |=
EflV O <po holds, we may apply the induction hypothesis to E" with depth(T,'{) <
dept/i(£). Therefore, T cannot be repairable, i.e. for any state (with (=<; £ " we
get - . E f f J T) G (E")*.

In particular, take (= a. Then - . E f f ^ r) G (£'/)* implies ^ P L A 1) f o r

some 2 G E^ and further E* contradicting our assumption on a. Thus, we
must have j=CT L\.

Assume (=T ->L\. Then we must have (=r E" and consequently ->EffT(T) G
(E")*. As above this implies \=T ~'Pl1(1) for some 2 G E^ and hence ^ T E*
contradicting our assumption on r . Hence, we must have (=r L\.

Now let 2l G E correspond to the rule v[. Without loss of generality we may
assume |= <po =>• Otherwise, we must have ->T[and p£j(2i) must not
contain L\. This implies Li to occur in J , in which case we may change it to ->Li
without affecting the trigger path being critical.

Since 1=0- Li holds, T must involve an insertion (deletion) corresponding to a
negative (positive) literal L\. Hence, |= E f f T (T) A ->ipT holds. Due to the
independence of J from E" we may choose T in such a way that ipT G (E'/)* holds.

However, this implies (= -iEfF r(T) <=> L\ V tpT G E* contradicting the non-
repairability of T with respect to RTS[. This completes the sufficiency proof.

Conversely, assume that we are given a complete RTS for E which for any
repairable transition T does not invalidate its effect. According to Proposition 4
this implies that all critical trigger paths in the associated rule hypergraph are not
admissible. From this we have to construct a partition of E into stratified labelled
subsystems.

First consider a single rule R corresponding to a constraint 2 G E. In particular,
2 is the condition part of this rule. Since RTS is complete, the event part of R gives
rise to a negative (positive) literal Lev in 2 for the case of an insertion (deletion).
Similarly, an insertion (deletion) in the action part of R gives rise to a positive
(negative) literal La in 2.

Let p(2) = Lev V La. If 2 contains n > 1 more literals Li,... , Ln, let />¿(2) =
p(T) V Lx V . . . V V . . . V Ln. Then define E '¿R) = { J G E | pLi (J) is defined }

omi t
and E '¡{R) = {pL i(J) I J G E (F o r 2 o p(l) let Lx = Lev and L2 = La

and define E[(R) and E " (R) analogously.)
Define E (R) = {(E^(ii), EJ'(i?), Li) | E '¡(R) is locally stratified }, if this satisfies

the last condition of Definition 11. Otherwise let E (R) = 0. Then the elements of
E (R) define stratified labelled subsystems of E.

In order to check the local stratification for E '¡{R) first check, whether it is
'stratified. If not, define for each literal L in pi(T) the sets E[L(R) = {J G
E"(i?) | pL(J) is defined} and E '¡L{R) = {pL{J) \ J G E ' i<L{R)}- Consider

Limitations of B,ule Triggering Systems for Integrity Maintenance 295

{(T,'i L{R),T,'lL(R):L) | T,'lL(R) is locally stratified} and check the last condition
of Definition 11.

Now take LSS = UReRTS^iR)- If Z{R) ± 0 holds for all R G RTS, this
satisfies the last condition of Definition 11 and we obtain a partition of E into
stratified labelled subsystems. Then LSS is the required partition.

It remains to show £(i?) ^ 0 in the construction above. Assume E (R) =
0. Then there exists a sequence L±, L2,... , Lk of literals in I and a se-
quence (Ei, E", Li),... , (E'fc,E'¿,Lk) of non-stratified labelled subsystems such
that. = {J G £•' | pLi+1{J) is defined} and E'fc' contains two clauses I f
and I f with literals L1, L1' and L2, L2' respectively such that Ll, L2 and Lv, L2'
are unifiable.

i f and I f correspond to rules with respect to E'̂ that define an admissible
trigger path in the associated rule hypergraph. Since for ¿ = 1,2 I f is ->pLk (i f - 1) ,
we may successively replace these rules by rules corresponding to E ^ j , . . . , £" , E
and simultaneously replace the formulae <p!- by = ^¿A->L/t,... , tp® = tp]A->Li.
The resulting trigger path is still critical and due to our construction it is also
admissible with respect to E contradicting our assumption. This completes the
necessity proof. •

E x a m p l e 7 Let us extend Example 3 and add a third constraint

I3 = p(x, z) A q(y, z) false

In terms of the Entity-Relationship diagram in Figure 3 I3 corresponds to an ex-
clusion constraint B||D. It is easy to see that the new set { I i , l 2 , I 3 } of constraints
is not stratified.

In particular, any local stratification must contain a labelled subsystem with
label ~^q(x,z) with the reduced constraints 1!2 = ~^q{y,z) V x = y and I3 = I3.
However, ->q(x, z) cannot occur in the label-free part of some I'2, since this always
defines the same labelled subsystem. Hence, the given constraint set is also not
locally stratified. This shows that adding a single exclusion constraint to an Entity-
relationship schema may already destroy a reasonable rule behaviour. •

7 Complexity of Local Stratification
Let us now look at the check, whether a given set of constraints E is locally strat-
ified. In the second part of the proof of Theorem 12 we have seen that this check
can be done by direct construction of the desired partition into maximal stratified
labelled subsystems. The first part of that proof then indicates how to construct
the corresponding RTS. In [8] we gave an explicit algorithm which also produces
for each constraint the set of "reduced" constraints used in the RTS construction.
However, the time complexity of that algorithm was beyond any practicality, since
we could proof the following result.

P ropos i t ion 13 Let E be a set of constraints in clausal form, n = # E , I the
maximum number of literals in constraints I G E and k the maximal arity of

296 Klaus-Dieter Schewe. Bernhard Thalheim

predicate symbols occurring in these constraints. Then checking £ to be locally
stratified can be done with a time complexity in 0(k • t2 • n2n i). •

We now want to show that this complexity result is not accidentally. For this we
first show a technical lemma.

L e m m a 14 Let E be a set of clauses containing only propositional atoms. Let
I be a literal, such that ~ L does not occur in any of the clauses in E. Assume
E = Si U Eg such that L does not occur in any of the clauses in Ei , but in all
clauses of Eg. Moreover, £2 contains only clauses with exactly two literals. If £1
is locally stratified and £ 2 is stratified, then £ is locally stratified.

Proof. First assume that £2 contains a single clause C = L V L'. If £1 is not
stratified, there is a partition Si —-^ii U * * • U (ji > 2) with stratified labelled
subsystems (S^, S'/j, Li). Then at m'ost one Lk can be ~ V and we may define

E , = f s ' u if L i = ~ L '
1 | £ ' H U { C } otherwise

By induction (£•, £" , Li) is a stratified labelled subsystem. Thus, £ = E'x U - • - UE^
defines the required partition.

Now assume that £1 is stratified. Let £1 = E n U • • • U £ i „ be a partition into
pairwise disjoint strata. If £1 contains just one clause C' with ~ L' and no clause
with L', we are done, since C may be added to the stratum of C'. Analogously, C
may define its own stratum, if such a C' does not exist at all. Therefore, we are
reduced to the following two cases:

• There is more than one clause in Ei containing ~ L' (and hence none con-
taining L') and these clauses belong to different strata.

• There are exactly two clauses Ci and C2 containing ~ L' or L' respectively.
Inparticular, C\ and C2 belong to the same stratum Ei^.

In both cases we choose the literals L\ = ~ L and L2 = L' to define labelled
subsystems

(E i ,E i ,L i) and ({C} U £1 - {C" \ C" contains ~ L'}, E^', L2)

where £ 2 (and hence also £'2') are stratified by the previous remarks:
In the first case choose C' containing ~ L' and another literal L" to define a

labelled subsystem

(E j U i C } , ^ ' , ^)

Limitations of B,ule Triggering Systems for Integrity Maintenance 297

with L3 = ~ L", where E^ is a proper subset of Ei not containing C'. By induction
E3 must be locally stratified.

In the second case choose C 2 = L' V C 2 > a literal L" in C 2 and L3 =~ L", which
defines a labelled subsystem (E ^ E 3 , L 3) as before with £3 = E'x U {C} with a
proper subset Ei C Ei containing C\, but not C2. Thus, £3 and £3 are stratified.

In both cases we have obtained a partition £ = £1 U £ 2 U £3 with stratified la-
belled subsystems (£ i , £ i , L i) , (£ 2 , £2 , ¿2) and (E j , E 3 , L 3) . Since the additional
condition for local stratification is easily verified, we conclude that E is locally
stratified.

For the general case we may assume that E 0 = E i U (E 2 — { C }) is locally stratified
by successive application of the constructions in the first part of this proof. Then
we observe that in the case of non-stratified £0 we do not change labels, when we
add C. However, it may happen that one of these labels now is ~ L. This label
results (as label L\) from adding C' to some stratified constraint set. From the
construction of this local stratification and the fact that E2 is stratified we conclude
that the other labels L2 and L3 are different from ~ L, which guarantees the local
stratification condition to hold also in the general case. .

For the case of So being stratified the arguments are the same as before except
for the case that Eo contains exactly one clause C' with ~ V and none with L'.
Then the corresponding stratum may also contain clauses C, with literals ~ Li and
Lj+i (z = 1> • • • ; m) i where L\ occurs in C' and Lm+x = L.

In particular, we have Cm € £ 2 and adding C to this stratum is no longer-
possible. Since E2 is stratified, we must have m > 0, but then the literals L', L\
and ~ L define a local stratification with associated constraint sets £0 — {C'}U{C},
Eo - {Cm} U {C} and E0 respectively. •
We shall use Lemma 14 in the proof of NP-hardness to shrink prepositional con-
straint sets. Another way to reduce the technical complexity of that proof is to
drop the restriction on E to contain only clauses with at least one negative literal.
If E is a set of propositional clauses containing neither the atom q nor its negation,
we add ->q to each clause to form the set E e x t of clauses.

L e m m a 15 Let E be a set of propositional clauses each with at least two literals.
Then E e x t is locally stratified iff E is satisfiable and locally stratified.

Proof. First let £ be locally stratified and satisfiable. If E is not stratified, we
may choose the same labels to obtain a local stratification for £ e x t .

Thus, assume £ to be stratified. Then (£e x t ,£,->7) is a stratified labelled
subsystem. Since all clauses in all other labelled subsystems contain the literal -iq,
we have to isolate these clauses. Therefore, take a model for £ which is given by
a set {Li,..., Ln} of literals occurring in £ which must be interpreted as true.
Taking ~ Li as a label and the corresponding labelled subsystem (£ • ,£ • ' , ~ Li),
we obtain a proper subset C £ e x t . For #£• ' > 1 we may proceed with the other
literals ~ Lj. The last step results in unary sets {->q V Lk} which are obviously
stratified.

Conversely, given a local stratification for £ e x t we can remove ->q to obtain
a local stratification for E. It remains to show that £ is satisfiable. If £ e x t is

298 Klaus-Dieter Schewe. Bernhard Thalheim

stratified, this is obvious, because a literal L with ~ L occurring in some clause in
E cannot occur in any clause of E.

If £ e x t is not stratified, there is at least one stratified labelled subsystem
(£ ' . £ " ; ! ,) such that ->q occurs in all clauses in £ " , i.e. £ " = EQ5"- and S 0 is
satisfiable. This still holds if we put back the literal L and extend our interprete L
as false to satisfy clauses in E — So- •

T h e o r e m 16 Let E be a set of constraints. Then checking that E is locally
stratified is NP-hard.

Proof. We show that the disjoint cover problem (DCP) - which is known to
be NP-complete - can be reduced in polynomial time to the local stratification
problem. For this, let (X, S) be an instance of DCP, i.e. X is a finite set, say,
X = {xi,.... .'(;„} and S = { S i , . . . , S m } is a subset of the power set The
problem is to decide, whether a subset S' C S exists such that X is the disjoint
union of the sets in S'. Such a S' is called a solution for (X , S).

Without loss of generality we may always assume tha t X = (J S¿ holds.
s¡es

Moreover, we may allow S to be a multiset.
We now associate with (X, S) a set of constraints E. For this let pij be a

prepositional atom for all x¿ £ Sj. For S¿ = {xji,..., xj{} £ S we define clauses
~^p:jki V pjti and -•Pjgi V Pjki for k, i £ {1 , . . . , i}, k I. We refer to these clauses
as connection clauses with respect to S¿. For £ Sj fl S¿ (j ^ k) we define
an exclusion clause -¡pij V ->Pik- Finally, for each z¿ we define a cover clause
Pij, V • • • V Pij,„ for the sets Sj1,... ,Sjm £ S containing x¿ provided rri > 2. £
contains all these connection, exclusion and cover clauses.

Then we have to show that (X, S) has a solution iff E is locally stratified
and satisfiable. For this we introduce a partial order < on DCP-instances letting

< (X 2 ,S 2) iff

E i 5 i < E o r Í E = E a n d i s i i > i s 2 i)
Se-S] ses 2 \S€Si ses 2)

holds.
First let S' = {S¿ j , . . . , Sih} be a solution for (A",S). Then E is obviously

satisfiable. In order to use induction with respect to < we consider the following
two operations:

• Replace Sj 6 S' by Sj — { x a n d add S m + i = {xe} for some X(£ Sj.

• Replace Sj £ S' by Sj — {x¿] for some xg £ Sj.

In both cases we obtain a smaller DCP-instance which has a solution. By induction
the corresponding constraint set E^ is locally stratified.

In the first case we remove all clauses with literals Pi,m+1 from EJ. The resulting
subset £ " is still locally stratified. Now build the labelled subsystem (£ ' , £ " , L)
with the label L = ~^ptj.

Limitations of B,ule Triggering Systems for Integrity Maintenance 299

The clauses in £ ' (and hence in £") do not contain pej. i.e. we omit the cover
clause with respect to X(and connection clauses containing pf j with respect to
Xf 6 Sj. Clauses in £ " containing -~ptj arise from the restriction to keep at least
two literals, hence must also lie in £ ' . Therefore, we obtain £" = £1 U S 2 , where
£2 is stratified and contains only clauses with two literals, one of them is -<pij,
whereas clauses in £ j do not contain -<pij.

Thus, the remaining connection clauses with respect to xt E Sj and the exclu-
sion clauses with respect to X{ E Sj occur in £ 2 . This implies £1 = £" . From
Lemma 14 we conclude that £ " is locally stratified.

In the second case we build the labelled subsystem (£ ' , £ " , L) with the label
L = ptj. The clauses in £ ' (and hence in £") do not contain i.e. we omit
exclusion clauses and connection clauses containing ~^ptj with respect to xi £ Sj.
Again, the clauses in £ " containing pt j only arise from the restriction to keep at
least two literals. Hence, these clauses define a stratified subset £2 of £ " (and of
£') containing only clauses with two literals.

The remaining clauses form a subset £1 and clauses in £1 do not contain pgj, i.e.
the remaining connection clauses with respect to xg E Sj and the cover clause with
respect to xg (if it contains just two literals) occur in £ 2 , which implies £1 = £'j.
From Lemma 14 we conclude that £ " is locally stratified.

Since in the first case (xg E Sj E S') only the cover clause with respect to xg
and connection clauses containing pgj and in the second case (xe E Sj S') only
exclusion clauses with respect to xg E Sj and connection clauses containing -1pgj
are omitted in £ ' , the additional condition for local stratification is easily verified,
if all such choices are taken provided there are at least three such possibilities. The
only critical case arises, if there are only three choices of the second kind, all with
the same xg. In this case we must have another Sj = {x^} E S1 and we simply add
the labelled subsystem (£ ' , £ " , ~<pej) to satisfy the additional local stratification
condition.

If there are at most two choices, then either

• S = S' and there is exactly one Sj = {xk,xg} or

• S' contains only unary sets and these are exactly Sj = {xj} ^ S' and Sk =
M i S ' or

• S' contains only unary sets and there is exactly one Sj = {xk,xg} £ S'.

In the first case £ contains only two connection clauses with respect to Sj and
hence is obviously stratified. In the second case £ contains only four clauses

~>Pkk V -<pkk', Pkk V Pkv, ->Pjj V ->pjj> a n d pjj V pjj>

for Sj' = {xj} E S' and Sfc< = {a;*;} E S', hence £ is stratified.
In the third case we obtain six clauses

-^Pkj V p t j , -<pij V p k j , - i p k j V pkk', ->Ptj V pw, PkjV Pkk' a n d p t j V pw

300 Klaus-Dieter Schewe. Bernhard Thalheim

for Sk' = {za} G S' and = {xe} G S'. Using Lemma 14 it is easily verified
that the labels pkj, Ptj, ~^Pkj and ^pij define a partition into stratified labelled
subsystems.

For the converse let us first assume that E is stratified, i.e. there cannot exist
three clauses with literals L, L and ~ L respectively. In connection clauses we may
have L = ptj (or L = -<pij) and it follows that E does not contain exclusion or
cover clauses for z ; G Sj. This implies x; ^ Sk for all k ^ j. If we have an exclusion
clause for xi G Sj, say ->pej V ~^ptk, then we also have a cover clause ptj V ptk V C'
and vice versa, but there cannot be further exclusion clauses nor connection clauses
for xe G Sj, i.e. C' = false and Sj = {z;}.

To summarize, if xi occurs in more than one Sj, then #Sj = 1 and there are
just two such sets. Therefore, for a solution S' we take all Sj with # S j > 2 and
select a singleton set {xe} for the remaining elements.

Next assume that E is locally stratified, i.e. there is a local stratification with
labels L\,... ,Ln (n > 3). Again, we proceed by induction on DCP-instances.

For Li — ~~pij and the stratified labelled subsystem (E'i, E", L\) the cover clause
for X(and connection clauses for xi G Sj containing pij have been removed from E
to give E^, hence must occur in two other labelled subsystems such that for a label
-ipki we must have and for a label pki we must have i ^ j.

Analogously, for Li = pi j exclusion and connection clauses for X(G Sj, the
latter ones containing ->pij have been removed omitted in E'x and must occur in
two other labelled subsystems such that for another positive label pki we must have
k~>£ and for a negative label ~^Pki we must have i ^ j. Hence, for the minimum
number of three labels Li, L2 and L3 we obtain the following four cases:

Li = ~*Pej, L2 = -ipkih, L3 = -ipk2i2 with pairwise different I, ki, k2 ,
Li = ->pij, L2 = ->pfclil, L3 = pk2i2 with I ^ fci and j ± i2 ± ix ,

Li = -'Pij, L2 = pklit, L3 = pk2i2 with ki ^ k2 and h ^ j ^ i2 or
L\ = Pij, L2 — Pk1il, L3 = pk2i2 with pairwise different I, ki,k2

For a negative literal Li = ->pij or a positive literal Li = p t j it follows from Lemma
14 that replacing Sj by Sj — {xg} and {xi} defines a locally stratified constraint
set. Therefore, by induction in all four cases (with the restrictions for indices) we
obtain solutions for smaller DCP-instances with

Si = {Si,...,Sj - { z f } , . . . , S m , { z £ } } ,
S-2 = {S i , . . . ,5j, - {zjfcj},... , S m , {zfcl}} and

S3 = {Si,---,Si2-{xk2},...,Sm,{xk2}}

respectively. If any of these solutions contains both (or none) of the splitted com-
ponents, e.g. Sj - {xi} and {xg}, we also have a solution fof the original problem.

Therefore, assume that all solutionsjor (X,Sj) must contain exactly one of the
splitted components denoted as Si, S2 and S3. Let S,' = {Sj , . . , S J be a
solution for (yY, Si). For i ^ j we proceed in the following way:

Limitations of B,ule Triggering Systems for Integrity Maintenance 301

Start with Ti = S[- S'j, Tj = S'j — and T = { S j } and execute the following
steps until there are no more changes:

• Remove all sets from % intersecting some set in T and let these define a new
T.

• Remove all sets from Tj intersecting some set in T and let these define a new
T.

Finally, if Ti (and then also Tj) are non-empty, this means that we may replace
Tj C S'j by T or S'j — Tj by S- — Ti- According to our assumption on solutions we
always keep either Si or Sj. Consequently, the procedure above defines a chain

•c" Qi <>i
~ ~ Jij ¿2 °ik ¿j ,

where neighbouring sets have a common element. This is still true, if we replace
Si by the original Sj. Taking together all three choices for (i,j) we obtain an
odd-length cycle

Sit — Si2 — Sh — • • • — Sim — Sh

with intersecting neighbouring sets S,j € S. Let £ ' be the set of constraints
corresponding to {S j j , . . . , 5,m}. Then £ ' differs from a subset E0 C T, only by
the fact that cover clauses may have been shortened. Since omitted (positive)
literals in these cover clauses do not occur in any other clauses in £ ' , this must
be locally stratified iff £o is locally stratified. Therefore, the proof is completed, if
we can show that cycles as above always define constraint sets that are not locally
stratified or not satisfiable.

With each neighbouring pair (Si3.,Sij+1) we may associate a witness x € fl
Si j + j . Then without loss of generality (just rename indices) we can always assume
a cycle

Xl X2 Xm

S1 ~ S'2 — S3 — • • • — Sm ~ Sm+1 = S1

and show that the following conditions can be achieved:

• m is odd,

• the Xi are pairwise different,

• the Si are pairwise different and
• the cover clause in E' for X(has the form pu V pu+i V C'e, where literals in

C'(do not occur in any other clause in £ ' .

The last condition will allow us to assume without loss of generality that cover
clauses in £ ' only contain two literals.

In order to achieve such a cycle recall that our original cycle is composed of three
subpaths (called flanks) corresponding to a solution of a smaller DCP-instance and
each pair of flanks has a common set (called corner). If Si C Sj is such a corner,
then the following cases may arise:

302 Klaus-Dieter Schewe. Bernhard Thalheim

• The two nieghbours Si and Sk coincide which allows to remove the corner Sj
and to identify Si with Sk •

• If Si, Sj and Sk are pair wise different, we either obtain a simple cycle of
length 3 or let the cycle unchanged.

• If one of the neighbours equals Sj, say Sk = Sj, then Sk is not common in
the solutions for the flank with Sj and Sk, i.e. there must be some Sj< in the
same solution as S, with Sj n Sj< ^ 0. In this case we may replace the even
number of edges between Sj and Sy by a single edge. By the same argument
the even number of edges between the opposite edge S((in the same flank)
and some Sr by a single edge.

In all these cases the cycle length remains odd.
If Xi occurs twice, say between Si\ and Sl2 and between Si3 and Sj4 respectively,

we may assume paths from Si, to Sl4 and from Si2 to Si3 of length and n 2

respectively. Then there are cycles with Si2, Si3 and Sl4 connected by Xi
respectively and one of the corresponding lengths ni + 1 or n2 + 1 must be odd.
The only critical cases occur for Si2 = Sj4 or Sjt = Sj3, but these correspond to
corners that have already been removed.

Finally, in order to achieve the condition on cover clauses consider S j fl Sj / 0.

• If Si and Sj belong to different flanks, but to the same solution, then we have
Si = Sj and we may identify them and remove the even number of edges
between them.

• If Si and Sj belong to different flanks and different solutions, then for Sj ^ Sj
we may replace the odd number of edges between them by a single new edge,
whereas for Sj = Sj we may consider the odd number of edges between them
as our new cycle.

• If Si and Sj belong to the same flank, then the number of edges between
them is even iff Sj = Sj, thus may be .removed or replaced by a single new
edge.

The conditions on our cycle now allows clauses to be arranged in such a way that
we have

= {~h VL2, ~L2VL3,...,~LP-1VLP, -LpVLi}

for an even number p with Lp /2+j = ~ Li for i = 1 , . . . ,p/2. Such a £ ' , however, is
not satisfiable. •

8 Conclusion
In this article we investigated the limits of rule triggering systems (RTSs) for main-
taining database integrity under the additional requirement to preserve the effects

Limitations of B,ule Triggering Systems for Integrity Maintenance 303

of transitions. The first result assures the existence of non-repairable transitions.
In order to disallow such transitions the constraint implication problem must be
decidable.

Secondly, we analyzed critical trigger paths in rule hypergraphs associated with
RTSs. We could show that the existence of critical trigger paths leads to RTSs
which may invalidate the effect of some transitions, even if these are repairable.
Such a behaviour can only be excluded for locally stratified constraint sets. In this
case the needed RTS can be computed effectively, but checking local stratification
is NP-hard.

To summarize, both results limit the applicability of RTSs for integrity main-
tenance under the assumption that the intended effects of user-defined transitions
should be preserved. Fortunately, there is a stronger condition on a constraint
set to be stratified, which is only sufficient for reasonable rule behaviour, but not
necessary. Stratified constraint sets occur, if we have a relational database schema
in Entity-Relationship normal form, which means that it is equivalent to an ER-
schema without exclusion constraints. Checking stratification is not only effective,
but also efficient.

On the other hand, the RTS approach to integrity maintenance completely
ignores user-defined transitions. Thus, a second conclusion from our studies is that
these should be taken into consideration.

References

[1] S. Abiteboul, V. Vianu: Equivalence and Optimization of Relational Transac-
tions, Journal of the ACM, vol. 35(1), 1988, 70-120

[2] S. Ceri, J. Widom: Deriving Production Rules for Constraint Maintenance,
Proc. 16th Conf. on VLDB, Brisbane (Australia), August 1990, 566-577

[3] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca: Automatic Generation of Pro-
duction R.ules for Integrity Maintenance. ACM ToDS, vol. 19(3), 1994, 367-
422.

[4] S. Chakravarty, J. Widom (Eds.): Research Issues in Data Engineering —
Active Databases, Proc., Houston, Februar 1994

[5] M. Gertz, U. W. Lipeck: Deriving Integrity Maintaining Triggers from Tran-
sition Graphs, in Proc. 9th ICDE, IEEE Computer Society Press, 1993, 22-29

[6] H. Mannila, K.-J. Râihâ: The Design of Relational Databases, Addison-Wesley
1992

[7] K.-D. Schewe, B. Thalheim: Consistency Enforcement in Active Databases,
in S- Chakravarty, J. Widom (Eds.): Research Issues in Data Engineering —
Active Databases, Proc., Houston, Februar 1994

304 Klaus-Dieter Schewe. Bernhard Thalheim

[8] K.-D. Schewe, B. Thalheim: Active Consistency Enforcement for Repairable
Database Transitions, in S.Conrad, H.-J. Klein, K.-D. Schewe (Eds.): Integrity
in Databases, Proc. 6th Int. Workskop on Foundations of Models and Lan-
guages for Data and Objects, Schloß Dagstuhl, 1996, 87-102, available via
h t t p : //wwwiti . cs .uni-magdeburg.de/~conrad/IDB96/Proceedings . html

[9] B. Thalheim: Foundations of entity-relationship modeling, Annals of Mathe-
matics and Artificial Intelligence, vol. 7, 1993, 197-256

[10] S. D. Urban, L. Delcambre: Constraint Analysis: a Design Process for Specify-
ing Operations on Objects, IEEE Trans, on Knowledge and Data Engineering,
vol. 2 (4), December 1990

[11] J. Widom, S. J. Finkelstein: Set-oriented Production Rules in Relational
Database Systems, in Proc. SIGMOD 1990, 259-270

Received, April, 1997

